
Supporting End-to-End Quality of Service Properties in OMG Data Distribution
Service Publish/Subscribe Middleware over Wide Area Networks

Akram Hakiria,b, Pascal Berthoua,b, Aniruddha Gokhalec, Douglas C. Schmidtc, Gayraud Thierrya,b

aCNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
bUniv de Toulouse, UPS, LAAS, F-31400 Toulouse, France

cInstitute for Software Integrated Systems, Dept of EECS
Vanderbilt University, Nashville, TN 37212, USA

Abstract

Assuring end-to-end quality-of-service (QoS) in distributed real-time and embedded (DRE) systems is hard due to
the heterogeneity and scale of communication networks, transient behavior, and the lack of mechanisms that holisti-
cally schedule different resources end-to-end. This paper makes two contributions to research focusing on overcoming
these problems in the context of wide area network (WAN)-based DRE applications that use the OMG Data Distri-
bution Service (DDS) QoS-enabled publish/subscribe middleware. First, it provides an analytical approach to bound
the delays incurred along the critical path in a typical DDS-based publish/subscribe stream, which helps ensure pre-
dictable end-to-end delays. Second, it presents the design and evaluation of a policy-driven framework called Velox.
Velox combines multi-layer, standards-based technologies—including the OMG DDS and IP DiffServ—to support
end-to-end QoS in heterogeneous networks and shield applications from the details of network QoS mechanisms by
specifying per-flow QoS requirements. The results of empirical tests conducted using Velox show how combining
DDS with DiffServ enhances the schedulability and predictability of DRE applications, improves data delivery over
heterogeneous IP networks, and provides network-level differentiated performance.

Keywords: DDS services, Schedulability, QoS Framework, DiffServ.

1. Introduction

Current trends and challenges. Distributed real-time
and embedded (DRE) systems, such as video surveillance,
on-demand video transmission, homeland security, on-
line stock trading, and weather monitoring, are becom-
ing more dynamic, larger in topology scope and data vol-
ume, and more sensitive to end-to-end latencies [1]. Key
challenges faced when fielding these systems stem from

Email addresses: hakiri@laas.fr (Akram Hakiri),
berthou@laas.fr (Pascal Berthou), a.gokhale@vanderbilt.edu
(Aniruddha Gokhale), d.schmidt@vanderbilt.edu (Douglas C.
Schmidt), gayraud@laas.fr (Gayraud Thierry)

how to distribute a high volume of messages per sec-
ond while dealing with requirements for scalability and
low/predictable latency, controlling trade-offs between la-
tency and throughput, and maintaining stability during
bandwidth fluctuations. Moreover, assuring end-to-end
quality-of-service (QoS) is hard because end-system QoS
mechanisms must work across different access points,
inter-domain links, and within network domains.

Over the past decade, standards-based middleware has
emerged that can address many of the DRE system chal-
lenges described above. In particular, the OMG’s Data
Distribution Service (DDS) [2] provides real-time, data-
centric publish/subscribe (pub/sub) middleware capabil-
ities that are used in many DRE systems. DDS’s rich

Preprint submitted to Elsevier June 20, 2013



QoS management framework enables DRE applications
to combine different policies to enforce desired end-to-
end QoS properties.

For example, DDS defines a set of network schedul-
ing policies (e.g., end-to-end network latency budgets),
timeliness policies (e.g., time-based filters to control data
delivery rate), temporal policies to determine the rate at
which periodic data is refreshed (e.g., deadline between
data samples), network priority policies (e.g., transport
priority is a hint to the infrastructure used to set the pri-
ority of the underlying transport used to send data in the
DSCP field for DiffServ), and other policies that affect
how data is treated once in transit with respect to its relia-
bility, urgency, importance, and durability.

Although DDS has been used to develop many scal-
able, efficient and predictable DRE applications, the DDS
standard has several limitations, including:

• Lack of policies for processor scheduling. DDS
does not define policies for processor-level packet
scheduling i.e., it provides no standard means to des-
ignate policies to schedule IP packets. It therefore
lacks support for analyzing end-to-end latencies in
DRE systems. This limitation makes it hard to assure
real-time and predictable performance of DRE sys-
tems developed using standard-compliant DDS im-
plementations.

• End-to-end QoS support. Although DDS poli-
cies manage QoS between publisher and subscribers,
its control mechanisms are available only at end-
systems. Overall response time and pubsub laten-
cies, however, are also strongly influenced by net-
work behavior, as well as end-system resources. As
a result, DDS provides no standard QoS enforce-
ment when a DRE system spans multiple different
interconnected networks, e.g., in wide-area networks
(WANs).

Solution approach→ End-system performance model-
ing and policy-based management framework to ensure
end-to-end QoS. This paper describes how we enhanced
DDS to address the limitations outlined above by defin-
ing mechanisms that (1) coordinate scheduling of the host
and network resources to meet end-to-end DRE applica-
tion performance requirements [3] and (2) provision end-
to-end QoS over WANs composed of heterogeneous net-

works comprising networks with different transmission
technologies over different links managed by different ser-
vice providers that support different technologies (such as
wired and wireless network links). In particular, we focus
on the end-to-end timeliness and scalability dimensions
of QoS for this paper, while referring to these properties
simply and collectively as “QoS.”

To coordinate scheduling of host and network re-
sources, we developed a performance model that calcu-
lates each node’s local latency and communicates it to the
DDS data space. This latency is used to model each end-
system as a schedulable entity. This paper first defines a
pub/sub system model to verify the correctness and effec-
tiveness of our performance model and then validates this
model via empirical experiments. The parameters found
in the performance model are injected in the framework
to configure the latency budget DDS QoS policies.

To provision end-to-end QoS over WANs composed
of heterogeneous networks, we developed a QoS policy
framework called Velox to deliver end-to-end QoS for
DDS-based DRE systems across the Internet by support-
ing QoS across multiple heterogeneous network domains.
Velox propagates QoS-based agreements among hetero-
geneous networks involving the chain of inter-domain ser-
vice delivery. This paper demonstrates how those differ-
ent agreements can be used together to assure end-to-end
QoS service levels: : the QoS characterization is done
from the application, and notifies the upper layer about
its requirements, which adapt the middleware’s service to
them using the DDS QoS settings. Then, the middleware
negotiates the network QoS with Velox on behalf of the
application. Figure 1 shows the high-level architecture of
our solution.

We implemented the two mechanisms described above
into the Velox extension of DDS and then used Velox to
evaluate the following issues empirically:

• How DDS scheduling overhead contributes to pro-
cessing delays, which is described in Section 3.2.2.

• How DDS real-time mechanisms facilitate the devel-
opment of predictable DRE systems, which is de-
scribed in Section 3.2.4.

• How DDS QoS mechanisms impact bandwidth pro-
tection in WANs, which is described in Section 3.3.2.

2



Figure 1: End-to-end Architecture for Guaranteeing
Timeliness in OMG DDS

• How customized implementations of DDS can
achieve lower end-to-end delay, which is described
in Section 3.3.3.

The work presented in this paper differs from our prior
work on QoS-enabled middleware for DRE systems in
several ways. Our most recent work [4, 5] only focused on
bridging OMG DDS with the Session Initiation Protocol
(SIP) to assure end-to-end timeliness properties for DDS-
based application. In contrast, this paper uses the Velox
framework to manipulate network elements to use mecha-
nisms, such as DiffServ, to provide QoS properties. Other
earlier work [6] described how priority- and reservation-
based OS and network QoS management mechanisms
could be coupled with CORBA-based distributed object
computing middleware to better support dynamic DRE
applications with stringent end-to-end real-time require-
ments in controlled LAN environments. In contrast, this
paper focuses on DDS-based applications running WANs.

We focused this paper on DDS and WANs due to our
observation that many network service providers allow
clients to use MPLS over DiffServ to support their traf-
fic over the Internet, which also is also the preferred ap-
proach to support QoS over WANs. We expect our Velox
technique is general enough to support end-to-end QoS
for a range of communication infrastructure, including
CORBA and other service-oriented and pub/sub middle-
ware. We emphasize OMG DDS in this paper since prior
studies have showcased DDS in LAN environments, so
our goal was to extend this existing body of work to eval-

uate DDS QoS properties empirically in WAN environ-
ments.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 conducts a scheduling anal-
ysis of the DDS specification and describes how the Velox
QoS framework manages both QoS reservation and the
end-to-end signaling path between remote participants;
Section 3 analyzes the results of experiments that evaluate
our scheduling analysis models and the QoS reservation
capabilities of Velox; Section 4 compares our research on
Velox with related work; and Section 5 presents conclud-
ing remarks and lessons learned.

2. The Velox Modeling and End-to-end QoS Manage-
ment Framework

This section describes the two primary contributions of
this paper:

• The performance model of DDS scheduling. This
contribution describes the end-system that hosts the
middleware itself and analyzes its capabilities and
drawbacks in terms of scheduling capabilities and
timeliness used by DDS on the end-system and
across the network.

• The Velox policy-based QoS framework. This
contribution performs the QoS negotiation and the
resource reservation to fulfill participants QoS re-
quirements across WANs.

This performance model is evaluated according the
queuing systems and the values provided this analytical
model are used to configure the QoS DDS Latency pol-
icy in XML file at end-system (shown later in Figure 20).
Those values are used by Velox to configure the session
initiation at setup phase. Together, these contributions
help analyze an overall DRE system from both the user
and network perspectives.

2.1. An Analytical Performance Model of the DDS End-
to-end Path

Below we present an analytical performance model that
can be used to analyze the scheduling activities used by
DDS on the end-system and across the network.

3



2.1.1. Context: DDS and its Real-time Communication
Model

To build predictable DDS-based DRE systems devel-
opers must leverage the capabilities defined by the DDS
specification. For completeness we briefly summarize the
OMG DDS standard to outline how it supports a scal-
able and QoS-enabled data-centric pub/sub programming
model. Of primary interest to us are the following QoS
policies and entities defined by DDS:

• Listeners and WaitSets receive data asynchronously
and synchronously, respectively. Listeners provide a
callback mechanism that runs asynchronously in the
context of internal DDS middleware thread(s) and al-
lows applications to wait for the arrival of data that
matches designated conditions. WaitSets provide
an alternative mechanism that allows applications
to wait synchronously for the arrival of such data.
DRE systems should be able to control the schedul-
ing policies and the assignments of the scheduling
policies, even for threads created internally by the
DDS middleware.

• The DDS deadline QoS policy establishes a con-
tract between data writers (which are DDS entities
that publish instances of DDS topics) and data read-
ers (which are DDS entities that subscribe to in-
stances of DDS topics) regarding the rate at which
periodic data is refreshed. When set by datawrit-
ers, the deadline policy states the maximum dead-
line by which the application expects to publish new
samples. When set by data readers, this QoS pol-
icy defines the deadline by which the application ex-
pects to receive new values for the Topic. To en-
sure a datawriter’s offered value complies with a
data reader’s requested value, the following inequal-
ity should hold:

o f f ered deadline ≤ requested deadline (1)

• The DDS latency budget QoS policy establishes
guidelines for acceptable end-to-end delays. This
policy defines the maximum delay (which may be
in addition to the transport delay) from the time the
data is written until the data is inserted in the reader’s

cache and the receiver is notified of data’s arrival. It
is therefore used as a local urgency indicator to op-
timize communication (if zero, the delay should be
minimized).

• The DDS time based filter QoS policy mediates ex-
changes between slow consumers and fast producers.
It specifies the minimum separation time for applica-
tion to indicate it does not necessary want to see all
data samples published for a topic, thereby reducing
bandwidth consumption.

• The DDS transport priority QoS policy specifies
different priorities for data sent by datawriters. It
is used to schedule the thread priority to use in the
middleware on a per-writer basis. It can also be
used to specify how data samples use DiffServ Code
Point (DSCP) markings for IP packets at the trans-
port layer.

We consider these QoS policies in our performance
model described in Section 2.1.3 since they meet the DDS
request/offered framework for matching publishers to sub-
scribers. These policies can also be used to control the
end-to-end path by simultaneously matching DDS data
readers, topics, and data writers.

