
URMILA: Dynamically Trading-off Fog and Edge Resources for Performance
and Mobility-Aware IoT Services

Shashank Shekhara,1, Ajay Chhokrab, Hongyang Sunb, Aniruddha Gokhaleb,∗, Abhishek Dubeyb, Xenofon
Koutsoukosb, Gabor Karsaib

aSiemens Corporate Technology, Princeton, NJ 08540, USA.
bVanderbilt University, Nashville, TN 37235, USA.

Abstract

The fog/edge computing paradigm is increasingly being adopted to support a range of latency-sensitive IoT services
due to its ability to assure the latency requirements of these services while supporting the elastic properties of cloud
computing. IoT services that cater to user mobility, however, face a number of challenges in this context. First,
since user mobility can incur wireless connectivity issues, executing these services entirely on edge resources, such
as smartphones, will result in a rapid drain in the battery charge. In contrast, executing these services entirely on fog
resources, such as cloudlets or micro data centers, will incur higher communication costs and increased latencies in the
face of fluctuating wireless connectivity and signal strength. Second, a high degree of multi-tenancy on fog resources
involving different IoT services can lead to performance interference issues due to resource contention. In order to
address these challenges, this paper describes URMILA, which makes dynamic resource management decisions to
achieve effective trade-offs between using the fog and edge resources yet ensuring that the latency requirements of the
IoT services are met. We evaluate URMILA’s capabilities in the context of a real-world use case on an emulated but
realistic IoT testbed.

Keywords:
Fog/Edge Computing User Mobility Latency-sensitive IoT Services Resource Management

1. Introduction

Traditional cloud computing is proving to be in-
adequate to host latency-sensitive Internet of Things
(IoT) applications due both to the possibility of vio-
lating their quality of service (QoS) constraints (e.g.,
due to the long round-trip latencies to reach the distant
cloud) and the resource constraints (e.g., scarce battery
power that drains due to the communication overhead
and fluctuating connectivity). The fog/edge computing
paradigm [1] addresses these concerns, where IoT ap-
plication computations are performed at either the edge

∗Corresponding Author.
Email addresses: shashankshekhar@siemens.com (Shashank

Shekhar), ajay.d.chhokra@vanderbilt.edu (Ajay Chhokra),
hongyang.sun@vanderbilt.edu (Hongyang Sun),
a.gokhale@vanderbilt.edu (Aniruddha Gokhale),
abhishek.dubey@vanderbilt.edu (Abhishek Dubey),
xenofon.koutsoukos@vanderbilt.edu (Xenofon Koutsoukos),
gabor.karsai@vanderbilt.edu (Gabor Karsai)

1Work performed by the author during doctoral studies at Vander-
bilt University.

layer (e.g., smartphones and wearables) or the fog layer
(e.g., micro data centers or cloudlets, which are a collec-
tion of a small set of server machines used to host com-
putations from nearby clients), or both. The fog layer
is effectively a miniaturized data center and hence sup-
ports multi-tenancy and elasticity, however, at a limited
scale and with significantly less variety.

Despite the promise of fog/edge computing, many
challenges remain unresolved. For instance, IoT appli-
cations tend to involve sensing and processing of infor-
mation collected from one or more sources in real-time,
and in turn making decisions to satisfy the needs of the
applications, e.g., in smart transportation to alert drivers
of congestion and take alternate routes. Processing this
information requires sufficient computational capabili-
ties. Thus, relying exclusively on edge resources alone
for these computations may not always be feasible be-
cause one or both of the computational and storage re-
quirements of the involved data may exceed the edge
device’s resource capacity. Even if it were feasible, the
battery power constraints of the edge device limit how

Preprint submitted to Journal of Systems Architecture January 14, 2020



much intensive and for how long such computations can
be carried out. In contrast, exclusive use of cyberforag-
ing, i.e., always offloading the computations to the fog
layer is not a solution either because offloading of data
incurs communication costs, and when users of the IoT
application are mobile, it is possible that the user may
lose connectivity to a fog resource and/or may need to
frequently hand-off the session between fog resources.
In addition, the closest fog resource to the user may not
have enough capacity to host the IoT application be-
cause other IoT applications may already be running at
that fog resource, which will lead to severe performance
interference problems [2, 3, 4, 5] and hence degradation
in QoS for all the fog-hosted applications.

