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Abstract

A co-simulation may comprise several heterogeneous federates with diverse spatial and temporal execution character-
istics. In an iterative time-stepped simulation, a federation exhibits the Bulk Synchronous Parallel (BSP) computation
paradigm in which all federates perform local operations and synchronize with their peers before proceeding to the
next round of computation. In this context, the lowest performing (i.e., slowest) federate dictates the progression
of the federation logical time. One challenge in co-simulation is performance profiling for individual federates and
entire federations. The computational resource assignment to the federates can have a large impact on federation
performance. Furthermore, a federation may comprise federates located on different physical machines as is the case
for cloud and edge computing environments. As such, distributed profiling and resource assignment to the federation
is a major challenge for operationalizing the co-simulation execution at scale. This paper presents the Execution Per-
formance Profiling and Optimization (EXPPO) methodology, which addresses these challenges by using execution
performance profiling at each simulation execution step and for every federate in a federation. EXPPO uses profiling
to learn performance models for each federate, and uses these models in its federation resource recommendation tool
to solve an optimization problem that improves the execution performance of the co-simulation. Using an experimen-
tal testbed, the efficacy of EXPPO is validated to show the benefits of performance profiling and resource assignment
in improving the execution runtimes of co-simulations while also minimizing the execution cost.
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1. Introduction

Cyber-physical systems (CPS) such as those com-
monly found in smart city, smart manufacturing, and
transactive energy systems must make time-sensitive
control decisions to ensure their safe operations. How-
ever, such CPS are an amalgamation of multiple dy-
namic systems such as transportation systems, vehicle
dynamics, control systems, and power systems with in-
terconnected networks of different scales and proper-
ties. The assurance that such complex systems are safe
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and trustworthy requires simulation capabilities that can
rapidly integrate tools from multiple domains in differ-
ent configurations. Co-simulation is an attractive op-
tion for interlinking such multiple simulators to simu-
late higher-level, complex system behaviors.

The IEEE 1516-2010 High Level Architecture (HLA)
defines the standardized set of services offered to a pro-
cess in a distributed co-simulation [1]. A co-simulation
in HLA comprises individual simulators called feder-
ates that are grouped into a logical entity called a fed-
eration. Each federate can have diverse computation
and networking resource requirements, which must be
considered when assigning resources to the simulators
when the federation is deployed to cloud-fog-edge com-
putation environments. The wall-clock execution time
required for each federate’s computation step varies
based on this resource allocation. The variation in exe-
cution times can result in some federates waiting on oth-
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ers before they can proceed to the next stage of compu-
tation. Federates that require more wall-clock time for
their computation steps (the low performing federates)
increase the overall completion time (or makespan) of
the entire simulation. This can potentially violate the
simulation completion deadline. Thus, resource alloca-
tion and resource configuration selections are very im-
portant for the overall performance of distributed simu-
lations.

Although co-simulations have traditionally been
hosted in high-performance computing (HPC) clusters,
there has been an increasing trend towards the adoption
of cloud computing for simulation jobs. It is in this
context that the Docker container run-time platform [2]
provides a solution for running federates across differ-
ent computation platforms by providing a unified pack-
aging of simulation code with its software dependen-
cies. But recent research [3] has shown that there are
operational challenges, such as performance aware re-
source assignments, that need to be considered for run-
ning simulations in cloud environments. Furthermore,
there are several infrastructure-related complexities that
must be considered to run these distributed simulations
in a cloud environment.

In this work, we focus on the problem of deploy-
ment of the CPS co-simulations in a cloud comput-
ing environment which optimizes resource allocation
to the co-simulations such that they have the lowest
makespan and execution cost. This work presents a
performance profiling, simulation run-time optimiza-
tion and resource configuration platform called EXPPO
- (EXecution Performance Profiling and Optimization).
EXPPO uses distributed tracing [4] to assess federate
level performance for each computational step. These
performance characteristics are used at runtime to de-
termine whether changes to the resource allocation of
the federation could enable shorter makespan for the
simulation run. To enable distributed tracing, EXPPO
utilizes the opentracing [5] specification for measuring
the wall-clock time spent in each computational step of
the simulation. To shield the developers from complex-
ities when embedding tracing code in the simulation
application logic, EXPPO leverages generative aspect
of Model Driven Engineering (MDE) to auto-generate
source-code snippets and configuration files for the sim-
ulation run. To provide resource recommendations for
the individual federates, EXPPO uses the tracing in-
formation to build a resource-performance model and
solves an optimization problem to find the resource al-
location with the lowest makespan and cost for the co-
simulation. For this paper we complement and build
upon our previous work presented at [6]:

The main contributions of EXPPO are:

1. Demonstration that the default resource configura-
tion for a federation has scenarios where a feder-
ate with a longer wall-clock execution time for its
computational step increases the makespan of the
co-simulation;

2. Development of an approach to generate tracing
probes inside the source code of the simulation
logic, which is required to perform distributed sim-
ulation profiling;

3. Development of a new resource recommendation
engine which uses an optimization algorithm for
finding the resource configuration for a federation
that minimizes its overall makespan and cost; and

4. Validation of EXPPO showing its benefits on the
performance of distributed simulation execution.

The rest of the paper is organized as follows. Sec-
tion 2 provides a motivating use case for EXPPO
and lists its key requirements. Section 3 provides an
overview of the EXPPO framework. Section 4 describes
the key EXPPO components and its resource configura-
tion and optimization algorithms. EXPPO ’s cloud ar-
chitecture and co-simulation framework are described
in Section 5. The experiment evaluation results are
described in Section 6. Related works are described
in Section 7, discussion on running co-simulations in
cloud computing environments is provided in Section 8
and Section 9 concludes the paper.