2.1.2. Problem: Determining End-to-end DDS Perfor-
mance at Design-time

The OMG DDS standard is increasingly used to deploy
large-scale applications that require scalable and QoS-
enabled data-centric pub/sub capabilities. Despite the
large number of QoS policies and mechanisms provided
by DDS implementations, however, it is not feasible for
an application developer to determine at design-time the
expected end-to-end performance observed by the differ-
ent entities of the application. There are no mechanisms
in standard DDS to provide an accurate understanding of
the end-to-end delays and predictability of pub/sub data
flows, both of which are crucial to application operational
correctness.

These limitations stem from shortcomings in DDS to
control the following scheduling and buffering activities
in the end-to-end DDS path:

• Middleware-Application interface. DDS provides
no mechanisms to control and bound the overhead on

4



the activities at the interface of the DDS middleware
and the application. This interface is used primarily
by (1) data writers to publish data from the applica-
tion to the middleware and (2) data readers to read
the published data from the middleware into the ap-
plication space. Developers of DDS application have
no common tools to estimate the performance over-
head at this interface.

• Processor scheduling. When application-level data
is transiting through the DDS middleware layer, it
must be (de)serialized, processed for the QoS poli-
cies, and scheduled for dispatch over the network
(or read from the network interface card). Since
DDS does not dictate control over the scheduling of
the processor and I/O resources during this part of
the critical path traversal, it is essential to analyze
scheduling performance and effectiveness of a DDS-
based system, particularly where real-time commu-
nication is critical.

• Network scheduling. Although DDS provides
mechanisms to control communication-related QoS,
these mechanisms exist only at an end-system. Con-
sequently, there is no mechanism to bound the delay
incurred over the communication channels.

The consequence of these limitations is that developers
of DDS applications have no common analysis techniques
or tools at their disposal to estimate the expected perfor-
mance for their DDS-based applications at design-time.

2.1.3. Solution Approach: Developing an Analytical Per-
formance Model for DDS

One approach to resolving the problems outlined in
Section 2.1.2 would be to empirically measure the perfor-
mance of the deployed system. Depending on the deploy-
ment environments and QoS settings, however, different
performance results will be observed. Moreover, empiri-
cal evaluation requires fielding an application in represen-
tative deployment environment. To analyze DDS capabil-
ities to deliver topics in real-time, therefore, we present
a stochastic performance model for the end-to-end path
traced via a pub/sub data flow within DDS. This model
is simple but powerful to express the performance con-
straints without adding complexity to the system. In more
complicated models, one common solution is to look for

a canonical form to reduce the complexity and hold the
power of the expression of the model to permit powerful
analysis techniques for validating the quality of service.
The model presented in this paper is well-suited for the
context of LAN as well as WAN context and does not re-
quire any additional complexity because it can express the
behavior of the system easily and allows powerful metrics
to evaluate the performance of the system.

Figure 2 shows the different data timeliness QoS poli-
cies described below, along with the time spent at different
scheduling entities in the critical path.

Model Assumptions. We assume knowledge of the fol-
lowing system parameters to assist the analysis of proces-
sor scheduling:

• Each job requires some CPU processing to execute
in the minimum possible time ti, meaning that a jobi

can be executed at the cost of a slower execution rate.

• There is sufficient bandwidth to support all data
transfer at the defined rate without losing data pack-
ets.

• The CPU scheduler can preempt jobs that are cur-
rently being executed and resume their execution
later.

• The service times for successive messages have the
same probability distribution and all are mutually in-
dependent.

• The publish rate λ (which is the rate at which mes-
sages are generated) is governed by a Poisson pro-
cess and events occur continuously and indepen-
dently at a constant average arrival rate λ, having ex-
ponential distribution with average arrival time 1

λ
.

• The service rate µ (which is the rate at which pub-
lished messages arrive at the subscriber) has an expo-
nential distribution and is also governed by a Poisson
process.

• The traffic intensity per CPU ρ (which is the normal-
ized load on the system) defines the probability that
the processor is busy processing pub/sub messages.
The utilization rate of the processor is defined as the
ratio ρ = λ

µ
.

5



Figure 2: End-to-End Data Timeliness in DDS

• Pub/Sub notification cost per event message Tam:
cost required by the application to provide event pub-
lish message or retrieve event subscribe message.
This parameter is divided into two parts:(1) Tappmid:
amount of time for even source application to pro-
vide the message to the middleware even broker sys-
tem, and (2) Tmidapp: amount of time required by ap-
plication to retrieve message from the reader’s cache
to relay the messages to the displayer. Those param-
eters are experimentally evaluated using high perfor-
mance time stamp included within the application
source code.

• The pub/sub cost per event message Tps(λ) (which is
the store and forward cost required for pub/sub mes-
sages). This parameter is divided into two parts: (1)
Tpub(λ), which is the store and forward cost for DDS
to send data from the middleware to the network in-
terface, and (2) Tsub(λ), which is the cost to retrieve
data after CPU processing at the subscriber’s mid-
dleware. These parameters are evaluated using the
Gilbert Model [7] (one of the most-commonly ap-
plied performance evaluation models), as shown in
Figure 2.

• The effective processing time for pub/sub message
for a given DDS message Pps(µ) (which is the time
cost required by processes executing on a CPU, pos-
sibly being preempted by the scheduler, until they

have spent their entire service time on a CPU, at
which point they leave the system). We assume that
P(µ) has the same value on the publisher as on the
subscriber and we note them P(µ) and P1(µ), respec-
tively, as shown in Figure 2.

• The Network time delay D (which is the packet de-
livery time delay from the first bit leaves the network
interface controller of the transmitter until the least
is received). The network delay is measured using
high-resolution timer synchronization based on NTP
protocol [8]. This parameter is shown by T in Fig-
ure 2.

Analytical Model. Having defined the key scheduling ac-
tivities along the pub/sub path, we need a mechanism to
model these activities. If the CPU scheduler is limited
by a single bottleneck node, job processing can be mod-
eled in terms of a single queuing system. As shown in
Figure 3, the DDS scheduler shown is a single queuing
system that consist of three components: (1) an arrival
process for messages from N different data writers with
specific statistics, (2) a buffer that can hold up to K mes-
sages, which are received in first-in/first-out (FIFO) order,
and (3) the output of the CPU (process complete) with a
fixed rate fs bits/s. We assume that discarded messages
are not considered in this model, a message is ready for
delivery to the network link when processing completes,
and messages can have variable length, all of which apply

6



Figure 3: Single Processor Queuing System Model

for asynchronous data delivery in DDS.
Although these assumptions may not apply to all DRE

systems, they enable us to derive specific behaviors via
our performance model since jobs frequently arrive and
depart (i.e., are completed or terminated) at irregular in-
tervals and have stochastic processing times, thereby al-
lowing us to obtain the empirical results presented in Sec-
tion 3.2.2. As mentioned above, our performance model
is based on the Gilbert Model due to its elegance and
the high-fidelity results it provides for practical applica-
tions [9]. This model simplifies the complexity of the
schedulability problem by providing a first-order Markov
chain model, shown in Figure 4.

Figure 4: The Markov Model for Processor Scheduling

The Markov model shown in Figure 4 is characterized
by two states of the system with random variables that
change through time: State 0 (“waiting”), which means
that data are being stored in the DDS middleware mes-
sage queue, and State 1 (“processing”), which means that
the job is being processed on the CPU scheduler. In addi-
tion, two independent parameters, P01 and P10, represent
state transition probabilities. The steady-state probabili-
ties for the “waiting” and “processing” states are given,
respectively, by equation 2, as follows:

π0 =
P10

P10 + P01
; π1 =

P01

P10 + P01
(2)

Recall that P01 and P10 are the derived from the Markov
transition matrix, for which the general format is given by
equation 3. As described in Figure 4, because we have an
ergodic process, P00 = 0, P01 = λ, P10 = µ, and P11 =

0, therefore we also can note that π0 = λ
λ+µ

; π1 =
µ
λ+µ

.

P =

[
0 P01

P10 0

]
(3)

From the expectation of the overall components de-
scribed above, the overall time delay for the performance
model is described by the following relation 4:

T = Tappmid +Tpub(λ)+P(µ)+D+P1(µ)+Tsub(λ)+Tmidapp

(4)
Where, π0 = Tpub(λ) = Tsub(λ) and π1 = P(µ) = P1(µ).

According to Little formula described by its general
form in equation 5, (Tpub(λ)) can be written as 1

λ
because

we consider the waiting for only one message per DDS
topic (messages arrive with the same inter-arrival times).
Since the number of messages in each Topic is N = 1,
T = 1

λ
is considered for only one DDS topic including

one message (with variable size).

T =
N
λ

=
1
λ
×

ρ

1 − ρ
(5)

Costs of Publish/Subscribe Network Model. The
stochastic performance modeling approach described in
Section 2.1.3 has lower complexity than a deterministic
approach that strives to schedule processor time optimally
for DDS-based applications. Since the service time for
DDS messages is independent, identically distributed,
and exponentially distributed, the scheduler can be
modeled as a standard M/M/1 queuing system, such as
the Little inter-arrival distribution [10].

We assume the time cost for communication between
the application and the DDS middleware can be evalu-
ated experimentally. In particular, the Tps(λ) cost can be
evaluated using a stochastic Markov model. In this case,
Tpub(λ) is the store-and-forward cost for data writers to
publish DDS messages to a CPU scheduler and Tsub(λ) is
the cost for the DDS middleware to retrieve these mes-
sages at the subscriber.

Network latency is comprised of propagation delay,
node delay, and congestion delay. DDS-based end-
systems also add processing delays, as described above.

7



We therefore assume the following network parameters

Figure 5: Timing Parameters in Datagram Packet Switch-
ing

shown in Figure 5 to analyze the network scheduling:

• M: number of hops

• P: Per-hop processing delay (s)

• L: link propagation delay (s)

• T: packet transmission delay (s)

• N: message size (packets)

• The total delay Ttot = total propagation + total trans-
mission + total store and forward + total processing,
as described relation by the following 6:

Ttot = M× L + N ×T + (M−1)×T + (M−1)×P (6)

The parameters described in relation 6 are used to-
gether with the delay parameters in the relation 4 to cal-
culate the end-to-end delay. Our focus is on the delay
elapsed from the time the first bit was sent by the network
interface on the end-system to the time the last bit was re-
ceived, which corresponds to the Ttot delay, as shown by
T2 ([D]) in Figure 2.

Note that the performance analysis involves gathering
formal and informal data to help define the behavior of
a system. Its power does not reside in the complexity of
the model, but in its power to express the system con-
straints. The model presented here allows expressing all
of the constraints without adding complexity to the sys-
tem. In more complicated models, one common solution

is to look for a canonical form to reduce the complexity
and hold the power of the expression of the model to per-
mit powerful analysis techniques for validating the qual-
ity of service. The model presented in this paper is well
suited for the context of LAN as well as WAN context and
does not require any additional complexity because it can
express the behavior of the system easily and allows pow-
erful metrics to evaluate the performance of the system.

2.2. Architecture of the End-to-end Velox QoS Frame-
work

Below we describe the architecture of the Velox QoS
management framework, which enhances DDS to support
QoS provisioning over WANs by enabling DRE systems
to select an end-to-end QoS path that fulfills applications
requirements. Requirements supported by Velox include
per-flow traffic differentiation using DDS QoS policies,
QoS signaling, and resource reservation over heteroge-
neous networks.

2.2.1. Context: Supporting DDS over WANs
Implementations of DDS have predominantly being de-

ployed in local area network (LAN) environments. As
more DRE systems become geographically distributed,
however, it has become necessary for DDS to operate
over wide area networks (WANs) consisting of multiple
autonomous systems that must be traversed by published
messages. In turn, the WAN topologies imply that DDS
traffic must be routed over core network routers in ad-
dition edge routers, as well as support multiple different
type of network technologies and links with different ca-
pacities.

Integrated Services (IntServ) [11] are viable in small-
to medium-size LANs, but have scalability problems
in large-scale WANs. Differentiated Services (Diff-
Serv) [12] provide diverse service levels for flows hav-
ing different priorities requiring lower delays under vari-
able bandwidth. Moreover, various network technologies
composing an end-to-end path have different capabilities
in terms of bandwidth, delay, and forwarding capabilities,
which makes it hard to apply a single unified solution for
all network technologies.

Any technique for assuring end-to-end QoS for DDS-
based DRE systems must optimize the performance and
scalability of WAN deployments over fixed and wire-
less access technologies and provide network-centric QoS

8



provisioning. It is therefore necessary to reserve net-
work resources that will satisfy DRE system require-
ments. Likewise, traffic profiles must be defined for each
application within a DRE system to ensure they never ex-
ceed the service specification while ensuring their end-to-
end QoS needs are met.