In summary, although the need to use fog/edge re-
sources for latency-sensitive IoT applications is well-
understood [6, 7], a solution that relies exclusively on
a fog or edge resource is unlikely to deliver the desired
QoS of the IoT applications, maintain service availabil-
ity, minimize the deployment costs and ensure longevity
of scarce edge resources, such as battery. These re-
quirements are collectively referred to as the service
level objectives (SLOs) of the IoT application. Thus,
an approach that can intelligently switch between fog
and edge resources while also supporting user mobility
is needed to meet the SLO by accounting for latency
variations due to mobility and execution time variations
due to performance interference from co-located appli-
cations. To that end, we present URMILA (Ubiquitous
Resource Management for Interference and Latency-
Aware services), which is a middleware solution to man-
age the resources across the cloud, fog and edge spec-
trum2 and to ensure that SLO violations are minimized
for latency-sensitive IoT applications, particularly those
that are utilized in mobile environments. Specifically,
this paper significantly extends our earlier work on UR-
MILA [9] and makes the following key contributions:

• We provide an a priori estimate of the received
signal strength that is then used at runtime to pre-
dict the energy consumption and network latency
in the mobile environment by choosing an appro-
priate computing resource, i.e., edge or fog device.

• We formulate an optimization problem that mini-
mizes the cost to the fog provider and energy con-
sumption on edge devices while adhering to SLO
requirements.

2The use of the terms fog and edge, and their semantics are based
on [8].

• We propose an algorithm to select the most suit-
able fog server that will be used to execute the IoT
application remotely, when the computation can
be executed on the fog resource. The algorithm
accounts for performance interference due to co-
located but competing IoT applications on multi-
tenant fog servers and deliver a run-time control
algorithm for application execution that ensures
SLOs are met in real time.

• We evaluate our solution in a laboratory-sized real
testbed using two emulated real-world IoT appli-
cations that we developed.

The rest of this paper is organized as follows: Sec-
tion 2 discusses the application and the system models;
Section 3 formulates the optimization problem and de-
scribes the challenges we address. Section 4 explains
the URMILA solution in detail; Section 5 provides em-
pirical validation of our work; Section 6 describes re-
lated work in comparison to URMILA; and finally Sec-
tion 7 provides concluding remarks.

2. System Model and Assumptions

This section presents the system and application
models for this research along with the assumptions we
made.

2.1. System Model

Figure 1 is representative of a setup that our system
infrastructure uses, which comprises a collection of dis-
tributed wireless access points (WAPs). WAPs leverage
micro data centers (MDCs), which are fog resources.
URMILA maintains a local manager at each MDC, and
they all coordinate their actions with a global, central-
ized manager. The WAPs are interconnected via wide
area network (WAN) links and hence may incur vari-
able latencies and multiple hops to reach each other.
The mobile edge devices have standard 2.4 GHz WiFi
adapters to connect to the WAPs and implement well-
established mechanisms to hand-off from one WAP to
another. The edge devices are also provisioned with
client-side URMILA middleware components including
a local controller. We assume that mobile clients do not
use cellular networks for the data transmission needs
due to the higher monetary cost of cellular services and
the higher energy consumption of cellular over wireless
networks [10, 11].

2



Edge Device

Micro Data Center 
m1

Micro Data Center 
mk

Local 
Manager (lm)

Wireless Access 
Point apn

Link to Global Manager gm 
at Centralized Data Center

Local 
Manager (lm)

Figure 1: System infrastructure model

2.2. Application Model

We describe our IoT application model via a use case,
which comprises a soft real-time object detection, cog-
nitive navigational assistance application targeted to-
wards the visually impaired. Advances in wearable
devices and computer vision algorithms have enabled
cognitive assistance and augmented reality applications
to become a reality, e.g., Microsoft’s SeeingAI (www.
microsoft.com/en-us/seeing-ai) and Gabriel [1]
that leverage Google Glass and cloudlets. However, be-
cause these solutions are either still not available to the
users or use discontinued technologies such as Google
Glass, we have developed two applications, which are
also used in empirically validating our research and de-
scribed in Section 5.1. As the user moves, the applica-
tion frequently captures video frames of the surround-
ings using the wearable equipment, processes and ana-
lyzes these frames, and subsequently provides feedback
(e.g., audio and haptics) to the user in real-time to en-
sure safe navigation. Note that our objective is not to
replace service dogs or white canes but to augment the
user’s understanding of the surroundings.