2. Motivation and Solution Requirements

The computation pattern of many time-stepped co-
simulations follows the Bulk Synchronous Parallel
(BSP) model [7]. In this model, every participating sim-
ulation completes its computation for a given time step,
waits for the other participating simulations to com-
plete their computations, exchanges new state informa-
tion with its peers, and only then proceeds to the next
time step. Thus, if one simulation takes more time to ex-
ecute, the other simulations are forced to wait for it and
remain idle. This is illustrated in Figure 1 which shows
an HLA federation with three federates. Each feder-
ate executes one computation task repeated each time
step. Federate 1 takes the longest to execute, and the
other two federates are waiting for Federate 1 to com-
plete before moving to the next computation step. This
increases the makespan of the entire simulation, thereby
decreasing the performance of the simulation execution.

Recently, co-simulations have been deployed using
container management solutions [8] [9], such as Docker
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Figure 1: Performance visualization of an example federation.

Swarm [10], Kubernetes [11], Mesos [12]. However,
these solutions use queue-based scheduling, wherein the
containers are allocated to machines one at a time in se-
quence. Hence, there could be instances where the clus-
ter runs out of resources to schedule all the federates of
the federation. In these instances, a few federates are
deployed while the remaining federates are stuck in the
scheduler queue until more resources become available.
This will cause the entire simulation to stall, since all
the federates are required to participate in the simula-
tion to progress. For instance, from Figure 1, if there
are resources to deploy Federate 1 and Federate 3, and
not sufficient resources to deploy Federate 2, the job
scheduler should not deploy any federates and should
wait until more resources are available. This requires a
bag-of-tasks scheduling mechanism for deploying these
federates on the cloud computing environments.

The resource configuration also plays an important
role in the execution time of the federates. Figure 2(a)
depicts the performance of a federate when assigned
different numbers of cores for executing a computation
step. This federate is running a Freqmine application
from the Princeton Application Repository for Shared-
Memory Computers (PARSEC) benchmark [13] as its
computation task. This figure shows that the execution
time generally decreases with the increasing amount
of resources assigned to the federate. Thus, there is
a potential for minimizing the wait time by appropri-
ately configuring the resources assigned to the feder-
ates. Minimizing the wait time can be done either by
providing the highest resource configuration for all the
federates, or finding a resource configuration that con-
siders the cost of assigning the resources to the feder-
ates. However, deciding what resource configuration
to select for a given computation is a non-trivial task
for a simulation developer who may not have the do-
main expertise of configuring and running applications
in cloud computing environments. Performance profil-
ing of the federates can help in understanding the rela-
tion between the resource assignment and the execution
performance. However, these simulations might be de-
ployed across different physical and/or virtual host envi-

Property Type I Type II Type III
Floor Area (m2) 55.7 97.5 143.9
Fixed Plug Load (W) 800 1250 1750
Solar Panel Area (m2) 13.9 24.4 35.9
Indoor Set Point (◦C) 20 22 24
Heat Pump (KW) 1.57 1.57 1.57
Solar Cell Efficiency (%) 19 19 19

Table 1. Configuration used for different type of houses

Symbols Definition
γ Solar Insolation (W/m2)
µ Solar Heat Gain Coefficient (scalar)

HA House effective area exposed to Sun (m2)
ω Conversion constant (scalar)
κ Lumped Thermal Conductance (W/ ◦C)
p Solar Panel Area (m2)
τ Time Constant of heating/cooling (sec)

Tin House Indoor Temperature ( ◦C)
Tout Outdoor Temperature ( ◦C)

t Simulation time (sec)
P Electrical energy transfer (W)
Q Thermal energy transfer (W)
hp Power Consumed by Heat pump (W)

Table 2. Symbols used in the equations of case study and their
definitions

ronments when running in cloud computing platforms;
performance profiling for such distributed simulations
can be very challenging.

2.1. Co-simulation Use Case

This section presents a use case of a complex CPS
scenario executed as a co-simulation to analyse and
answer questions about the system and its compo-
nents. This experiment highlights the challenges in co-
simulation that the EXPPO framework can help address.
The goal for this simulation is to understand the power
generated by installation of solar panels in a community
and answer to questions ”How much power we can gen-
erate by installing solar panels in this community? After
installing the solar panels, can the community become
a net-zero-energy community?”.

The community consists of 30 houses of three differ-
ent types, where each type consists of 10 houses. Type
classifications are based on the square feet area and the
corresponding plug load of the house. The details of
configuration used for different type of houses is shown
in Table 1. Before the simulation starts, the indoor tem-
perature of each house is a random variable, which is
drawn from a uniform distribution between 17 to 32 ◦C
i.e., Tindoor,initial ∼ Uni f orm(17, 32).

The operation of the cooling system depends upon the
indoor temperature. The cooling system turns on when
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Figure 2: (a) Performance of the federate running the PARSEC Freqmine application using 8 threads for different resource configuration selections.
(b) Performance of five PARSEC benchmark applications for different resource configuration selections.

the thermostat measures an indoor temperature greater
than sum of the indoor set point and the thermostat hys-
teresis value. The model used for the simulation follows
thermodynamics and electrical laws with some approx-
imations.

Thermodynamics of a house depend upon two fac-
tors, solar insolation and the cooling system. The solar
insolation has positive heat flux density and increases
the indoor temperature while the cooling system has
negative heat flux density and decreases the indoor tem-
perature. Thermodynamics effect of solar insolation on
the house depends on the amount of solar insolation,
house effective area exposed to sunlight and solar heat
gain coefficient. Solar insolation has a dual role in this
simulation, both increasing the temperature of the house
and generating electrical power using solar panels. Re-
fer table 2, for definition of all symbols used in this case
study. Thermodynamics and electrical laws related to
the solar panels are:

Qsolar = γ ∗ HA ∗ µ (1)
Psolar = −γ ∗ ω ∗ p (2)

The cooling system is based on heat pumps that move
thermal energy in the opposite direction by absorbing
heat from a house and releasing it to the outside at-
mosphere. This process is opposite to the second law
of thermodynamics so external power is needed to ac-
complish the work of transferring energy from the heat
source to the heat sink. This results in the consumption
of electrical power when the air is cooled. When cool-
ing indoor air, the cooling system needs to cool both air
and the water present in the atmosphere. Both sensi-
ble heating (cooling of air) and latent heating (cooling

of water) are approximated assuming 50 % relative hu-
midity, air density of 0.624 m3/kg with an air flow rate
at 0.378 m3/sec.