2.2.2. Problem: Dealing with Multiple Systemic Issues to
Support DDS in WANs

Challenge 1: Heterogeneity across WANs. To operate
over WANs—and support end-to-end QoS—DDS appli-
cations must be able to control network resources in
WANs. DDS implementations must therefore shield ap-
plication developers from the complexity of communica-
tion mechanisms in the underlying network(s). This com-
plexity is amplified due to different network technologies
(e.g., wired and wireless) that comprise the WANs.

Each technology exposes different QoS management
mechanisms for which QoS allocation is performed dif-
ferently; their complexity depends on resource reservation
mechanisms for the underlying network technology (e.g.,
Ethernet, Wimax, WiFI, Satellite, etc.). DDS application
developers need an approach that encapsulates the details
of the underlying mechanisms. Likewise, they need a uni-
form abstraction to manage complexity and ensure DDS
messages can be exchanged by publishers to subscribers
with desired QoS properties.

Challenge 2: Signaling and Service Negotiation Re-
quirements. Even if there is a uniform abstraction that
encapsulates heterogeneity in the underlying network el-
ements (e.g., links and routers), when QoS mechanisms
must be realized within the network the underlying net-
work elements require specific signaling and service ne-
gotiations to provision the desired QoS for the applica-
tions. It is therefore important that any abstraction DDS
provides to application developers also provides the ap-
propriate hooks needed for signaling and service negotia-
tions.

Challenge 3: Need for Admission Control. Signaling
and service negotiation alone is insufficient. In particu-
lar, care must be taken to ensure that data rates/sizes do
not overwhelm the network capacity. Otherwise, applica-
tions will not achieve their desired QoS properties, despite
the underlying QoS-related resource reservations. A call

setup phase is therefore useful to prevent oversubscrip-
tion of user flow, protect traffic from the negative effects
of other competent traffic, and ensure there is sufficient
bandwidth for authorized flows.

Challenge 4: Satisfying Security Requirements. Ad-
mission control cannot be done for all transmitted traffic,
which means that user traffic must be identified and al-
lowed to access some restricted service. Only users that
have registered for the service are allowed to use it (Au-
thentication). Moreover, available resources may be over-
provisioned due to their utilization by unauthorized users
that are not granted to require and receive a specific ser-
vice (Authorization). Even if a particular authenticated
user should have to secured resources controlled by the
system, the system should be able to verify the correct
user is charged for the correct session, according to the
resources reserved and delivered (Accounting).

2.2.3. Solution Approach: A Layer 3 QoS Management
Middleware

Figure 6 shows Velox, which provides an end-to-end
path for delivering QoS assurance across heterogeneous
autonomous systems build using DDS at the network
layer (which handles network routing and addressing is-
sues in layer 3 of the OSI reference model). Each
path corresponds to a given set of QoS parameters—
called classes of services—controlled by different service
providers. The Velox framework is designed as session
service platform over DiffServ-based network infrastruc-
ture, as shown in Figure 6. The remainder of this section
explains how Velox is designed to address the challenges
described in Section 2.2.2.

Resolving Challenge 1: Masking the Heterogeneity via
MPLS tunnels. Challenge 1 in Section 2.2.2 stemmed
from complex QoS management across WANs due to het-
erogeneity across network links and their associated QoS
mechanisms. Ideally, this complexity can be managed if
there exists a uniform abstraction of the end-to-end path,
which includes the WAN links. Figure 7 depicts how
Velox implements an end-to-end path abstraction using
a Multi Protocol Label Switching (MPLS) tunnel [13].
This tunnel enables aggregating and merging different au-
tonomous systems from one network domain (AS1 in Fig-
ure 7) to another (AS5 in Figure 7), so that data crosses
core domains more transparently.

9



Figure 6: Velox Framework Components

Figure 7: End-to-end path with MPLS tunnel

To ensure the continuity of the per-hop behavior
along a path, Network Layer Reachability Information
(NLRI) [14] is exchanged between routers using an NLRI
field to convey information related to QoS. The Velox
computation algorithm determines a path based on QoS.

Resolving Challenge 2: Velox Signaling and Service Ne-
gotiation. Challenge 2 in Section 2.2.2 is resolved using
the Velox Signaling and Service Negotiation (SSN) capa-
bility. After an end-to-end path (tunnel) is established, the
Velox SSN enables the sending of a QoS request from the
service plane using a web interface to the first resource
manager via a service-level agreement during session es-
tablishment. This resource manager performs QoS com-
mitment and checks if there is a suitable end-to-end path

fulfilling the QoS requirements in terms of classes of ser-
vices.

The Velox SSN function coordinates the use of the
various signaling mechanisms (such as end-to-end, hop-
by-hop, and local) to establish QoS-enabled end-to-end
sessions between communicating DDS applications. To
ensure end-to-end QoS, we decompose the full multi-
domain QoS check into a set of consecutive QoS checks,
as shown in Figure 6. The QoS path on which the global
behavior will be based therefore establishes the transfer
between the remote entities involved, which must be con-
trolled to ensure end-to-end QoS properties.

Figure 8 shows the architecture for the caller applica-
tion trying to establish a signaling session. The caller
sends a “QoSRequest” (which includes the required band-
width, the class of service, the delay, etc.) to the SSN, as
shown in Figure 8. In turn, the callee application uses the
establishSession service exposed by the web service inter-
face. The following components make up the Velox SSN
capability:

• AQ-SSN (Application QoS) allows callers to contact
the callee side and negotiate the session parameters.

• Resource Manager (RM) handles QoS requests so-
licited by the control plane and synchronizes those
requests with the service plane for handshaking QoS

10



Figure 8: Velox Signaling Model

invocation among domains using the IPsphere Ser-
vice Structuring Stratum (SSS) 1 signaling bus with
the Next Steps in Signaling (NSIS) [15] protocol to
establish, invoke, and assure network services.

After the QoSRequest has been performed, the per-
formReservation service exposed by AQ-SSN attempts
to reserve network resources. AQ-SSN requests network
QoS using the EQ-SAP (Service Access Point) interface
on top of the resource manager. After QoS reservation
has completed at the network level, the response will be
notified to AQ-SSN, which returns a QoSAnswer to the
caller. Since there is one reserveCommit request for each
unidirectional flow, if the reserveCommit operation fails,
the AQ-SSN must trigger the STOP request for the rest of
the flows belonging to the same session that were reserved
previously.

Resolving Challenge 3: Velox Call Admission Con-
trol and Resources Provisioning. Challenge 3 in Sec-

1http://www.tmforum.org/ipsphere

tion 2.2.2 is addressed by the Velox Connection Admis-
sion Control (CAC) capability. The CAC functionality is
split into

• A domain CAC that manages the admission in each
domain, and is called accordingly as the Inter-
domain CAC, Intra-domain CAC, and Database
CAC.

• An End-to-end CAC that determines a path with a
specified QoS level.

When the resource manager receives the reserveCommit
request from AQ-SSN it checks whether the source IP ad-
dress of the flow belongs to its domain. The AQ-SSN
then performs resource reservations for the new submit-
ted call to the system in either a hop-by-hop manner or
a single-hop related to a domain, as shown in the control
plane in Figure 9. During the setup phase of a new call,
therefore, the associated QoS request will be sent via the
signaling system to each domain (more precisely to each
resource manager) being on the path from source to des-
tination. Not all requests will be serviced due to network
overload. To solve the resulting problems, the end-to-end

11

http://www.tmforum.org/ipsphere


Figure 9: Velox Resource Reservation Model

Velox connection admission control (CAC) capability is
used for intra-domain, inter-domain, and end-to-end path.

For the intra-domain CAC, the existence of a QoS path
internal to the domain (i.e., between the ingress router and
the egress router) is then checked by the Velox resource
manager. If the QoS parameters are fulfilled, the intra-
domain call is accepted, otherwise it is rejected. For the
intra-domain CAC, the resource manager checks whether
the QoS requirements in the inter-domain link (between
the two BR routers of two different autonomous systems)
can be fulfilled. If the link can accept the requested QoS,
the call is accepted, otherwise it is rejected. For the end-
to-end CAC, Velox first checks the existence of the end-
to-end path via the Border Gateway Protocol table. If this
check does not find an acceptable QoS path, the CAC re-
sult is negative.

Finally, if the three CACs accept the call, the first re-
source manager forwards the call to the subsequent re-
source manager in the next domain. This manager is de-
duced from the information given when the first resource
manager selects the appropriate path. The network re-
sources of each domain are fully available by each call
passing the domain. As a result, no a priori resource

reservations are required. To reserve the resources for a
new call, therefore, Velox needs to reserve the resources
inside the MPLS end-to-end tunnel and need not perform
per-flow resource reservations in transit domains.

Resolving Challenge 4: Security, Authentication, Au-
thorization, and Accounting. Challenge 4 in Sec-
tion 2.2.2 is addressed by the Velox Security, Authenti-
cation, Authorization, and Accounting (SAAA) capabil-
ity. Velox’s SAAA manages user access to network re-
sources (authentication), grant services and QoS levels to
requesting users (authorization), and collects accounting
data (accounting). AQ-SSN then checks user authentica-
tion and authorization using SAAA and will optionally
filter some QoSRequests according to user rights via the
Diameter protocol [16], which is an authentication, au-
thorization, and accounting (AAA) protocol for computer
networks.

The Velox SSN module coordinates the session among
end-users. The SSN module asks CAC whether or not
the network can provide enough resources to the request-
ing application. It manages the session data, while CAC
stores the session status, and it links events to the relevant

12



session, translating network events (faults, resource short-
age, etc) into session events. The Velox SSN notifies its
CAC of user authorizations, after having authenticated the
user with AAA. The SSN is also responsible for shutting
down the session if faults have occurred. These CAC de-
cisions are supported by knowledge of the network con-
figuration and the current monitoring measurements and
fault status.

3. Analysis of Experimental Results

This section presents experimental results that evalu-
ate the Velox framework in terms of its timing behavior,
overhead, and end-to-end latencies observed in different
scenarios. We first use simulations to evaluate how the
performance model described in Section 2.1 predicts end-
system delays and then compare these simulation results
with those obtained in an experimental testbed. We also
evaluate the impact of increasing the number of topics
on DDS middleware latency and then evaluate the client-
perceived latency with the increasing size of topic data,
where the number of topics is fixed. We next evaluate
the latency incurred when increasing the number of sub-
scribers involved in communication and compare the re-
sults with the empirical study. Finally, we demonstrate
how the network QoS provisioning capabilities provided
by the Velox framework described in Section 2.2 signifi-
cantly reduce end-to-end delay and protect end-to-end ap-
plication flows.

3.1. Hardware and Software Testbed and Configuration
Scenario

The performance evaluations reported in this paper
were conducted in the Laasnetexp testbed shown in Fig-
ure 10. Laasnetexp consists of a server and 38 dual-
core machines that can be configured to run different op-
erating systems, such as various versions of Windows
and Linux [17]. Each machine has four network in-
terfaces per machine using multiple transport protocols
with varying numbers of senders, receivers and 500 GB
disks. The testbed also contains four Cisco Catalyst 4948-
10G switches with 24 10/100/1000 MPS ports per switch

and three Juniper M7i edge routers connected to the RE-
NATER network 2.

To serve the needs for the emulations and real network
experiments, two networks have been created in Laas-
netexp: a three-domain real network (suited for multi-
domain experiments) with public IP addresses belonging
to three different networks, as well as an emulation net-
work. Our evaluations used DiffServ QoS, where the QoS
server was hosted on the Velox blade.

In our evaluation scenario, a number of real-time sen-
sors and actuators sent their monitored data to each other
so that appropriate control actions are performed by the
military training and Airbus Flight Simulators we used.
Figure 10 shows several simulators deployed on EuQoS5-
EuQoS8 blades communicating based on the RTI DDS
middleware implementation 3. To emulate network traffic
behavior, we used a traffic generator that sends UDP traf-
fic over the three domains with configurable bandwidth
consumption. To differentiate the traffic at the edge router,
the Velox framework described in Section 2.2 manages
both QoS reservations and the end-to-end signaling path
between endpoints.