Our use case belongs to a class of latency-sensitive
IoT applications that are interactive or streaming in na-
ture, such as augmented reality, online gaming, and
cognitive assistance applications. The service level ob-
jective (SLO) for the service comprises multiple parts.
First, since quality of user experience is critical, feed-
backs are needed in (soft) real-time and hence we have
tight deadlines for each step. Our application is mod-
eled as a composition of individual tasks or steps; for
instance, in the case of computer vision applications,
these steps can be frame capturing, frame processing
and actuation actions.

Since image processing is a compute- and memory-
intensive application, it consumes the already scarce
battery resources on a mobile device and hence the

longevity of resources on edge devices is paramount.
Although cyber-foraging enables a mobile application
to be offloaded from the edge device to a fog/cloud node
where it gets deployed and processed [12], this process
itself is energy consuming because application state and
logic needs to be transferred, and moreover it can be
a platform-dependent issue, e.g., application binaries
on different platforms may be different. Hence, in this
work, we consider an approach where we have different
versions of the service: one that can be deployed in con-
tainerized form at the fog node and another that runs on
the edge device, albeit a less accurate but more resource
efficient, so the service execution can switch between
these two modes in order to maintain a highly available
service and to meet the SLOs.

2.3. User Mobility and Client Session
To make effective resource management decisions,

URMILA must estimate user mobility patterns. Al-
though there exist both probabilistic and determinis-
tic user mobility estimation techniques, for this re-
search we focus on the deterministic approach, where
the source and destination are known (e.g., via cal-
endar events) or provided by the user a priori. Our
solution can then determine a fixed route (or alter-
nate sets of routes) for a given pair of start and
end locations by leveraging external services such
as Open Street Maps (http://www.openstreetmap.
org), Here APIs (https://developer.here.com/)
or Google Maps APIs (https://cloud.google.
com/maps-platform/). These are reasonable assump-
tions for services like navigational assistance to the vi-
sually impaired or for students in or near college cam-
puses who are using mobility-aware IoT applications
where user mobility is restricted to a relative small geo-
graphical area, e.g., a couple of miles of user movement.
Our future work will explore the probabilistic approach.
When a user wants to use the application, a session is
initiated, and the client-side application uses a RESTful
API to inform URMILA about the start time, source and
destination for the trip.

3. URMILA Problem Formulation

This section presents a formal description of the prob-
lem we solve in this paper. The aim is to meet the SLO
for the user (which includes assuring the response time
and minimizing the energy costs for the edge device by
ensuring longevity of resources such as battery power)
while minimizing the deployment and operational costs
for the service provider. The primary notations we have
used in the description are summarized in Table 1.

3



Table 1: Primary Notations Used in Problem Formulation

For application execution of a user u at a period p
φ(u) bound on total response time or length of period
I(u) =

{1(u), . . . , L(u)}
sequence of periods, where L is the number of
periods in the user’s path

ttotal(u, p) total response time
tprocess(u) local pre/post-processing time of application
texecute(u, p) general execution time of application
tlocal(u) execution time when application is run locally
tnetwork(u, p) network latency
For MDCs, servers and wireless access points
gm global manager
lm local manager
M set of MDCs
s a server in an MDC
AP =

{ap1, . . . , apn}

set of wireless access points

ap0 virtual access point when user has no connection
ap(s) access point that hosts server s
ap(u, p) access point user u connects to at period p
tap(s),s server latency between ap(s) and server s
tapi ,ap j or
tap(u,p),ap(s)

latency between api or ap(u, p) and ap j or ap(s)

tu,ap(u,p) last-hop latency between user u and ap(u, p)
For deployments of user u’s application and associated costs
xu,s ∈ {0, 1} deployment variable of user u on server s
yu,s,p ∈ {0, 1} execution variable of user u on server s at period p
tremote(u, s, p) execution time of user u on server s at period p
tnetwork(u, s, p) total latency of user u on server s at period p
U(s) set of existing users on server s
Lmax(s) maximum duration U(s) will run on server s
Tdeploy(u, s) cost of deploying user u on server s
Ttrans f er(u, s) cost of state transfer of user u on server s
w(u, s) waiting time of user s when deployed on server s
Tuser(u, s) no. of local periods for deploying user u on server s
α(s) unit-time cost of powering on server s
β(s) unit-time cost of transferring state to server s
κ(u) per-period energy cost of local execution for user u
C(u) total cost of deploying user u