The thermodynamics and electrical equations related
to cooling system are approximated to:

Qpump = −(100.3 ∗ Tout) + 3097.8; (3)
Ppump = hp (4)

The overall effect of solar insolation, solar panels, the
cooling system and plug load can be summarised as:

Q = Qpump + Qsolar (5)
P = Ppump + Psolar + Pplugload (6)

Here, Q is the net exchange of thermal energy (heat) be-
tween house and the outdoor environment and P is the
net power consumption/production by the solar panel
and utilities cumulatively (-ve value indicates produc-
tion and +ve value indicates consumption). Overall
change in the indoor temperature depends on net heat
transfer due to difference between indoor and outdoor
temperature, net heat transfer by solar insolation and the
cooling system. For calculating the indoor temperature
at any point in simulation, the rate of change of temper-
ature is assumed to have a linear relationship with the
heat transfer. The following equation guides the indoor
temperature at any point in simulation:

Tin = Tout + Q/κ + (Tin − Tout − Q/κ) ∗ e−t/τ

where Tin and Tout are indoor and outdoor temperature
respectively in ◦Celsius.

This scenario is derived from [14]. The interaction
model among the federates is shown in Figure 3. Total
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number of federates in the simulation is 34 (30 houses, 1
metronome, 1 weather source, 1 utility, and 1 federation
manager). The simulation runs for a total of 150 hours
of simulation time, with a logical time step of 5 minutes.

Figure 3: WebGME interaction model with one federate of each type.
In simulation, there are 30 instances of the house federate with differ-
ent configurations.

Figure 4: Consumption and solar production (a) and net power (b)
over time for the simulated use case

The results of the simulation outcome are shown in
Figure 4. Figure 4(a) shows the power consumed by
all 30 houses and the solar power generated by the so-
lar panel installed in the community. Figure 4(b) repre-
sents the net power (consumption - production) for the
community. Simulation results show that total electri-
cal power consumption by the community is 632 KWh
and total electrical energy production by solar panel
installed at community is 401 KWh for total duration
of simulation. The net power for this configuration is
negative as there is more consumption than production.
By installing solar panels in 1/4th of floor area at each
house, we can reduce the net power consumption but
we are still in deficiency of power production. With this
configuration, it is not possible to become a net zero
community. This deficiency can be fulfilled by either
further adding some more solar panels or getting extra
power from utilities.

Lessons Learned: However, in this study we realized
that if we had to scale the community to large number
of houses greater than the current selection of 34 sim-
ulation federates, our compute system (13 GB RAM,
Intel i7-8 core processor, 3.6GHz) on which the co-
simulation experiment was running was insufficient to
meet the demands of the computation load of the feder-
ates leading to drastic performance and the makespan
degradation of the simulations. Also, due to the in-
sufficient system memory resources, our simulation ex-
periment would encounter memory buffer-overflow er-
rors leading to failure of the entire simulation execu-
tion. Furthermore, in such kind of simulation study,
there is a need to perform different actions to the in-
puts of the simulations, generating adhoc events to the
running simulations or performing changes to the sim-
ulation world environment based on observation of cer-
tain events happening inside the simulation. Conducting
all such variants of experiments requires running many
counts of experiments which will be time consuming
if ran in a sequential manner in a computing platform.
Thus there is a need for running such experiments in
parallel thereby reducing the overall makespan of the
completion of the experiments. Cloud computing offers
the ability to run such experiments at scale, thus there
is a need to leverage cloud computing resources to run
these CPS co-simulations.

2.2. Requirements for EXPPO
Building on the above use case, below are the four

key requirements EXPPO aims to satisfy:

• Requirement R1. Conduct distributed perfor-
mance tracing of the federates: To understand the

5



bottlenecks in federation performance, there is a
need for logging and gathering execution perfor-
mance traces of the federates. The tracing infras-
tructure needs to handle federates which are dis-
tributed across multiple physical hosts. Hence, the
tracing infrastructure should be able to correlate
traces from different federates of a federation.

• Requirement R2. Reduce complexity in provi-
sioning software probes: Requiring the developer
to manually write source code for performance
tracing for the federation can result in complexities
and errors which need to be minimized. The devel-
oper needs to understand the tracing software and
write code which adheres to the tracing software
requirements. This is tedious for the developer,
who now apart from writing the simulation logic
must also setup and configure the tracing infras-
tructure. EXPPO should reduce the manual con-
figuration of the tracing information, thereby re-
ducing repeated effort by the developer.

• Requirement R3. Recommend resource configu-
ration to minimize the co-simulation makespan and
cost: It can be challenging for an end user to deter-
mine the resource requirements for a federation be-
cause each federate can be configured differently.
A bad resource configuration can have inadvertent
effect on the completion time of the simulation.
However, the choice of resource configuration also
has an associated cost. Hence, the configuration
must be chosen such that it satisfies both quality of
service (QoS) and cost factors.

• Requirement R4. Provide a gang-scheduling al-
gorithm for executing simulations: The runtime
platform should support deployment of multiple
federate using bag-of-tasks scheduling (or gang
scheduling) algorithm.