3.2. Validating the Performance Scheduling Model

Section 2.1 described an analytical performance model
for the range of scheduling activities along the end-to-end
critical path traced by a DDS pub/sub flow. We now val-
idate this model by first conducting a performance evalu-
ation using real conditions and estimating the time delays
in the analytical performance model. We then compare
these simulation results with actual experimental results
conducted in the testbed described in Section 3.1. The
accuracy of our performance model is evaluated by the
degree of similarity of these results.

We apply the approach above because some parame-
ters in our analytical formulation are only observable and
not controllable (i.e., measurable). To obtain the values
for these observable parameters so they can be substi-
tuted into the analytical model, we conducted simulation/-
emulation studies. These studies estimated the values by
measuring the time taken from when a request was sub-
mitted to the DDS middleware by a publisher applica-

2http:www.renater.fr
3www.rti.com

13

http:www.renater.fr
www.rti.com


Figure 10: Laasnetexp testbed

tion calling a “write()” data writer method until the time
the subscriber application retrieves data by invoking the
“read()” data reader method. We first analyze the results
and then validate the analytical model as a whole.

3.2.1. Estimating the Publish and Subscribe Activity
at the Middleware-Application Interface in the
Pub/Sub Model

Rationale and approach. One component of our perfor-
mance model (see Equation 4 in Section 2.1.3) includes
the event notification time Tam. This time measures how
long an application takes to provide the published event
to the middleware (called Tappmid) or the time taken to
retrieve a subscribed event from the middleware (called
Tmidapp). We estimate these modeled parameters by com-
paring the overall time using our analytical model with the
empirically measured end-to-end delay encountered in the
LAN environment shown by VLAN “V101” in Figure 10
and described in Section 3.1. Since the LAN environment

provides deterministic and stable results, the impact of the
network can easily be separated from the results. We can
therefore pinpoint the empirical results for the delays in
the end-systems and compare them with the analytically
determined bounds.

We implemented a high accuracy time stamp func-
tion in the application using the Windows high-resolution
method QueryPerformanceCounter() to measure the
time delay required by the application to disseminate
topic data to the middleware event broker system. The
publisher application writes five topics using the reliable
DDS QoS setting, where each topic data size ranges be-
tween 20 and 200 bytes and the receiver subscribes to all
topics. Increasing the number of topics and their respec-
tive data sizes enables us to analyze their impact on end-
to-end latency in the performance model. The Reliability
QoS policy configures the level of reliability DDS uses to
communicate between a data reader and data writer.

14



Results and analysis. Figure 11 shows the time delay
measured at both the publisher and subscriber applica-
tions, respectively, Tappmid and Tmidapp. As shown in Fig-

Figure 11: Time Delay for the Publish/Subscribe Event

ure 11 (note the different time scales for the publisher
and subscriber sides), the time required by the applica-
tion to retrieve topics from the DDS middleware broker
is larger than the time required to publish the five topics.
The subscriber application takes ∼50µs to retrieve data by
invoking the “read()” data reader method and displaying
the results on the user interface. Likewise, publisher ap-
plication takes ∼ 1µs to transmit the request to the DDS
middleware broker by a invoking a “write()” data writer
method.

The DDS Reliability QoS policy has a subtle effect on
data reader caches because data readers add samples and
instances to their data cache as they are received. We
therefore conclude that the time required to retrieve topic
data from the data reader caches contributes to the ma-
jority of time delay observed by a subscriber. Figure 12a
further analyzes the impact of number of topics on the
time delay for a subscriber event. This figure shows the
cumulative time delay required to push up all six samples
of topic data from the DDS middleware to the application
we called Tmidapp in the previous section (the experiment
was conducted for a 30 minute duration).

As shown in Figure 12a, Tmidapp is linearly proportional
to number of topics. For example, the amount of time
required by the application to retrieve a message from the
reader’s cache to relay the events to the display console
for only a single topic remains close to 9µs for all samples.

(a)

(b)

Figure 12: Impact of the number of DDS Topics on the
Time Delay for publish/subscribe event

When the number of topics increases, Tmidapp increases,
respectively, e.g., for 2 topics Tmidapp = 15 µs, for 3 topics
Tmidapp = 24µs, for 4 topics Tmidapp = 34 µs, and for 5
topics Tmidapp = 42µs.

A question stemming from these results is what is the
impact of the data size on Tappmidd and Tmidapp? To answer
this question, we analyze Figure 12b, which shows the
Tmidapp for each topic. To retrieve topic “Climat” (which
is 200 bytes in size) the required Tmidapp is close to 9µs
for all samples (and also for all experiments). Likewise,
to retrieve topic “Exo” (which is 20 bytes in size) the re-
quired Tmidapp remains close to 6µs. Finally, the Tmidapp

for topic “Object” (which is 300 bytes in size) remains
close to 9µs. These results reveal that the size of the data
has little impact on Tmidapp.

15



Figure 13 shows the time delay required by the pub-
lish application to send every topic to the DDS middle-
ware. Indeed, to push “Climat”Topic into the DDS mid-

Figure 13: the Time Delay for publish event

dleware the required Tappmidd is between0.2µs and 0.6µs.
The Tappmidd of the “Exo” Topic is close to 0.1µs, Topic
“Object” has Tappmidd value between to 0.1µs and 0.4µs,
and the “Global” and “Observateur” Topics have Tappmidd

smaller then 0.4µs and 0.2µs, respectively. These results
reinforce those provided by Figure 11; we therefore con-
clude that most of the time between the application and
the DDS middleware is spent on the subscriber and not on
the publisher.

To summarize, the pub/sub notification time-per-event
(which corresponds to the cost required by the application
to provide event publish message or retrieve event sub-
scribe message) depends largely on the number of topic
data exchanged between remote participants. The time-
per-event is relatively independent of the size of each
topic instance. Moreover, the time delay required by an
application to retrieve a message from the reader’s cache
to relay the events to the display console Tmidapp is greater
than Tappmid, which is the time for publisher application to
provide the message to the DDS middleware.

3.2.2. Estimating the CPU Scheduling Activities in the
Analytical Model

Rationale and approach. To evaluate the scheduling
model, we refer to Figure 14 that describes the CPU
scheduling. During the experimentation, the traffic inten-
sity per CPU refers to the utilization rate of the proces-
sor as the ratio ρ = λ

µ
, which is on average equal to 0.1

Figure 14: Impact of increasing the Topic samples on the
utilization rate of the CPU

(10% in Figure 14), which illustrate that the service rate
of the CPU remains constant when the topic samples in-
creases during the experiments. That is, The pub/sub cost
per event Tps(λ) for the DDS middleware is the store-and-
forward cost required for an event publish and subscribe
message. It remains undefined, however, both at the pub-
lisher (Tpub(λ)) and the subscriber (Tsub(λ)) (we consider
the waiting for only one message per DDS topic, the num-
ber of messages in each Topic is N = 1 (T = 1

λ
)). These

parameters were therefore empirically evaluated using the
Gilbert model described in Section 2.1.3.

Results and analysis. The data collected from the trace
files shows that the DDS middleware sends data at pub-
lish rate λ equal to 12,000 packets per second (pps). The
average inter-arrival time 1

λ
to the CPU is equal to 83.3µs.

Moreover, using the utilization rate of the processor, the
average service time 1

µ
is equal to 8µs.

When an event is generated, it is assigned a timestamp
and is stored in the DDS store-and-forward queue. Pro-
cesses enter this queue and wait for their turn on a CPU
for an average delay of 83.3µs. They run on a CPU un-
til they have spent their service time, at which point they
leave the system and are routed to the network interface
(NIC interface). A process is selected from the front of
the queue when a CPU becomes available. A process ex-
ecutes for a set number of clock cycles equivalent to the
service time of 8µs.

From the above discussion, the average arrival time 1
λ

16



is ten times greater than the average service time 1
µ
. Pro-

cesses spend most of their time waiting for CPU avail-
ability. Referring to the relation 2 in Section 2.1.3, the
steady-state probabilities for the “waiting” and “process-
ing” states are 0.9 and 0.1, respectively.

3.2.3. Estimating the Network Time Delay in the Analyti-
cal Model

Rationale and approach. To evaluate end-to-end network
latency and determine each of its components discussed
above (i.e., the DDS pub/sub notification time per event
Tam and DDS pub/sub cost-per-event Tps), we empirically
evaluate both the transmission delay and propagation de-
lay. We are interested only in the delay “D” elapsed from
the time the first bit was sent to the time the last bit was
received (i.e., we exclude the time involved in Tam and
Tps).

Results and analysis. Table 1 shows the different param-
eters and their respective values used to evaluate the net-
work delay empirically. This model emulates the be-

Table 1: Empirical Evaluation of Network Time Delay

Parameters Value
M: number of hops 2
P: Per-hop processing delay (µs) 5
L: link propagation delay (µs) 0.5
T: packet transmission delay (µs) 82.92
N: message size (packets) 1
Pkt: Packet size 8192 bits
D: Total delay (µs) 171.84

havior of two remote participants in the same Ethernet
LAN. In this configuration, the average time delay “D”
is 171.84µs.

3.2.4. Comparing the Analytical Performance Model
with Experimental Results

Rationale and approach. We now compare our analytical
performance model (Section 2.1) with the results obtained
from experiments in our testbed (Section 3.1). We first
calculate the end-to-end delay “ED” provided by the per-
formance model and given by relation 4 in Section 2.1.3,
by summing the DDS pub/sub notification time per event
Tam, the DDS pub/sub cost-per-event Tps(λ), the effective

processing time per DDS pub/sub message Pps(µ), and
the average time delay “D”. We then compare “ED” with
empirical experiments shown in Figure 15, which indicate
the time required to publish topic data until they are dis-
played at the subscriber application.

Figure 15: Experimental end-to-end latency for Pub/Sub
events over LAN

Results and analysis. The experimental results in Fig-
ure 15 show that the end-to-end delay is ∼350µs. In ad-
dition, the results provided by our performance model de-
scribed in Table 2 are consistent with those provided by
the experiments, i.e., the end-to-end latency provided by
the performance model is 306.74µs. We believe the val-
ues are acceptable because rather than taking into account
the percentage (14%), the 44 microseconds is not notice-
able because it is due to hardware ASIC processing at
the network physical node. These evaluations show that

Table 2: Evaluation of the End-to-End Delay (ED)

Parameters Value
Tmidapp(µs) 42
Tappmid(µs) 1.6
Tpub(λ) + Tsub(λ) = 1

λ
(µs) 83.3

P(µ) + P1(µ) = 1
µ
(µs) 8

D (µs) 171.84
ED (µs) 306.74

the results obtained from the analytical model are similar

17



to those obtained using empirical measurements, which
demonstrates the effectiveness of our performance model
to estimate the different time delay components described
above. The slight discrepancy between those results stems
from the simplified assumptions made with the first-order
Markov model, which is not completely accurate. We be-
lieve the slight discrepancy is acceptable because rather
than taking into account the percentage difference (14%)
which may appear large, the 44 microseconds is not no-
ticeable because it is due to hardware ASIC processing at
the network physical node and the internal communica-
tion between the CPU and the memory that takes a fewer
time to forward packets between publisher and subscriber.

3.2.5. Impact of Increase in Number of Subscribers
Rationale and approach. We conducted experiments
with a large number of clients and measured the commu-
nication cost by varying the number of clients. We lever-
age and compared our experimental results of the end-to-
end latency delay with the empirical study found in [18],
where the authors suggested a function S (n) to evaluate
the effect of distributing messages for several subscribers.

The experiments were conducted by increasing the
number of subscribers, so we used only one publisher that
sent data to respectively 1, 2, 4, and 8 subscribers and plot
the end-to-end delay taken from trace files, as shown in
Figure 16. The results in this figure show that the latency

Figure 16: End-to-end latency for one publisher to many
subscribers

for one-to-one communication (single publisher sending

topic data to a single consumer) is ∼400µs.

Results and analysis. As the number of subscribers in-
creased, the moving average delay (the time from send-
ing a topic from the application layer to its display on the
subscriber) increased proportionally with the respect to
the number of subscribers. The moving average delay re-
mained ∼600µs for two subscribers, became ∼900µs for 4
subscribers, and remained ∼1400µs when the number of
subscribers was 8.

Our results confirm the results provided in [18], where
the moving average delay is proportionally affected by
the number of clients declaring their intention to receive
data from the same data space. The publisher can deliver
events with low cost when it broadcasts events to many
subscribers with an impact factor between 1

n and 1.