3.1. Formal Notation for the System Parameters
For each user (or application3), u, let φ(u) denote the

user-specific bound on the acceptable response time in
each service period, which also defines the length of the
period. For our consideration, the total response time
experienced by the user at each period p can be ex-
pressed as the sum of the (local or remote) execution
time and the network latency (if executed remotely), i.e.,

ttotal(u, p) = tprocess(u) + texecute(u, p) + tnetwork(u, p)
(1)

where tprocess(u) is the required total time of all the tasks
associated with the application running locally. This du-
ration is fixed and independent of the execution mode
and period, texecute(u, p) is the total execution time of
all the compute intensive tasks related to the application
that can be offloaded to the remote server. This dura-
tion depends on whether the execution is on-device or

3Since the mobile user is engaged using the features of a single ap-
plication, we will use the terms “user” and “application” interchange-
ably.

remote, and tnetwork(u, p) is the network latency for pe-
riod p (which is included only if remote execution is
involved). In the rest of the paper, texecute is referred to
as the execution time of the application and tprocess as
pre/post processing time of the application.

The goal is to meet the SLO for the user, i.e., to en-
sure ttotal(u, p) ≤ φ(u) for each period p in the user’s an-
ticipated duration of application usage, while minimiz-
ing the total cost (formulated in Section 3.2). Since we
consider user mobility, this duration is typically from
the start to the end of the user’s trip. Nonetheless, there
is nothing to prevent us from applying the model even in
the stationary state or after the user has reached his/her
destination.

Let tlocal(u) denote the execution time when the ap-
plication of user u is run locally, which is fixed regard-
less of the period and no network latency will be in-
curred in this case. Additionally, we assume that the
SLO can always be satisfied with local executions, i.e.,
tprocess(u)+ tlocal(u) ≤ φ(u) for all u and p. This could be
achieved by a lightweight mobile version of the appli-
cation, such as MobileNet for real-time object detection
on the mobile device, which is less compute-intensive
and time-consuming, thereby ensuring the SLO albeit
with a low detection accuracy.

In our model, applications and fog resources are man-
aged by a centralized authority known as the global
manager (gm) hosted at a centralized cloud data center
(CDC). This serves as URMILA’s portal for the users.
We denote by AP = {ap1, ap2, . . . , apn} the set of Wire-
less Access Points (WAPs) with a subset of them also
hosting fog resources in the form of micro data centers
(MDCs) or cloudlets. A WAP, ap ∈ AP, hosting an
MDC, m ∈ M, implies that the access point ap is di-
rectly connected to wired local area network involving
all the servers of m. Such capabilities could be offered
by college campuses or internet providers as wireless
hotspots. We assume that the gm owns or has exclusive
lease to a set M of MDCs. Note that M is a subset of AP
since only some WAPs have an associated MDC. Each
MDC contains a set of compute servers (possibly het-
erogeneous) that are connected to their MDC’s associ-
ated WAP. From a traditional cloud computing perspec-
tive, since an application can be deployed and executed
on the CDC, we model the CDC as a special MDC that
is also contained in set M, and correspondingly, the set
AP contains the access point that hosts the CDC as well.

In this architecture, the network latency between any
ap(s) ∈ AP that hosts a server s and the server itself
is negligible, i.e., tap(s),s ≈ 0, as they are connected via
fast local area network (LAN). The WAPs are connected
to each other over a wide area network (WAN) and may

4



incur significant latency depending on the distance, con-
nection type and number of hops between them. If a mo-
bile user is connected to a nearby WAP, say api, which
has an MDC that hosts the user’s application, then there
is no additional access point involved. Otherwise, if the
application is deployed on another MDC hosted by, say
ap j, then the round trip latency tapi,ap j can be signifi-
cant since the request/response will be forwarded from
api to ap j. Moreover, due to mobility, the user could
at times have no connection to any access point (e.g.,
out of range). In this case, we assume the presence of a
virtual access point ap0 to which the user is connected
and define tap0,api = ∞ for any api ∈ AP. Obviously,
the application will have to run locally to avoid SLO
violations.