3. Overview of EXPPO

Figure 5(a) shows the workflow and components of
EXPPO.

The design phase requires the developer to model
the federation using the federation development toolkit.
This toolkit is based on the Web-based Generic Mod-
eling Environment (WebGME) [15]. To measure the
execution time of a federate in a time step, the simu-
lator needs to embed a tracing code initializer and log-
ger to record the execution time completion of the com-
putation step. The tracing initialization code and the

Figure 5: Workflow of EXPPO illustrating the connections between
different components of the system.

tracer configuration files are auto-generated by the cus-
tom WebGME model interpreters. Once the required
code is generated and the user has implemented the nec-
essary simulation logic, the federate is compiled into
an executable image, which is then packaged inside a
Docker container.

During the profiling phase, each federate is executed
and profiled under different resource configurations.
The execution time for each federate is logged using
the tracing information, and this tracing information is
stored in a centralized database. The resource config-
uration tuner uses the recorded logs together with user
provided objectives to optimize the resource configura-
tion for each federate. Finally, the optimized resource
configuration is used to configure the co-simulation de-
ployment accordingly.

During the runtime phase, the simulation job infor-
mation for the federates in the co-simulation is submit-
ted to the deployment manager. The job information
includes the name of the federate Docker image, re-
source configuration requirements, etc. The deployment
manager submits the scheduling information to the job
scheduler, which handles the execution of the jobs on
the co-simulation runtime execution platform.

4. Design Elements of EXPPO

EXPPO allows users to design and deploy co-
simulations on distributed compute infrastructures sup-
ported by Docker-based virtualization. Its genera-
tive capabilities simplify the auto-generation of perfor-
mance monitoring instrumentation, configuration and
probing for the different federates. Its resource configu-
ration tuner optimizes resource allocations to federates
to lower the makespan and execution cost for the feder-
ation execution. Its runtime platform supports parallel
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execution of different federations on its shared compute
infrastructure. This section details each of the EXPPO
components.

4.1. Performance Profiling of Federates
Understanding the performance characteristics of the

co-simulation execution is of paramount importance
when deciding how to run federates in runtime exe-
cution environments. Individual federates have differ-
ent resource needs, and their execution performance
will vary depending on how the resources are assigned.
Thus, understanding the performance profiles of each
federate is critical to the problem of optimizing the re-
source allocation and thereby lowering the makespan
and execution cost of the federation execution. EXPPO
leverages distributed tracing to assist in the logging of
time stamps of distributed events generated in the fed-
eration (Requirement R1). It leverages Opentracing in-
strumentation [5] to track execution time spent during
each computation time step of the federate. The exe-
cution time is then logged into a time-series database
for conducting performance analysis. It leverages MDE
technologies [16] such as Domain Specific Modeling
Language (DSML), code generators and model inter-
preters to synthesize performance profiling software ar-
tifacts which can be used for performance profiling of
federates (Requirement R2). An example code snippet
is shown in Listing 1.

Here in Listing 1, we see that at line 1, we first initial-
ize and activate the Opentracing’s profiling software
module for monitoring the federate execution time per-
formance. The profiling consists of monitoring the ex-
ecution time at computation phase(ExecuteState) as
well as waiting phase(WaitState) at the barrier syn-
chronization. Each phase(also called as Span) has a
start time and end time associated with it which is
used for performance monitoring for individual phases.
Lines 4-10 monitors the execution time for WaitState.
Lines 11-17 monitors the execution time during the
ExecuteState of the federate operation.

1 try (Scope scope1 =

fedtracer.startFederateSpan("TimeStep"))

2 {

3 scope1.span().setTag("timestep",currentTime);

4 try (Scope scope3 =

fedtracer.startFederateSpan("WaitState"))

5 {

6 scope3.span().setTag("timestep", currentTime);

7 atr.requestSyncStart();

8 enteredTimeGrantedState();

9 scope3.close();

10 }

11 try (Scope scope2 =

fedtracer.startFederateSpan("ExecuteState"))

12 {

13 scope2.span().setTag("timestep",currentTime);

14 scope2.span().setTag("customTag",this.cmd);

15 executeComputation();

16 scope2.close();

17 } catch(InterruptedException e){

18 e.printStackTrace();

19 }

20 }

Listing 1: Profiling code snippet in Java language generated
leveraging the MDE techniques.

4.2. Federation Resource Configuration Optimization

When running a federate in a Docker container, cloud
providers usually have multiple resource configurations
from which the user can select for their application.
However, without analyzing the resource dependency
of the application, it may be challenging for the user
to select the resource configuration that meets the appli-
cation’s quality of service (QoS) requirement while at
the same time minimizing the execution cost in terms of
the cost of resources utilized. Figure 2(b) shows how
the different resource configurations impact the execu-
tion time of the federate which is running applications
from the PARSEC benchmark. Furthermore, in a co-
simulation, the resource selection becomes critical as
every federate’s execution time will contribute to the
co-simulation’s performance. To address this issue (Re-
quirement R3), EXPPO provides a resource configura-
tion recommendation system that selects the resource
assignment which optimizes the application’s QoS per-
formance and user’s budget requirements.

Consider the following optimization problem: Sup-
pose the system has a set of homogeneous machines,
each with k processing cores. Let F = { f1, f2, . . . , fn}
denote a federation (co-simulation) that consists of a set
of n federates. Each federate is assumed to consist of
many steps, and the execution time of each step is a
function of the number of allocated cores for the fed-
erate (i.e., the federate is a parallel application). For-
mally, a resource assignment R is defined as a set of
resources (CPU cores) assigned to the federates. Given
a resource assignment R = [r1, r2, . . . , rn] to each fed-
erate, where r j ∈ R denotes amount of resources (CPU
cores) assigned to federate f j ∈ F, the execution time
of federate f j can be expressed as t j(r j) when assigned
r j cores for executing a single time step of the simula-
tion. For performance reasons, assume a federate can-
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Algorithm 1: Resource Configuration Tuner
Input : Execution time t j(r) for each federate f j in

federation F when allocated different
amounts of resources r, where 1 ≤ r ≤ k.