In summary, when using DDS as a networking sched-
uler, the required time delay to distribute topic data is de-
termined at least by the number of topics and the number
of readers. In the case of the number of topics, our ex-
periments described above showed that the time delay for
sending data from the application to the DDS middleware
increases with the number of topics. Those experiments
have been conducted for different DDS middleware ven-
dor implementations including RTI DDS 4, OpenSplice
DDS 5 and CoreDX DDS 6.

Based on these results, we recommend sending larger
data size packets with fewer topics instead of using a
large number of topics. DDS middleware defines the
get matched subscriptions() method to retrieve the
list of data readers that have a matching topic and com-
patible QoS associated with the data writers. Having a
greater number of topics, however, allows dissemination
of information with finer granularity to select set of sub-
scribers. Likewise, reducing the number of topics by com-
bining their types results in more coarse-grained dissemi-
nation with a larger set of subscribers receiving unneces-
sary information. Application developers must therefore
make the right tradeoffs based on their requirements.

4www.rti.com/products/dds
5www.prismtech.com/opensplice
6www.twinoakscomputing.com/coredx

18

www.rti.com/products/dds
www.prismtech.com/opensplice
www.twinoakscomputing.com/coredx


3.3. Evaluation of the Velox Framework

Below we present the results of experiments conducted
to evaluate the performance of the Velox framework de-
scribed in Section 2.2. These results evaluate the Velox
premium service, which uses the DiffServ expedited for-
warding per-hop-behavior (PHB) model [19] whose char-
acteristics of low delay, low loss, and low jitter are suit-
able for voice, video, and other real-time services. Our
future work will evaluate the assured forwarding PHB
model [20] [21] that operators can use to provide assur-
ance of delivery as long as the traffic does not exceed
some subscribed rate.

3.3.1. Configuration of the Velox Framework
To differentiate the traffic at the edge router, the Velox

server manages both QoS reservations and the end-to-end
signaling path between endpoints.7 Velox can manage
network resources in a single domain and multi-domain
network. In a multi-domain network, Velox behaves in
point-to-point fashion and allows users to buy, sell, and
deploy services with different QoS (e.g., expedited for-
warding vs. assured forwarding) between different do-
mains. Velox can be configured using two types of ser-
vices: the network service and the session service, as
shown in Figure 17 and described below:

Figure 17: Resource Reservation Inside the MPLS End-
to-End Tunnel

• Network services define end-to-end paths that in-
clude one or more edge routers. When the network
session is created, the overall bandwidth utilization

7Performance evaluation of the functions of Velox is not presented
in this paper because we address the impact (from the point of view the
network QoS) of mapping the DDS QoS policies to the network (routing
and QoS) layer with the help of the MPLS tunneling.

for different sessions are assigned to create commu-
nication channels that allow multiple network ses-
sions to use this bandwidth. Moreover, it is pos-
sible to create several network sessions, each one
having its bandwidth requirements among the end-
to-end paths.

• Session services refer to a type of DiffServ service
included within the network session. Service ses-
sions create end-to-end tunnels associated with spe-
cific QoS parameters (including the bandwidth, the
latency, and the class of service) to allow different
applications to communicate with respect to those
parameters. For example, bandwidth may be as-
signed to each session (shown in Figure 17) and al-
located by the network service. Velox can therefore
call each service using its internal “Trigger” service
described next.

• Trigger service initiates a reservation of bandwidth
available for each session of a service, as shown in
Figure 18. When the network service and session

Figure 18: Trigger Service QoS Configuration

services are ready for use, the trigger service prop-
agates the QoS parameters among the end-to-end
paths that join different domains.

3.3.2. Evaluating the QoS Manager’s QoS Provisioning
Capabilities

Rationale and approach. The application is composed of
various data flows. Each flow has its own specific char-
acteristics, so we need to group them into categories (or
media), taking into account the nature of the data (ho-
mogeneity) as described in Figure 19. Then, we ana-
lyze those application’s flows to define and specify their
network QoS constraints to enhance the interaction be-
tween the application layer, the middleware layer and
the network layer. Therefore, We associate a set of

19



Figure 19: Mapping the application flow requirements to
the network through the DDS middleware

middleware QoS policies (History, Durability, Reliabil-
ity, Transport-priority, Latency-budget, Time-based-filter,
Deadline, etc.) by media to classify them into 3 traffic
classes, each class of traffic has its specific DDS QoS poli-
cies, then map them to specific IP services.

The application used for our experiments is composed
of three different DDS topics. Table 3 shows how top-
ics with different DDS QoS parameters allow data trans-
fer with different requirements. As shown in the table,
continuous data is sent immediately using best-effort re-
liability settings and written synchronously in the context
of the user thread. The data writer will therefore send a
sample every time the write() method is called. State in-
formation should deliver only previously published data
samples (the most recent value) to new entities that join
the network later.

Asynchronous data are used to send alarms and events
asynchronously in the context of a separate thread inter-
nal to the DDS middleware using a flow controller. This
controller shapes the network traffic to limit the maxi-
mum data rates at which the publisher sends data to a
data writer. The flow controller buffers any excess data
and only sends it when the send rate drops below the
maximum rate. When data is written in bursts—or when
sending large data types as multiple fragments—a flow

Topic
Data

Requirements QoS
DDS

DSCP
Field

Contin-
uous
Data

Constantly
updating data

best-
effort

12

Many-to-many
delivery

keys,
multicast

Sensor data, last
value is best

keep-last

Seamless failover owner-
ship,
deadline

State
Infor-
mation

Occasionally
changing
persistent data

durability 34

Recipients need
latest and greatest

history

Alarms
&
Events

Asynchronous
messages

liveliness 46

Need confirmation
of delivery

reliability

Table 3: Using DDS QoS for End-Point Application Man-
agement

controller can throttle the send rate of the asynchronous
publishing thread to avoid flooding the network. Asyn-
chronously written samples for the same destination is
coalesced into a single network packet, thereby reducing
bandwidth consumption.

Figure 20 describes the overall architecture for map-
ping the application requirements to network through
the middleware: the DDS QoS policies provided by the
middleware to the network (Transport-priority, latency-
budget, deadline) are parsed from an XML configuration
files. The Transport-priority QoS policy is processed by
the application layer at the terminal nodes according to
the value of this QoS policy, then translated by the mid-
dleware to IP packet DSCP marking; the Latency-budget
is considered very roughly at the terminal nodes, only;
and the “Deadline QoS policy” allows adapting the pro-
duction profile to the subscriber request.

This solution improves the effectiveness of our ap-
proach to enhance the interaction between the application

20



Figure 20: QoS Guaranteed Architecture

and the middleware and the network layer. The data pro-
duced using the local DDS service must be communicated
to the remote DDS service and vice versa. The network-
ing service provides a bridge between the local DDS ser-
vice and a network interface. The application must di-
mension the network properly, e.g., a DDS client performs
a lookup and assigns a QoS label to the packet to identify
all QoS actions performed on the packet and from which
queue the packet is sent. The QoS label is based on the
DSCP value in the packet and decides the queuing and
scheduling actions to perform on the packet.

An edge router selects a packet in a traffic stream based
on the content of DSCP packet header (described in col-
umn 3 in Table 3) to check if the traffic falls within the
negotiated profile. If it does, the packet is marked to a
particular DiffServ behavior aggregate. The application
then uses the DDS transport priority policy to define the
aggregated traffic the domain can handle separately. Each
packet is marked according to the designated service level
agreement (SLA).

Since Velox supports QoS-sensitive traffic reliably to
support delay- and jitter-sensitive applications, QoS re-
quirements for a flow can be translated into the appro-
priate bandwidth requirements. To ensure queuing de-
lay and jitter guarantees, it may be necessary to ensure
that the bandwidth available to a flow is higher than the
actual data transmission rate of this flow. We therefore
identified two flows and used them to evaluate the impact
of Velox on the bandwidth protection as follows: (1) a
real-time traffic generated by the application using expe-
dited forwarding DiffServ service with priority level 46
and (2) UDP best-effort traffic using Jperf traffic genera-

tor (iperf.sourceforge.net).
We performed two variants of this experiment. The first

variant uses UDP network background load of forward
and reverse bandwidth. For this configuration, the Velox
resource manager does not provide any QoS management
for the large-scale network, as the default configuration
of routers uses only two queues with 95% for best-effort
packets and 5% for network control packets, i.e., all traffic
traversing the network goes through a single best-effort
queue. Subsequently, we begin sending a DDS flow at
500 Kbps followed by a UDP flow at 600 Kbps injected
from Jperf to congest the queue and observe the behavior
of the DDS flow.

The second variant also used the UDP perturbing
traffic, but we enabled Velox for QoS management.
The Velox resource manager configured the edge router
queues to support 40% best-effort traffic, 30% expedited
forwarding traffic and 20% assured forwarding traffic, and
5% for network control packets.

Results and analysis. Figure 21a shows the results of ex-
periments when deployed applications were (1) config-
ured without any network QoS class and (2) sending DDS
flow competing with UDP background traffic. These re-
sults show the deterioration of the flow behavior as it can-
not maintain a constant bandwidth expected by the DDS
application due to the disruption by the UDP background
flows.

Figure 21b shows the results of experiments when the
deployed applications were (1) configured with expedited
forwarding network QoS class and (2) sending DDS flows
competing with UDP background traffic. These results

21

iperf.sourceforge.net


(a) without QoS

(b) with QoS

Figure 21: Impact of the QoS provisioning Capabilities
on the bandwidth protection

show that irrespective of heavy background traffic, the
bandwidth experienced by the DDS application using the
expedited forwarding network class is protected against
background perturbing traffic.

3.3.3. Evaluating the Impact of the Velox QoS Manager
Capabilities on Latency

Rationale and approach. Velox provides network QoS
mechanisms to control end-to-end latency delay between
distributed applications. The next experiment evaluates
the overhead of using it to enforce network QoS. As de-
scribed in Section 2.2, DDS provides deployment-time

configuration of middleware by adding DSCP markings
to IP packets. When applications invoke remote opera-
tions, the Velox QoS Server intercepts each request and
uses it to reserve the network QoS resources for each call.
It reserves these resources by configuring the edge router
queues with the priority level extracted from the DSCP
field (e.g., expedited forwarding, assured forwarding, etc).

We used WANem (wanem.sourceforge.net)
to emulate realistic WAN behaviors during applica-
tion development/testing over our LAN environment.
WANem allows us to conduct experiments in real envi-
ronments to assess performance with and without QoS
mechanisms. These comparisons enabled us to measure
the impact of change with the QoS mechanisms provided
by Velox.

This experiment had the following variants:

• We started one-to-one communication between end-
points, followed by sending perturbing UDP back-
ground traffic, and

• We increased the number of senders and receivers
applications to evaluate their impact on transmission
delay.

To measure the one way delay between senders and re-
ceivers, we used the Network Time Protocol (NTP) [22] to
synchronize all applications components with one global
clock. We then ran application components that over-
loaded the network link and routers to perform extra work
and applied policies to instrument IP packets with the ap-
propriate DSCP values.

Results and analysis. Figure 22 shows the end-to-end de-
livery time for distributed DDS applications over a WAN
without applying any QoS mechanisms. Figure 22 also
shows the impact of using the Velox QoS server, which
shows the latency delay measured when applying QoS
mechanisms to use-case applications. These results in-
dicate that the end-to-end delay measured without QoS
management is more than twice as large than the delay
measured when applying QoS management at the edge
routers. A closer examination shows that WANem incurs
roughly an order of magnitude more effort than Velox to
provide QoS assurance for end-to-end application flows.

22

wanem.sourceforge.net


Figure 22: Impact of the QoS provisioning Capabilities
on the end-to-end delay

3.3.4. Evaluating QoS Manager Capabilities for One-to-
Many Communications

Rationale and approach. This experiment evaluates the
potential of the Velox framework to handle increases in
the number of DDS participants (we do not consider
WANem here). We measured the moving average de-
lay between DDS applications distributed over the Inter-
net. We configured the DiffServ implementation in the
edge router of each network, as described in Section 3.1.
We then used DDS-based traffic generator applications to
send DDS topics via the Velox QoS service’s expedited
forwarding mechanisms at 500 kbps. Each DDS flow was
sent from one or more remote publishers from IP domain
1 managed by the “Montperdu” edge router (shown in
Figure 10) to one and/or many subscribers in IP domain 2
managed by “Posets” edge router.