In addition to the round trip latency, the selection of
MDC and server to deploy the application can also sig-
nificantly impact the application execution time, since
the MDCs can have heterogeneous configurations and
each server can host multiple virtualized services, which
do not have perfect isolation and hence could interfere
with each other’s performance.Each MDC, also con-
tains a local manager lm responsible for maintaining a
database of applications it can host, their network la-
tencies for the typical load, and server type and load-
specific application execution time models. Note that
there could be a varying number of co-located appli-
cations and hence a varying load on each server over
time, but we assume that individual application’s work-
load does not experience significant variation through-
out its lifetime, which is a reasonable assumption for
many streaming applications, such as processing con-
stant size video frames.

For our mobility model, we divide the travel du-
ration for each user u into a sequence I(u) =

{1(u), 2(u), . . . , L(u)} of periods that cover the user’s
path of travel. The length of each period p ∈ I(u) is
the same and sufficiently small so that the user is con-
sidered to be constantly and stably connected to a partic-
ular WAP ap(u, p) ∈ AP

⋃
{ap0} (including the virtual

access point). Moreover, the last hop latency, tu,ap(u,p)
between the user and this access point can be estimated
based on the user’s position, channel utilization, and
number of active users connected to that access point.

3.2. Developing the Problem Statement

To formalize the optimization problem we solve in
this work, we define two binary variables that indicate
the decisions for application deployment and execution
mode selection. Specifically, xu,s = 1 if user u is de-
ployed on server s and 0 otherwise, and yu,s,p = 1 if user

u executes on server s at period p and 0 otherwise. Us-
ing these two variables and our system model, we now
express the total response time of an application and the
total cost, and then present the complete formulation of
the optimization problem.

3.2.1. Characterizing the Total Response Time
Recall from Equation (1) that the total response time

for a user u at a period p consists of three parts, and
among them the pre/post-processing time tprocess(u) is
fixed. To express the execution time, let tremote(u, s, p)
denote user u’s execution time if it is run remotely on
server s at period p. Note that, due to the hardware
heterogeneity and co-location of multiple applications
on the server which can result in performance interfer-
ence [13, 4, 14], this execution time will depend on the
set of existing applications that are running on the server
at the same time. This property is known as sensitiv-
ity [15, 13, 3]. Similarly, the execution times for these
users may in turn be affected by the application exe-
cution of user u were it to execute on this server – a
property known as pressure [15, 13, 3]. Techniques to
estimate tremote(u, s, p) are described in Section 4.4.

For the network latency, let tnetwork(u, s, p) denote the
total latency incurred by running the application re-
motely on server s at period p. We can express it as:

tnetwork(u, s, p) = tu,ap(u,p) + tap(u,p),ap(s) + tap(s),s (2)

In particular, it includes the latency from the user to the
connected access point tu,ap(u,p), which we refer to as the
last-hop latency; the latency from the connected access
point to the serving access point tap(u,p),ap(s), which we
refer to as the WAN latency; and the latency from the
serving access point to the server that deploys the ap-
plication tap(s),s, which we refer to as the server latency.
The last latency is negligible, and the first two depend
on the user’s location at period p. Latency estimation
is discussed in Section 4.3. The total response time of
user u at period p can then be expressed as:

ttotal(u, p) = tprocess(u) +
(
1 −

∑
s

yu,s,p

)
tlocal(u)

+
∑

s

yu,s,p

(
tremote(u, s, p) + tnetwork(u, s, p)

)
(3)

In the above expression, the first line includes the con-
stant pre/post-processing time as well as the execution
time when the application runs locally, and the second
line includes the execution time when it is run remotely
as well as the incurred total network latency.