Output: A resource assignment R∗ = [r1, r2, . . . , rn]
for each federate in the federation that
minimizes a linear combination of
makespan and cost.

1 Initialize r j ← 1 for all 1 ≤ j ≤ n;
2 Compute G ← (max j t j(r j)) · (α + β

∑
j r j);

3 R∗ ← [r1, r2, . . . , rn];
4 G∗ ← G;
5 while

∑
j r j < nk do

6 j←
Index of a federate with longest exec. time;

7 if r j = k then
8 break;
9 else

10 Increment r j to the next higher profiled
resource amount;

11 Update G ← (max j t j(r j)) · (α + β
∑

j r j);
12 if G < G∗ then
13 R∗ ← [r1, r2, . . . , rn];
14 G∗ ← G;
15 end
16 end
17 end

not be split among two or more machines, so we have
1 ≤ r j ≤ k. The makespan M for every computation step
for the entire federation F is dictated by the slowest run-
ning federate (i.e., the straggler), and is defined as M =

max j t j(r j). The execution cost C is given by the to-
tal resource used by all the federates over the makespan
duration. Since the cores will be reserved for the fed-
eration until the slowest federate is done executing, the
cost is defined as C = M ·

∑
j r j. The resource configura-

tion recommender needs to find a resource assignment
R∗ that minimizes G = αM + βC = M(α + β

∑
j r j),

where α and β denote the user-defined weights to the
application’s QoS and the execution cost, respectively.

Two additional assumptions are made to solve this
optimization problem: (1) federate execution time does
not increase with the amount of resources (number of
cores) assigned, i.e., r j ≤ r′j implies t j(r j) ≥ t j(r′j);
(2) federate execution cost does not decrease with the
amount of resources assigned, i.e., r j ≤ r′j implies
c j(r j) ≤ c j(r′j), where c j(r) = r · t j(r). These are re-
alistic assumptions as many practical applications have
monotonically increasing and sub-linear speedup func-
tions [17, 18], such as those that follow Amdahl’s law

Algorithm 2: First Fit Decreasing (FFD)
Input : Resource assignment R = [r1, r2, ..., rn] for

all federates in a federation. Current
available resource A = [a1, a2, ..., am] of all
m machines in the system.

Output: Machine allocation L = [`1, `2, . . . , `n] of
all federates in the system.

1 Sort the resource assignments of all federates in
non-increasing order, i.e., r1 ≥ r2 ≥ · · · ≥ rn;

2 Initialize ` j ← 0, ∀1 ≤ j ≤ n;
3 for j = 1, 2, . . . , n do
4 f it ← f alse;
5 for i = 1, 2, . . . ,m do
6 if r j ≤ ai then
7 Update ai ← ai − r j;
8 Set ` j ← i;
9 f it ← true;

10 break;
11 end
12 end
13 if f it = f alse then

// revert allocations done so far

14 for k = 1, 2, . . . , j − 1 do
15 Find i← `k;
16 Update ai ← ai + rk;
17 `k ← 0;
18 end
19 break;
20 end
21 end

[19]. As such, the optimization problem can be solved
by examining all possible makespan values while guar-
anteeing the minimum cost. Algorithm 1 presents the
pseudo-code of this solution with a time complexity of
O(n log n) by maintaining a priority queue for all jobs.
Similar approaches can be applied to find the minimum
makespan subject to a cost budget or the minimum cost
for a target makespan.

As seen in Algorithm 1, we initially assign 1 to r j

for all the federates (Line 1). In lines 2-4, we find re-
source assignment R∗ that minimizes G for the current
value of r j. In Lines 5-17, we determine the R∗ for all
the federates in the federation that minimizes the linear
combination of makespan and cost (Line 11).

4.3. Federation Machine Scheduling Heuristics
A custom scheduler is required to deploy all the fed-

erates in the federation to their respective distributed
computing environments. Since the federates cannot
run independently of the federation, the scheduling
scheme must simultaneously run all of the federates of

8



Algorithm 3: Best Fit Decreasing (BFD)
Input : Resource assignment R = [r1, r2, ..., rn] for

all federates in a federation. Current
available resource A = [a1, a2, ..., am] of all
m machines in the system.

Output: Machine allocation L = [`1, `2, . . . , `n] of
all federates in the system.

1 Sort the resource assignments of all federates in
non-increasing order, i.e., r1 ≥ r2 ≥ · · · ≥ rn;

2 Initialize ` j ← 0, ∀1 ≤ j ≤ n;
3 for j = 1, 2, . . . , n do
4 best i← 0;
5 best a← ∞;
6 for i = 1, 2, . . . ,m do
7 if r j > ai or ai − r j ≥ best a then
8 break;
9 else

10 best i← i;
11 best a← ai − r j;
12 end
13 end
14 if best i , 0 then
15 Update abest i ← abest i − r j;
16 Set ` j ← best i;
17 else

// revert allocations done so far

18 for k = 1, 2, . . . , j − 1 do
19 Find i← `k;
20 Update ai ← ai + rk;
21 `k ← 0;
22 end
23 break;
24 end
25 end

the federation (Requirement R4). This is referred to as
Gang scheduling or Bag-of-tasks scheduling in the lit-
erature. To achieve this, EXPPO supports two heuris-
tics to simultaneously schedule the federates on a fixed
number m of available machines while utilizing the re-
source configuration results obtained from Section 4.2.
These approaches handle the case where some of the
machines are loaded with other compute tasks unrelated
to the federation.