The experiments in this configuration had the following
variants:

• We started one publisher sending data in the direc-
tion of two remote subscribers and then measured
the worst-case end-to-end latency between them,

• We used the same publisher and increased the num-
ber of subscribers, i.e., we added two more sub-
scribers to analyze the impact of competing flows
arriving from distributed applications on the Velox
QoS server, and

• We increased the number of participants to obtain

eight subscribers in competition for receiving a sin-
gle published expedited forwarding QoS flow from
the EuQoS6 machine.

The bandwidth utilization was limited to 1 Mbps for all
experiments so it would be consistent with the number of
participants tested.

Results and analysis. The end-to-end delay shown in Fig-
ure 23 includes the latency curves for 1-to-2, 1-to-4, and
1-to-8 configurations. When a single publisher sent DDS

Figure 23: Impact of Competing DDS Flows on End-to-
End Delay

topic data to several subscribers we found the latency val-
ues for different configurations remained ∼13 ms. In par-
ticular, the average latency is ∼13 ms for the 1-to-2 vari-
ant and the average latency is ∼12 ms for the 1-to-4 and
1-to-8 variants.

Based on these results, we conclude that the number
of subscribers affects end-to-end latency. In comparison
with communication over a LAN, the increase in the num-
ber of subscribers in the WAN adds more jitter to the
overall system. This jitter remains perceivable for the
WAN configuration since communication is measured in
milliseconds. Additional experiments conducted over a
WAN for other configurations—including more than 30
distributed application subscribers—indicated an end-to-
end delay of ∼15 ms.

23



3.3.5. Evaluating QoS Manager Capabilities for Many-
to-One Communications

Rationale and approach. This experiment is the inverse
of the one in Section 3.3.4 since we considered two ex-
pedited forwarding QoS competing flows sent by two re-
mote publishers to reach a single subscriber. We increased
the number of published QoS flow by increasing the num-
ber of participants to 4 and 8 publishers, respectively. Fig-
ure 24 shows the many-to-one latency obtained from trace
files, where each sending DDS application uses the expe-
dited forwarding QoS class supported by Velox.

Figure 24: Impact of Competing DDS Flows on End-to-
End Delay

Results and analysis. As shown in Figure 24, the end-to-
end latency is ∼13ms when two publishers sent DDS top-
ics to a single DDS subscriber. The delay is ∼13ms when
we considered 4 and 8 publishers sending data to a sin-
gle DDS subscriber. The increased number of publishers
does not significantly affect the end-to-end delay during
the experiments. In particular, all data packets marked
with DSCP value 46 are processed with the same priority
in the edge router. The Velox framework can configure
edge router queues to support the expedited forwarding
of packets with high priority.

3.3.6. Evaluating QoS Manager Capabilities for Many-
to-Many communications

Rationale and approach. This experiment evaluates the
impact of increasing number of participants on both pub-
lishers and subscribers. We started with 2-to-2 communi-
cation where two publishers send DDS topic data to both

two remote subscribers. We then increased the number of
participants to have 4-to-4 and 8-to-8 communication, re-
spectively. Figure 25 shows the many-to-many configura-
tion using the expedited forwarding QoS class supported
by Velox.

Figure 25: Impact of the competing flows on the end-to-
end delay

Results and analysis. The latency experienced for many-
to-many communication shows a time delay of ∼14 ms
for the 2-to-2 configuration. The latency increases to ∼22
ms for the 4-to-4 configuration and ∼45 ms for the 8-to-8
configuration. By setting the DDS reliability QoS pol-
icy setting to “reliable” (i.e., the samples were guaranteed
to arrive in the order published), Velox helps to balance
time-determinism and data-delivery reliability.

The latency for the 8-to-8 configuration is higher than
the 2-to-2 and 4-to-4 values because the data writers
maintain a send queue to hold the last “X” number of sam-
ples sent. Likewise, data readers maintain receive queues
with space for consecutive “X” expected samples. Never-
theless, the end-to-end latency for the 8-to-8 configuration
is acceptable because DDS ensures the one-way delay for
applications in DRE systems is less than 100 ms.

4. Related work

Conventional techniques for providing network QoS to
applications incur several key limitations, including a lack
of mechanisms to (1) specify deployment context-specific

24



network QoS requirements and (2) integrate functional-
ity from network QoS mechanisms at runtime. This sec-
tion compares the Velox QoS provisioning mechanisms
for DiffServ-enabled networks with related work. We di-
vide the related work into general middleware-based QoS
management solutions and those that focus on network-
level QoS management.

4.1. QoS Management Strategies in Middleware

Different QoS properties are essential to provide each
operation the right data at the right time, and hence the
network infrastructure should be flexible enough to sup-
port varying workloads at different times during the op-
erations [23], while also maintaining highly predictable
and dependable behavior [24]. Middleware for adaptive
QoS control [25] [26] was proposed to reduce the im-
pact of QoS management on the application code, which
was extended in the HiDRA project [27] for hierarchical
management of multiple resources in DRE systems [28].
Many middleware-based technologies have also been pro-
posed for multimedia communications to achieve the re-
quired QoS for distributed systems [29] [30].

QoS management in content-based pub/sub middle-
ware [31] allows powerful content-based routing mech-
anisms based on the message content instead of IP-based
routing. Likewise, many pub/sub standards and technolo-
gies (e.g., Web Services Brokered Notification [32] and
the CORBA Event Service [33]) have been developed to
support large-scale data-centric distributed systems [34].
These standards and technologies, however, do not pro-
vide fine-grained and robust QoS support, but focus on
issues related to monitoring run-time application behav-
ior. Addressing these challenges requires end-system QoS
policies to control the deployment and the self-adaptation
of resources to simplify the definition and deployment
of network behavior [35]. Besides, many pub/sub mid-
dleware [36] have been proposed for real-time and dis-
tributed systems to ensure both performance and scalabil-
ity in QoS-enabled components for DRE systems, as well
as for Web-enabled applications.

For example, [37] proposed a reactive QoS-aware ser-
vice for DDS for embedded systems to refactor the DDS
RTPS protocol. This approach scales well for DRE sys-
tems comprising on-board DDS applications, however, it
does not provide any analyses about the schedulability of

the occurring events, and how it can impact the behav-
ior of the system end-to-end. In addition, we developed
container-based pub/sub services in the context of OMG’s
Lightweight CORBA Component Model (LwCCM) [38].
We argue this solution is restricted to few number of QoS
policies. It provides only two QoS settings that can be
mapped into 2 network services that can be used in the
context of mono-domain network. The solution provided
in this paper benefits from the rich set of DDS QoS poli-
cies that we used in the context in multi-domain network.
This allows defining more flexible classes of services to fit
the application requirements. In addition,[39] presented
a benchmark of DDS middleware regarding it timeliness
performance. Authors studied the DDS QoS properties
in the context of Best-Effort network. Our concern is
using the DDS QoS policies that allows controlling the
QoS proprieties end-to-end. Our work addresses the QoS-
based network architecture which help us to mark out the
latency experienced in the network.

In [40] authors presented the integration of the DDS
middleware with SOA and web-service into a single
framework to allow teams collaboration over the Inter-
net. Since this solution allow the interoperability between
heterogeneous applications, however, the end-to-end QoS
can be guaranteed because the additional latencies added
by the web interfaces. Likewise, in [41] the authors pro-
posed a redirection proxy on top of DDS to support adap-
tation to mobile networks. Even if this architecture adds
a Mobile DDS client implemented in mobile device, the
Mobile DDS Clients are expected to run in single network
domains in wireless networks with connectivity guaran-
tees, which is not the case in heterogeneous networks.
We argue that using a redirecting proxy can have sev-
eral shortcomings when applied to real-time communica-
tion. In particular, our solution benefits from the map-
ping between the application layer and the middleware
layer to improve the QoS constraints required by the each
data flow. Without using either redirection proxy or mo-
bile agent, therefore, each flow in our solution has a spe-
cific requirement that allows grouping them into different
classes of traffic, where each class has its specific DDS
QoS policies that we mapped to a specific IP services.

In [42], authors presented a broker-like redirection
layer to allow P2P data dissemination between remote
participants. We argue that even if we use brokers, we
will still need to use our solution because even the bro-

25



kers will be geographically distributed, and our approach
should apply even if we have brokers.

To assess the adequate QoS supply chain management
application, authors in [43] presented a queuing Petri net
methodology for message-oriented event-driven systems.
Such a system is composed of interconnected business
products and services required to the end user. Petri nets
are well suited to analyze the performance of Flexible
Manufacturing System (FMS) which involves measuring
the production rate, machine utilization, kanban schedul-
ing, etc. In this model, the transportation times are in-
cluded in the transitions times. In comparison with our
analysis model, this one differs from ours on three points:
first, the FMS application does not require any real-time
constraints when putting it in production; even if some
cases require this, the queuing Petri net is not the best
choice to analyze the performance of the system, but the
timed petri net is more appropriate for this purpose. Thus,
TINA (TIme petri NetAnalyzer) 8 is a toolbox developed
in our lab which allows analyzing real-time system using
time petri nets. Second, DDS is not a message-oriented
middleware (e.g., JMS), even if DDS topics are similar
to messages, DDS is a data-centric middleware. DDS and
JMS are based on fundamentally different paradigms with
respect to data modeling, dataflow routing, discovery, and
data typing. Finally, the analytical model presented in this
paper is based on queuing theory to perform analysis of
real-time constraints in our application. The model dif-
fers from the petri net model in the way the performance
analysis is inferred from the model and how they can be
applied in telecommunication system.

The OMG’s Data Distribution Service (DDS) defines
several timing parameters (e.g., deadline, latency budget)
that are suitable for network scheduling rather than the
data processing in the processor since those QoS parame-
ters are used to update the topic production profile. For
example, the deadline QoS manages the write updates
between samples, while latency budget QoS can control
the end-to-end latency. DDS QoS policies thus effec-
tively make the communication network a schedulable en-
tity [44]. In contrast, DDS does not provide policies re-
lated to scheduling in the processor.

Despite a range of available middleware-based QoS

8http://projects.laas.fr/tina

management solutions, there has heretofore been a gen-
eral lack of tools to analyze the predictability and timeli-
ness of these solutions. Verifying these solutions formally
requires performance modeling techniques (such as those
described in Section 2.1) to empirically validate QoS in
computer networks. Our performance modeling approach
can be used to specify both the temporal non-determinism
of weakly distributed applications and the temporal vari-
ability of the data processing when using DDS middle-
ware. DDS middleware can use the results of our perfor-
mance models to control scheduling policies (e.g., earliest
deadline first, rate monotonic, etc.) and then assign the
scheduling policies for threads created internally by the
middleware.

4.2. Network-level QoS Management
Prior middleware solutions for network QoS manage-

ment [45] focus on how to add layer 3 and layer 2
services for CORBA-based communication [46] [47].
A large-scale event notification infrastructure for topic-
based pub/sub applications has been suggested for peer-
to-peer routing overlaid on the Internet [48]. Those ap-
proaches can be deployed only in a single-domain net-
work, however, where one administrative domain man-
ages the whole network. Extending these solutions to the
Internet can result in traffic specified at each end-system
being dropped by the transit network infrastructure of
other domains [38].

It is therefore necessary to specify the design for net-
work QoS support and session management that can sup-
port the diverse requirements of these applications [49],
which require differentiated traffic processing and QoS,
instead of the traditional best-effort service [40] provided
by the Internet. Integrating signaling protocols (such as
SIP and H.323) into the QoS provisioning mechanisms
has been proposed [50] with message-based signaling
middleware for the control plane to offer per-class QoS.
Likewise, a network communication broker [51, 46] has
been suggested to provide per-class QoS for multimedia
collaborative applications. This related work, however,
supports neither mobility service management nor scala-
bility since it adds complicated interfaces to both applica-
tions and middleware for the QoS notification. When an
event occurs in the network, applications should adapt to
this modification [52], e.g., by leveraging different codecs
that adapt their rates appropriately.

26

http://projects.laas.fr/tina


Authors in [42, 53] have provided a framework 9 that
address the reliability and the scalability of DDS commu-
nication over P2P large-scale infrastructure. This work,
however, is based on the best-effort QoS mechanisms of
the network and omits the fact that if the network is unable
to provide the QoS provisioning and the resource alloca-
tion, there will be no guarantees that the right data will be
transmitted at the right time.

Our earlier DRE middleware work [54] has focused
on priority reservation and QoS management mechanisms
that can be coupled with CORBA at the OS level to pro-
vide flexible and dynamic QoS provisioning for DRE ap-
plications. In the current work, our Velox framework
provides an architecture that extends the best-effort QoS
properties found in prior work. In particular, our solution
considers application flows requirements and maps them
into the DDS layer to allow end-to-end QoS provisioning.
We therefore integrate QoS along two key dimensions: (1)
the horizontal direction between different adjacent layers
in the network stack (application, middleware, and net-
work), and (2) the vertical direction between homologous
layers (layers at the same level of the OSI model).

To address limitations with related work, the Velox
framework described in Section 2.2 need not modify
existing applications to achieve the benefits of assured
QoS. Velox uses QoS provisioning mechanisms based
on MPLS over DiffServ QoS-based architectures. These
mechanisms were widely discussed in several papers in
networking including admission control mechanism with
COPS [55], NSIS [56] protocol and MPLS mapping over
WAN [57].

Experiments were conducted with one MPLS tunnel
because if there are any traffic engineering tunnels to the
BGP next hop, and if one or more of those is available
for use by the packet in question, one of these tunnels is
chosen. This tunnel will be associated with an MPLS la-
bel, the “tunnel label”. The tunnel label gets pushed on
the MPLS label stack, and the packet is forwarded to the
tunnels next hop.

In this paper, DDS applications may be connected to
one Service Provider (SP) and/or many SPs, but this
is made transparent to the application since it supposes

9http://lia.deis.unibo.it/Research/REVENGE/index.

html

there is a Service Level Agreement (SLA) between the
SPs (RFC 4364: BGP/MPLS IP VPNs) [57]. Using one
MPLS tunnel is therefore sufficient for the application to
distribute DDS Topics end-to-end, so there is no need to
manage multiple MPLS tunnels is required (the SLA al-
lows data distribution among multiple ASs transparently).

Velox allows end users to request a specific QoS-
guaranteed connectivity independent of the chosen ap-
plications, thereby achieving net neutrality requirements.
Moreover, Velox does not alter the decentralized Inter-
net model since it relies on bi-lateral agreements among
neighboring domains. Velox’s policy-based management
also enables the integration of services in a single session
that requires network resources, such as a bandwidth and
controllable end-to-end delay. It provides the mapping of
the DDS session between the application at the service
plane and the underlying network. The Velox QoS server
thus addresses mobility issues by installing the required
QoS allocation scheme for DDS sessions using per-flow
QoS reservation in edge routers.

5. Conclusions

Although DDS implementations have been used to de-
velop many scalable, efficient, and predictable DRE appli-
cations, the DDS standard has several limitations, includ-
ing lack of processor scheduling and end-to-end QoS sup-
port. This paper describes how we addressed these limita-
tions by (1) analyzing DDS scheduling capabilities to de-
liver DDS samples on an end-system using a performance
model and validating the accuracy of this model via both
simulation results and empirical experiments and (2) de-
veloping the Velox policy-based management framework
to provide end-to-end QoS provisioning for DDS-based
applications by controlling network resources, such as a
bandwidth and end-to-end delay.

We learned following lessons from developing and
evaluating our performance model and the Velox frame-
work:
• Ontology-based mechanisms are needed to auto-

mate DDS QoS configurations. The results in this pa-
per underscore the importance of integrating QoS poli-
cies at both the end-system and network levels to supply
users with the right data at the right time, support vary-
ing workloads at different times during operations, and
maintain predictable behavior. Velox currently supports

27

http://lia.deis.unibo.it/Research/REVENGE/index.html
http://lia.deis.unibo.it/Research/REVENGE/index.html


end-to-end QoS provisioning for DDS applications over
multi-domain networks, but lacks a robust means to en-
sure semantic consistency of QoS policies end-to-end. In
particular, a DDS QoS configuration developed for one
scenario in one operating environment may be subopti-
mal for different scenarios in different operating environ-
ments. Our future work will therefore focus on adding
ontology-based mechanisms [58, 59] to Velox that au-
tomate the assured configuration of DDS QoS policies,
thereby adapting network resources to better meet appli-
cation requirements.

For example, for effective QoS-based service selection
DDS applications require a tool to determine which trans-
port policy should be provided to the network to decide
which DiffServ service (AF, EF, etc.) best fits applica-
tion requirements. The use of ontologies makes it possible
to detect the appropriate Service Level Agreement (SLA)
to perform matching between the DDS application needs
and the service offered in real-time. This tool can be im-
plemented as an adjacent layer to the DDS middleware to
detect actual behavior of the network service.
• History Cache latency must be taken into account

when calculating the overall delay. This paper described
the specification and the evaluation of the performance
model to calculate the time latency at an end-system and
then conducted experimentations to verify the effective-
ness of this approach. The fidelity and effectiveness of
the delay computation model can be improved when all
software layers and hardware artifacts are accurately con-
sidered in the model.

For example, the results from Section 3.2 show dis-
crepancies between the delay predicted by our analytical
model versus the experimentally validated model. These
discrepancies stem from simplifying assumptions made
when integrating DDS with the application layer, e.g., we
did not consider the history cache that keeps DDS top-
ics in the case of durable data writers and readers nor did
we consider the DLRL (Data Local Reconstruction Layer)
layer of DDS. Accurate modeling can help improve time
delay calculations required by the history cache in the la-
tency calculation, both in terms of performance and mem-
ory consumption. Our future work will therefore consider
the case were durable writers and readers keep their his-
tory cache in permanent storage and study its impact on
the end-to-end latency.
• A constrained application protocol can help sup-

port QoS provisioning for resource-constrained Inter-
net devices. This paper explained how the web-service
QoS provisioning provided by Velox can control net-
work elements by enforcing policy control mechanisms,
negotiating QoS, and coordinating the data and signal-
ing paths to perform resource reservation. Velox does
not, however, address the QoS requirements of resource-
constrained applications over the Internet that have power
and energy limitations. In particular, to allow machine-
to-machine (M2M) communication, a special data format
should replace existing HTML and XML-based formats
with REST-based formats that work with existing Internet
solutions. Our future work will therefore develop cross-
layer DDS-based solutions that support efficient and com-
pact energy transmission methods, energy harvesting and
service-layer architecture for M2M that includes bindings
for both HTTP/REST and CoAP (Constrained Applica-
tion Protocol) [60] for constrained battery-powered de-
vices.
• Large deployments of publish/subscribe applica-

tions involve brokers. For scalability reasons, large
deployments of publish/subscribe applications often in-
volve brokers at various network and middleware lev-
els [61, 62, 6, 38]. Although this paper focused on end-
to-end timeliness of event dissemination between a pub-
lisher and a subscriber without involving any brokers, our
approach should seamlessly apply to a system comprising
event brokers.
• Additional dimensions of QoS require refinements

in the solution. The paper addresses the end-to-end time-
liness issues in large-scale networks, which relies on in-
formation sharing between different participants among
shared data spaces. Since DDS is deployed in mission-
critical and/or enterprise DRE systems for its ultra-low
latency benefits, the framework should support high infor-
mation assurance requirements without overloading the
overall system. A minimum and efficient use of cryp-
tography is thus required to enhance the integrity of the
information dissemination. In particular, security poli-
cies to control and restrict access to information to only
the authorized recipients should be included to the frame-
work to prevent denial of service attacks and ensure the
non-repudiation of information.

Our future work will therefore develop security policies
to allow authentication, authorization, access control, and
secure transport. These policies can be defined via the

28



Security Assertion Markup Language (SAML) to allow
exchanging public/private keys as part of the DDS QoS
policies, e.g., within a confidential DDS topics that may
be transported using the Datagram Transport Layer Se-
curity (DTLS) protocol. Additional work is also needed
to support reliability of the event dissemination and toler-
ance to failures.

References

[1] J. White, B. Dougherty, R. Schantz, D. C. Schmidt,
A. Porter, A. Corsaro, R&D Challenges and Solu-
tions for Highly Complex Distributed Systems: a
Middleware Perspective, the Springer Journal of In-
ternet Services and Applications special issue on the
Future of Middleware 2 (3).

[2] OMG-DDS, Data distribution service for real-time
systems specification, ddsv1.2, http://www.omg.
org/spec/DDS/1.2/.

[3] G. Kartik, K. Kyoung-Don, Coordinated allocation
and scheduling of multiple resources in real-time op-
erating systems, in: Proc. OSPERT, June 2007.

[4] A. Hakiri, B. Pascal, A. Gokhale, G. Thierry, D. C.
Schmidt, J. Hoffert, SIP-based QoS Support Ar-
chitecture and Session Management for DDS-based
Distributed Real-time and Embedded Systems, in:
Poster at ACM Distributed Event-based Systems
(DEBS ’11), ACM, Yorktown Heights, NY, USA,
2011, pp. 389–390.

[5] A. Hakiri, A. Gokhale, D. C. Schmidt, B. Pas-
cal, J. Hoffert, G. Thierry, A SIP-based Network
QoS Provisioning Framework for Cloud-hosted
DDS Applications, in: 1st International Symposium
on Secure Virtual Infrastructures (DOA-SVI’11),
Springer LNCS, Crete, Greece, 2011, pp. 507–524.

[6] R. E. Schantz, J. P. Loyall, C. Rodrigues, D. C.
Schmidt, Y. Krishnamurthy, I. Pyarali, Flexible and
adaptive qos control for distributed real-time and
embedded middleware, in: Middleware, Vol. 2672
of Lecture Notes in Computer Science, Springer,
Rio de Janeiro, Brazil, 2003, pp. 374–393.

[7] E. N. Gilbert, Capacity of a burst-noise channel, Bell
System Technical Journal (1960) 1253–1265.

[8] M. David, M. Jim, B. Jack, K. William, Network
time protocol version 4: Protocol and algorithms
specification, IETF, RFC 5905.

[9] A. Konrad, B. Y. Zhao, A. D. Joseph, Determining
model accuracy of network traces, Journal of Com-
puter and System Sciences (2006) 1156–1171.

[10] P. Gao, S. Wittevrongel, K. Laevens,
D. De Vleeschauwer, H. Bruneel, Distribu-
tional littles law for queues with heterogeneous
server interruptions, Electronics Letters 46 (2010)
763–764.

[11] J. Wroclawski, The use of rsvp with ietf integrated
services, IETF RFC 2210.

[12] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
W. Weiss, An architecture for differentiated service,
IETF RFC 2475.

[13] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell,
J. McManus, Requirements for traffic engineering
over mpls, IETF RFC 2702.

[14] F. L. Faucheur, E. Rosen, Advertising IPv4 Network
Layer Reachability Information with an IPv6 Next
Hop, RFC 5549 (Proposed Standard) (May 2009).
URL http://www.ietf.org/rfc/rfc5549.txt

[15] R. Hancock, G. Karagiannis, J. Loughney, S. V. den
Bosch, Next Steps in Signaling (NSIS): Framework,
RFC 4080 (Informational) (Jun. 2005).
URL http://www.ietf.org/rfc/rfc4080.txt

[16] P. Calhoun, J. Loughney, E. Guttman, G. Zorn,
J. Arkko, Diameter base protocol, IETF RFC 3588.

[17] P. Owezarski, P. Berthou, Y. Labit, D. Gauchard,
LaasNetExp: a generic polymorphic platform for
network emulation and experiments, 4th Interna-
tional Conference on Testbeds and Research In-
frastructures for the Development of Networks and
Communities.

29

http://www.omg.org/spec/DDS/1.2/
http://www.omg.org/spec/DDS/1.2/
http://www.ietf.org/rfc/rfc5549.txt
http://www.ietf.org/rfc/rfc5549.txt
http://www.ietf.org/rfc/rfc5549.txt
http://www.ietf.org/rfc/rfc5549.txt
http://www.ietf.org/rfc/rfc4080.txt
http://www.ietf.org/rfc/rfc4080.txt


[18] O. Sangyoon, K. Jai-Hoon, F. Geoffrey, Real-time
performance analysis for publish/subscribe systems,
Future Generation Computer Systems 26 (2009) 318
– 323.