The first heuristic is inspired by the First-Fit Decreas-
ing (FFD) algorithm for bin packing and is described in
Algorithm 2. The heuristic first sorts all the federates in
decreasing order of resource assignment and then tenta-
tively allocates each one of them in order onto the first
available machine (Lines 1-2). If all federates in the fed-
eration can be successfully allocated, then the schedule
is finalized (Lines 5-12); otherwise, the entire federation

will be temporarily put in a waiting queue to be sched-
uled later (Lines 13-20). The time complexity of the
heuristic is O(n(log n + m)). The other heuristic is based
on the Best-Fit Decreasing (BFD) algorithm as shown
in Algorithm 3 that works similarly to FFD, except that
it finds, for each federate, a best-fitting machine (i.e.,
with the least remaining resource after hosting the fed-
erate) (Lines 6-16). Similarly, if all the federates in the
federation can be successfully allocated, then the sched-
ule is finalized (Lines 15); otherwise, the entire federa-
tion will be temporarily put in a waiting queue to be
scheduled later (Lines 17-24). Note that since finding
the optimal schedule (or bin packing) is an NP-complete
problem, these heuristics may not always find a feasible
allocation for a federation even if one exists. However,
if an allocation has been found, it is guaranteed to pro-
duce the optimal combination of makespan and cost for
the federation by using the resource configuration from
Section 4.2.

5. Co-simulation as a Service Middleware

Figure 6 shows the different components and work-
flow of the EXPPO co-simulation framework. It is
called the Co-simulation-as-a-Service (CaaS) middle-
ware because it enables users to automatically deploy
groups of service-based applications to a cloud envi-
ronment without any concern of resource allocation, ap-
plication lifecycle monitoring, and cluster management.
The functionality of each component is described be-
low.

In 1 , the FrontEnd component allows a user to
submit a simulation job descriptor in JavaScript Ob-
ject Notation (JSON) using a Representational State
Transfer (REST) Application Programming Interface
(API). The FrontEnd component is implemented us-
ing Flask [20] which is a web framework written in
Python language. Each simulation job contains a list
of federates, and each federate is run on an individual
Docker container. The simulation job descriptor also
includes meta-information for each federate, for exam-
ple, resources required, running status, container image
details, etc. The FrontEnd creates a record in a database
4 for each incoming job, then relays the job identi-

fier to JobManager 2 which handles resource man-
agement. Instead of deploying jobs immediately, the
JobManager stores received jobs in a local queue and
consults the database about the latest status of cluster
resources. It then periodically transfers the information
of pending jobs and available resources to JobScheduler
3 , which is a pluggable component that implements
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Figure 6: Co-simulation-as-a-Service showing different components and interaction in EXPPO.

multiple scheduling algorithms(such as Algorithm 2 and
3). The JobScheduler either replies with a scheduling
decision if the submitted jobs are deployable, or returns
a KeepWaiting signal to notify the JobManager that re-
sources are insufficient. The JobManager then forwards
deployable jobs to GlobalManager 5 , synchronizes
job status with the database, and deletes the deployed
jobs from its queue. The GlobalManager is respon-
sible for managing participants of the Docker Swarm
Runtime Platform 6 . It launches the master node of
the Docker Swarm cluster and accepts registration re-
quests sent from worker nodes. Every joined Worker
Node runs a CaaS-Worker daemon that is used to re-
ceive and perform commands sent from the Global-
Manager. The GlobalManager parses received deploy-
ment requests and spawns containers in specific Worker
Nodes. Additionally, the Worker Nodes employ a CaaS-
Discovery daemon to track the status of containers, and
reports a StatusChanged signal to the Discovery com-
ponent 7 when a task is completed.

6. Experimental Evaluation

6.1. Experimental Setup

EXPPO was validated using seven homogeneous
compute servers with a configuration of 12-core
2.1 GHz AMD Opteron central processing units, 32 GB
memory, 500 GB disk space, and the Ubuntu 16.04 op-
erating system. The runtime platform was based on

Docker engine version 19.0.5 with swarm mode en-
abled. There was one client machine that submitted
simulation job requests. The front end, job manager,
job scheduler and the global manager components were
running on a single shared compute server, and five
compute worker servers were deployed for running the
simulation jobs.

The simulation job consisted of three federates each
running a unique application from the PARSEC bench-
mark: freqmine, blackscholes and ferret. These appli-
cations were chosen as they are realistic representations
of real-world simulation tasks [13]. During the federa-
tion execution, each federate executed its application at
every logical time step, for a total number of 100 logi-
cal time steps. The implementation of the co-simulation
federation was done using Portico HLA [21]. The BFD
scheduler was used as the default scheduler in the ex-
periments. The default weights for the QoS and the cost
were set to α = 1 and β = 0.5. These weights are chosen
so that they correspond to a specific brand of QoS that
prioritizes low makespan over resource usage, which is
representative of CPS applications.

6.2. Experimental Results
EXPPO recommended a resource configuration of 4

cores for freqmine federate, 4 cores for ferret federate
and 1 core for blackscholes federate. Two baseline ap-
proaches were used to compare the performance of re-
source configuration selection of EXPPO. In the first
approach (least configuration), all the federates were as-
signed the lowest possible configuration of 1 core each.
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Figure 7: (a) Execution time for the EXPPO resource configuration compared to other strategies. (b) Cost for the EXPPO resource configuration
compared to other strategies.

In the second approach (max configuration), all the fed-
erates were assigned the highest possible configuration
of 10 cores each. The performance data was collected
over 10 simulation jobs.

Figure 7(a) shows the cumulative distribution func-
tion (CDF) of the execution time of EXPPO compared
to the other two approaches. The resource configura-
tions selected by EXPPO for the federation had a 90th
percentile execution time of around 230 seconds, which
was significantly better than the 320 seconds for the
least configuration. Its performance was close to that of
the max configuration (90th percentile execution time
of around 200 seconds), with the difference due to its
lower resource allocation to conserve the cost.

Figure 7(b) shows the cost analysis of the three strate-
gies using the cost function defined in Section 4-B. As
can be seen, resource configuration selected by EXPPO
incurred a larger cost than the least configuration due to
the higher resource allocation to reduce execution time,
but it had a substantially lower cost compared to the max
configuration.

Next, we show the comparison of the best-fit decreas-
ing (BFD) and the first-fit decreasing (FFD) schedul-
ing strategies on the simulation jobs. We can see from
Figure 8 that the 90th percentile execution time of the
jobs for BFD is better compared to the FFD. This shows
that BFD has better performance in terms of 90th per-
centile execution time, and is therefore used as the de-
fault scheduler in EXPPO.

Overall, the results show that EXPPO is able to se-
lect resource configurations and schedule the federates
in such a way that minimizes the combination of execu-
tion time and cost of the simulation successfully.

Figure 8: Execution time comparison when running the jobs using the
Best-Fit Decreasing (BFD) and First-Fit Decreasing (FFD) scheduling
strategy. We can see that the 90th percentile execution time for all the
jobs is better when using BFD compared to FFD in EXPPO.

6.3. Validating the Resource Configuration Tuner

We also study the effectiveness of the resource con-
figuration tuner for different values of α and β, and
show that EXPPO provides resource configurations for
the simulation jobs with the lowest G value as defined
in Algorithm 1 compared to the baseline strategies.
The G value is the combined objective involving both
makespan and cost of the simulation jobs. We set dif-
ferent values for the (α, β) pairs with α varying between
[10,100] and β varying between [0.1,1.0]. We show that
no matter what values, our algorithm is always produc-
ing a better G. We tested our scheme for values of (α,
β) pairs as shown in Table 3.

Figure 9 shows the performance of the EXPPO com-
pared to the least configuration and the max configura-
tion baseline strategies in terms of combined objective
G, the cost and the makespan. We can see from Figure
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Set α β

1 10 0.35
2 10 0.60
3 10 0.85
4 35 0.10
5 35 0.35
6 35 0.60
7 35 0.85
8 60 0.10
9 60 0.35

10 60 0.60
11 60 0.85
12 85 0.10
13 85 0.35
14 85 0.60
15 85 0.85

Table 3: Pairs of (α, β) used for the resource configuration tuner vali-
dation.

9(a) that EXPPO always find configurations that have
the best values of G compared to least configuration and
max configuration. This is because the other two base-
lines only focus on one objective, i.e., either best perfor-
mance (max configuration) or lowest cost (least configu-
ration). However, EXPPO tries to minimize the combi-
nation of cost and makespan for running the simulation
jobs. Similarly, we can see in Figure 9(b) that EXPPO
is able to find resource configurations that have lower
cost compared to max configuration, while from Figure
9(c), we can see that EXPPO is able to find resource
configurations that have substantially lower makespan
compared to least configuration.

7. Related Work

In [8], the authors presented a Kubernetes co-
simulation execution platform for cloud computing en-
vironments. Similarly, [9] presented a Docker swarm
co-simulation platform for running mixed electrical en-
ergy systems simulations. However, these platforms do
not use a gang-scheduling based simulation deployment
strategy.

For resource recommendation, [22] presented a data-
driven approach for selecting the best resource configu-
ration for a virtual machine from a set of different con-
figuration options. [23] explored the cost-sensitive al-
location of independent tasks to cloud computing envi-
ronments. However, these approaches are different from
EXPPO as they focus on a single task rather than a pool
of BSP tasks.

In [24, 25, 26] scheduling of parallel and distributed
real-time tasks is presented. The computation model
supported in these tasks is fork-join computation model
[27]. However, these methods do not consider the bulk-
synchronous parallel computation model which is ex-
hibited by the co-simulation in this paper.

In [28], the authors proposed a scientific work-
flows scheduling algorithm to minimize the execution
time under budget constraints for deploying to cloud
computing environments. [29] proposed an advance-
reservation scheduling strategy for message passing in-
terface (MPI) applications. Similarly, [30] presented an
approach for gang-scheduling of jobs with different re-
source needs, such as a compute intensive task paired
with a network or I/O intensive task. In [31], the authors
present scheduling of multiple container workloads on
shared cluster as a minimum cost flow problem (MCFP)
constraint satisfaction problem. In [32], the authors pro-
posed a locality-based process placements for parallel
and distributed simulation. The evaluation of the pro-
posed framework was carried out using the OMNET++

network simulator.

[33] proposed a hierarchical virtual machine (VM)
based workload aware resource allocation for the fed-
erates of a simulation in cloud data center. However,
the workload characteristics of the federates were re-
stricted to single threaded applications. In [34], priority
based scheduling of parallel job on high priority and low
priority VMs to allow avoid under utilization of cloud
resources and improve parallel job performance. Thus
only two categories of resource assignment is possible
in this scheme. In [35] authors presented different vec-
tor bin packing algorithms and first fit decreasing (FFD)
heuristic to allocate resources in a shared cluster to the
static workloads. The evaluation of which was shown
through simulation. Similarly, [36] presented various
FFD based algorithms for VM placement problems.

Compared to related work, EXPPO provides a re-
source recommendation engine which tries to minimize
the makespan and cost for the entire federation (BSP
tasks) rather than a single task. EXPPO uses a gang
scheduling scheme based on heuristic bin packing tech-
niques to deploy the entire federation on Docker con-
tainer platform as one batch job. Furthermore, EXPPO
provides automatic code generation of distributed trac-
ing probes for performance profiling of the federates
which maybe deployed on a distributed infrastructure,
thereby relieving the developers from incurring com-
plexities in writing code for the profiling of federates
[37].