[19] B. Davie, A. Charny, J. Bennet, K. Benson, J. L.
Boudec, W. Courtney, S. Davari, V. Firoiu, D. Stil-
iadis, An Expedited Forwarding PHB (Per-Hop
Behavior), RFC 3246 (Proposed Standard) (Mar.
2002).
URL http://www.ietf.org/rfc/rfc3246.txt

[20] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, As-
sured Forwarding PHB Group, RFC 2597 (Proposed
Standard), updated by RFC 3260 (Jun. 1999).
URL http://www.ietf.org/rfc/rfc2597.txt

[21] D. Grossman, New Terminology and Clarifications
for Diffserv, RFC 3260 (Informational) (Apr. 2002).
URL http://www.ietf.org/rfc/rfc3260.txt

[22] D. Mills, J. Martin, J. Burbank, W. Kasch, Network
Time Protocol Version 4: Protocol and Algorithms
Specification, RFC 5905 (Proposed Standard) (Jun.
2010).
URL http://www.ietf.org/rfc/rfc5905.txt

[23] D. C. Schmidt, D. L. Levine, S. Mungee, The design
of the tao real-time object request broker, Computer
Communications 21 (1998) 294–324.

[24] J. Chen, M. Diaz, L. Llopis, B. Rubio, J. M. Troya,
A survey on quality of service support in wireless
sensor and actor networks: Requirements and chal-
lenges in the context of critical infrastructure protec-
tion, J. Netw. Comput. Appl. (2011) 1225–1239.

[25] G. Duzan, J. Loyall, R. Schantz, R. Shapiro,
J. Zinky, Building adaptive distributed applications
with middleware and aspects, 2004, pp. 66–73.

[26] S. P. Mahambre, S. Kumar-Madhu, U. Bellur, A tax-
onomy of qos-aware, adaptive event-dissemination
middleware, IEEE Internet Computing 11 (2007)
35–44.

[27] N. Shankaran, X. D. Koutsoukos, D. C. Schmidt,
Y. Xue, C. Lu, Hierarchical control of multiple re-
sources in distributed real-time and embedded sys-
tems, in: ECRTS, 2006, pp. 151–160.

[28] W. Duangdao, N. Klara, G. Xiaohui, X. Dongyan,
2k: An integrated approach of qos compilation and
reconfigurable, component-based run-time middle-
ware for the unified qos management framework,
2001, pp. 373–394.

[29] M. Valls, A. Alonso, J. Ruiz, A. Groba, An architec-
ture of a quality of service resource manager mid-
dleware for flexible embedded multimedia systems,
in: Software Engineering and Middleware, LNCS,
2003, pp. 36–55.

[30] K. Nahrstedt, H. H. Chu, S. Narayan, Qos-aware re-
source management for distributed multimedia ap-
plications, J. High Speed Netw. 7 (1998) 229–257.

[31] A. Farroukh, E. Ferzli, N. Tajuddin, H. A. Jacob-
sen, Parallel event processing for content-based pub-
lish/subscribe systems, in: ACM. DEBS ’09, 2009,
pp. 1–8.

[32] OASIS, Web services brokered notification version
1.3, http://www.oasis-open.org/.

[33] CORBA-OMG, Common object request broker ar-
chitecture (corba/iiop), 3.1,, http://www.omg.

org/spec/CORBA/3.1/.

[34] J. A. Dianes, M. Diaz, B. Rubio, Using standards
to integrate soft real-time components into dynamic
distributed architectures, Comput. Stand. Interfaces
(2012) 238–262.

[35] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall,
R. E. Schantz, M. Atighetchi, D. C. Schmidt, Inte-
grated adaptive qos management in middleware: A
case study, Real-Time Syst. 29 (2005) 101–130.

[36] P. T. Eugster, P. A. Felber, R. Guerraoui, A. M. Ker-
marrec, The many faces of publish/subscribe, ACM
Comput. Surv. 35 (2003) 114–131.

[37] X. Lu, X. Li, T. Yang, Z. Liao, W. Liu, H. Wang,
Qos-aware publish-subscribe service for real-time
data acquisition, Business Intelligence for the Real-
Time Enterprise 27 (2009) 29–44.

[38] J. Balasubramanian, S. Tambe, B. Dasarathy,
S. Gadgil, F. Porter, A. Gokhale, D. C. Schmidt,

30

http://www.ietf.org/rfc/rfc3246.txt
http://www.ietf.org/rfc/rfc3246.txt
http://www.ietf.org/rfc/rfc3246.txt
http://www.ietf.org/rfc/rfc2597.txt
http://www.ietf.org/rfc/rfc2597.txt
http://www.ietf.org/rfc/rfc2597.txt
http://www.ietf.org/rfc/rfc3260.txt
http://www.ietf.org/rfc/rfc3260.txt
http://www.ietf.org/rfc/rfc3260.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.omg.org/spec/CORBA/3.1/
http://www.omg.org/spec/CORBA/3.1/


Netqope: A model-driven network qos provisioning
engine for distributed real-time and embedded sys-
tems, in: RTAS’ 08: Proceedings of the 14th IEEE
Real-Time and Embedded Technology and Appli-
cations Symposium, IEEE Computer Society, Los
Alamitos, CA, USA, 2008, pp. 113–122. doi:

10.1109/RTAS.2008.32.

[39] C. Esposito, S. Russo, D. D. Crescenzo, Perfor-
mance Assessment of OMG Compliant Data Distri-
bution Middleware, in: Ipdps’08, 2008, pp. 1–8.

[40] Y.-H. Wang, S.-H. Yang, A. Grigg, J. Johnson, A
dds based framework for remote integration over the
internet, in: 7th Annual Conference on Systems En-
gineering Research, CSER, 2009.

[41] K.-J. Kwon, C.-B. Park, H. Choi, A Proxy-based
Approach for Mobility Support in the DDS System,
in: 6th IEEE International Conference on Industrial
Informatics, IEEE, 2008.

[42] A. Corradi, L. Foschini, A dds-compliant p2p infras-
tructure for reliable and qos-enabled data dissemina-
tion, in: IPDPS, 2009, pp. 1–8.

[43] K. Sachs, S. Kounev, A. Buchmann, Performance
modeling and analysis of message-oriented event-
driven systems, Software & Systems Modeling
(2012) 1–25.

[44] J. Schlesselman, G. Pardo-Castellote, B. Farabaugh,
Omg data-distribution service (dds): architectural
update, in: IEEE, MILCOM 2004, 2004, pp. 961–
967.

[45] E. S. Richard, P. L. Joseph, R. Craig, C. S. Douglas,
K. Yamuna, I. P., Flexible and adaptive qos control
for distributed real-time and embedded middleware,
2003, pp. 374–393.

[46] B. Dasarathy, S. Gadgil, R. Vaidyanathan,
K. Parmeswaran, B. Coan, M. Conarty, V. Bhanot,
Network qos assurance in a multi-layer adaptive
resource management scheme for mission-critical
applications using the corba middleware framework,
IEEE. RTAS.

[47] B. Dasarathy, S. Gadgil, R. Vaidyanathan, A. Nei-
dhardt, B. Coan, K. Parmeswaran, A. McIntosh,
F. Porter, Adaptive network qos in layer-3/layer-
2 networks as a middleware service for mission-
critical applications, JSS 80.

[48] A. I. T. Rowstron, A. M. Kermarrec, M. Cas-
tro, P. Druschel, Scribe: The design of a large-
scale event notification infrastructure, in: Springer,
COST, 2001, pp. 30–43.

[49] S. Michal, P. Pavel, F. Dario, C. Tommaso, C. Fabio,
H. Zdenek, L. Giuseppe, Modular software architec-
ture for flexible reservation mechanisms on hetero-
geneous resources, Journal of Systems Architecture
57 (2011) 366–382.

[50] G. L. Teodora, H. Schmidt, A. Schorr, F. J. Hauck,
A. Kassler, A session initiation protocol based mid-
dleware for multi-application management, IEEE.
ICC.

[51] C. Zhang, Sadjadi, S. Masoud, S. Weixiang, R. Raju,
D. Yi;, A user-centric network communication bro-
ker for multimedia collaborative computing, IEEE,
CollaborateCom.

[52] C. Antonio, F. Luca, A dds-compliant p2p infras-
tructure for reliable and qos-enabled data dissemi-
nation, in: IEEE-IPDPS, 2009, pp. 1–8.

[53] A. Corradi, L. Foschini, L. Nardelli, A dds-
compliant infrastructure for fault-tolerant and scal-
able data dissemination, in: Proceedings of the The
IEEE symposium on Computers and Communica-
tions, ISCC ’10, 2010, pp. 489–495.

[54] S. R. E., L. J. P., R. Craig, S. D. C., K. Yamuna,
I. Pyarali, Flexible and adaptive qos control for dis-
tributed real-time and embedded middleware, in:
Proceedings of the ACM/IFIP/USENIX 2003 In-
ternational Conference on Middleware, Middleware
’03, 2003, pp. 374–393.

[55] S. Salsano, Cops usage for diffserv resource alloca-
tion (cops-dra), IETF Draft, draft-salsano-cops-dra-
00.

31

http://dx.doi.org/10.1109/RTAS.2008.32
http://dx.doi.org/10.1109/RTAS.2008.32


[56] J. Manner, G. Karagiannis, A. McDonald, Nsis sig-
naling layer protocol (nslp) for quality-of-service
signaling, RFC 5974 (Experimental) (Oct. 2010).

[57] E. Rosen, Y. Rekhter, BGP/MPLS IP Virtual Private
Networks (VPNs), RFC 4364 (Proposed Standard)
(2006).

[58] R. Carlos, L. S. Rito, Álvarez Sabucedo Luis M.,
C. Paulo, An ontology for managing network ser-
vices quality, Expert Syst. Appl. 39 (9) (2012) 7938–
7946.

[59] J. L. Pastrana, E. Pimentel, M. Katrib, Qos-enabled
and self-adaptive connectors for web services com-
position and coordination, Computer Languages,
Systems & Structures 37 (1) (2011) 2 – 23.

[60] C. Bormann, A. P. Castellani, Z. Shelby, Coap:
An application protocol for billions of tiny internet
nodes., IEEE Internet Computing 16 (2012) 62–67.

[61] R. Campbell, R. Daley, B. Dasarathy, P. Lardieri,
B. Orner, R. Schantz, R. Coleburn, L. R. Welch,
P. Work, Toward an approach for specification of qos
and resource information for dynamic resource man-
agement, in: Second RTAS Workshop on Model-
Driven Embedded Systems (MoDES ’04), 2004.

[62] B. Dasarathy, S. Gadgil, R. Vaidhyanathan,
K. Parmeswaran, B. Coan, M. Conarty, V. Bhanot,
Network QoS Assurance in a Multi-Layer Adaptive
Resource Management Scheme for Mission-Critical
Applications using the CORBA Middleware Frame-
work, in: IEEE RTAS, 2005.

32


	Introduction
	The Velox Modeling and End-to-end QoS Management Framework
	An Analytical Performance Model of the DDS End-to-end Path
	Context: DDS and its Real-time Communication Model
	Problem: Determining End-to-end DDS Performance at Design-time
	Solution Approach: Developing an Analytical Performance Model for DDS

	Architecture of the End-to-end Velox QoS Framework
	Context: Supporting DDS over WANs
	Problem: Dealing with Multiple Systemic Issues to Support DDS in WANs
	Solution Approach: A Layer 3 QoS Management Middleware


	Analysis of Experimental Results
	Hardware and Software Testbed and Configuration Scenario
	Validating the Performance Scheduling Model
	Estimating the Publish and Subscribe Activity at the Middleware-Application Interface in the Pub/Sub Model
	Estimating the CPU Scheduling Activities in the Analytical Model
	Estimating the Network Time Delay in the Analytical Model
	Comparing the Analytical Performance Model with Experimental Results
	Impact of Increase in Number of Subscribers

	Evaluation of the Velox Framework
	Configuration of the Velox Framework
	Evaluating the QoS Manager's QoS Provisioning Capabilities
	Evaluating the Impact of the Velox QoS Manager Capabilities on Latency
	Evaluating QoS Manager Capabilities for One-to-Many Communications
	Evaluating QoS Manager Capabilities for Many-to-One Communications
	Evaluating QoS Manager Capabilities for Many-to-Many communications


	Related work
	QoS Management Strategies in Middleware
	Network-level QoS Management

	Conclusions