12



Figure 9: We illustrate the performance of resource configuration tuner for different values of (α,β). (a) shows that EXPPO is able to find resource
configurations that have the lowest G value, which is the combination of cost and makespan of the simulation jobs. (b) shows that EXPPO is able
to find consistently better resource configurations in terms of cost compared to max configuration. (c) shows that EXPPO is able to find resource
configurations that have substantially lower makespan compared to least configuration.

8. Discussion

With the advancement of technologies such as 5G and
edge computing, CPS are getting increasingly deployed
in various safety critical applications. Co-simulations
of such dispersed and diverse deployed CPS offers re-
searchers a thorough understanding of the complex dy-
namics of the systems. However, much of the co-
simulation tools used by the researchers in the CPS do-
mains focus largely on conducting simulations on a sin-
gle compute node and seldom use distributed computa-
tional capabilities to run such simulations. There is a
large barrier to entry to make these tools leverage dis-
tributed cloud computing resources. For example, net-
work emulation tools like mininet or ns-3 do not na-
tively support execution on multiple hosts and are re-
stricted to running in a single host machine. Similarly,

there is a high barrier to entry to the underlying co-
simulation HLA middleware to adapt these technolo-
gies to run in the cloud computing environments. In
our experiments, we used the Portico HLA middleware,
where we faced several issues running this middleware
directly on the Docker containers. One of the main is-
sues was the networking between the federates hosted
across the physical hosts. The middleware leverages the
multicast approach for communication between the fed-
erates. However, the default networking support in the
Docker swarm did not support multicast. Thus, consid-
erable operational issues were faced to find out the right
set of software drivers to support multicast networking
for the Docker swarm cluster. We finally settled with the
weave network plugin to allow us the support for fed-
erate communication across the physical host systems

13



after facing many accidental complexities involved in
provisioning such systems. Also, each of these federa-
tions demanded running on a separate subnet address to
allow for isolation of these multicast traffic within these
subnets’ address space. Weave networking allowed us
to create these virtual subnets and alleviate the multicast
traffic isolation issue.

Next, when running the simulations in the cloud com-
puting environments, sometimes the simulator provides
native visualization interface that allows for viewing
the progress for the simulation experiments. However,
since the simulators are running in the docker contain-
ers, some simulators do not expose a web-server where
it is possible to see the simulation progress. These simu-
lators are not necessarily built to run in the cloud native
environments. As such we had to find alternate solu-
tions to make the simulation visualization be exposed
to the remote users. Thus, there was a need to find
an external software driver to support the streaming of
the visualization interface of the simulator running in
the cloud computing environments. After testing var-
ious different remote visualization drivers, the virtual
network connection (VNC) viewer, allowed us to ful-
fill this capability of streaming real time visualization
of the simulator running on the cloud computing infras-
tructure to the end-users.

Running the co-simulations in the docker container
context also requires creating special packaging of the
inputs files needed to run inside the docker container.
Also, there was a need to capture the log files generated
from the simulation itself. Since, the federates of the
simulation could be running across the physical host,
there was a need to aggregate the logs running from all
these federates at a centralized location. Thus, we were
able to explore the network file sharing facility (NFS) to
mount the distributed file systems to the federate docker
container and associate it with a distinct tag. This tag
represents the federation and the experimental run to
uniquely identify and aggregate the simulation logs and
results at a centralized place.

In summary, there are many operational challenges
involved in successfully running these simulations in
the cloud computing context, which we were able to
address in the EXPPO platform thereby having faster
and seamless execution of the CPS co-simulations in the
cloud computing environment.

9. Conclusion & Future Work

Resource allocation plays a critical role in co-
simulation performance. However, the end user is not
necessarily well-equipped to determine what resource

allocations work best for their co-simulation jobs given
the various resource configuration options (and associ-
ated costs) available from the cloud provider. To address
these challenges, this paper presents EXPPO, which is
a Co-simulation-as-a-Service (CaaS) platform for ex-
ecuting distributed co-simulations in cloud computing
environments. EXPPO provides performance profil-
ing capabilities for federates which help in the under-
standing of the relationship between resource alloca-
tions and the simulation performance. Similarly, it ad-
dresses performance profiling challenges for a simula-
tion job comprising heterogeneous computation tasks
or federates deployed across distributed systems. Fur-
thermore, EXPPO selects the resource configurations
for these federates in a way that not only minimizes the
makespan of the co-simulation, but also satisfies the cost
budget of the user.

Future work will address the following:

• The assumption that federate computations have
identical wall-clock execution times across all it-
erations restricts the generality of the approach
to a subset of application use cases. For hybrid
simulations or simulations with non-linear dynam-
ics, the execution times of the involved simulation
steps will vary at each iteration. Future work must
explore dynamic resource allocation for federates
which have different work loads for different com-
putation steps. Reinforcement learning approaches
which can monitor the federates and dynamically
adjust resource allocations based on the varying
demand of a federate over time offer a promising
approach that remains to be explored.

• EXXPO only considers workloads that are CPU
bound. It assumes constant communication costs
during each computation step for all the federates.
Future work must consider the different communi-
cation costs for simulations which may need to be
constantly updating states or sending messages for
triggering discrete events.

• When other applications are co-located in the clus-
ter environments, the effects of noisy-neighbors
[38, 39] can also affect federation performance.
Thus, future work could consider the effects of
noisy-neighbors for resource scheduling and sim-
ulation placement in the cluster.

• EXPPO assumes the use of homogeneous servers
for running simulations to simplify its algorithms,
and could be extended to include heterogeneous
systems. Also, with the growing relevance of edge
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computing and digital twin techniques, efficient re-
source allocation and scheduling of the simulations
at the edge will be necessary.
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