5



3.2.2. Characterizing the Total Cost
The total cost consists of two parts: the server deploy-

ment cost and the user energy cost. On the deployment
side, running a server incurs operational costs, such as
power and cooling. Thus, the provider want to use as
few server-seconds as possible, so the deployment cost
depends on the duration a server remains running. For a
server s, let U(s) denote the set of existing users whose
applications are deployed on it, and the maximum time
up to which a server will run these applications depends
upon the longest running application, i.e., L(v), where L
is the number of periods in the user v’s path. We define
Lmax(s) to be the maximum time up to which these exist-
ing applications will run, i.e., Lmax(s) = maxv∈U(s) L(v).
The cost for deploying a new application u on server s
is proportional to the extra duration the server has to be
on and can be expressed as:

Tdeploy(u, s) = max
(
0, L(u) − Lmax(s)

)
(4)

In addition to the operational cost, deploying an ap-
plication on a server requires transferring its state over
the backhaul network from the repository in the CDC to
the MDC. The time to transfer the state of an application
u to a server s can be expressed as:

Ttrans f er(u, s) =
state(u)

b(s)
+ ci(u, s) (5)

where state(u) is the size of application u’s state, b(s)
is the backhaul bandwidth from CDC to the MDC that
hosts server s, and ci(u, s) is the initialization time of the
application before it can start processing requests on the
server. Hence, the waiting time (in terms of the number
of periods) of the application before it can be executed
remotely is w(u, s) =

⌈
Ttrans f er(u, s)/φ(u)

⌉
, where φ(u)

is the duration of a period. Thus, we must have yu,s,p = 0
for p ∈ [1(u), 1(u) + w(u, s)].

On the user side, we know that executing the applica-
tion locally incurs higher power consumption than ex-
ecuting it remotely. Hence, the cost for user u can be
measured in terms of the total number of periods when
the application is being run locally, which is directly
proportional to the additional energy expended by the
mobile device had the application been run remotely
throughout the user’s travel. The number of local pe-
riods by deploying application u on server s can be ex-
pressed as:

Tuser(u, s) =

L(u)∑
p=1(u)

(
1 − yu,s,p

)
(6)

To combine the costs from different sources, we de-
fine α(s) and β(s) to be the unit-time costs of powering

on server s and transferring the state to server s, respec-
tively. Both values depend on the server and its corre-
sponding MDC. In addition, we define κ(u) to be the
per-period energy cost of local execution for user u (rel-
ative to remote executions), and its value depends on the
user’s application and mobile device. Thus, for a given
solution that specifies the application deployment (i.e.,
xu,s) and its execution mode for each period (i.e., yu,s,p),
the total cost can be expressed as:

C(u) =
∑

s

xu,s

(
α(s) · Tdeploy(u, s) + β(s) · Ttrans f er(u, s)

+ κ(u) · Tuser(u, s)
)

(7)

3.3. Optimization Problem

Given the expressions for total response time (Equa-
tion (3)) and total cost (Equation (7)), the optimization
problem needs to decide, for each new user u, where to
deploy the application and which execution mode to run
the application in order to minimize the total cost sub-
ject to the response time constraints. Let V denote the
set of all existing applications on all servers at the time
of deploying u, i.e., V =

⋃
s U(s). The problem can be

formulated by the following integer nonlinear program
(INLP):

minimize C(u)
subject to ttotal(u, p) ≤ φ(u), ∀p (8)

ttotal(v, p) ≤ φ(v), ∀p, v (9)
xu,s, yu,s,p ∈ {0, 1}, ∀s, p (10)∑

s

xu,s ≤ 1 (11)

yu,s,p ≤ xu,s, ∀s, p (12)
yu,s,p = 0, ∀s, p ∈ [1(u), 1(u) + w(u, s)]

(13)

In particular, Constraints (8) and (9) require meeting the
SLOs for user u as well as for all existing users at all
times. Constraint (10) requires the decision variables to
be binary. Constraint (11) requires the application to be
deployed on at most one server. We enforce this con-
straint because there is a high cost in transferring the
application state from the CDC to an MDC server, ini-
tializing and running it. Note that an application need
not be deployed on any server, in which case it will be
executed locally throughout the user’s travel duration.
Constraint (12) allows the application to run remotely
only on the server it is deployed at each period and Con-
straint (13) restricts the remote executions to start only
after the application state has been transferred.

6



Due to the NP-hardness of the above INLP problem,
we rely on a greedy-based heuristic to solve it. Sec-
tion 4.4.2 describes the proposed heuristic for server de-
ployment and execution mode selection.

4. URMILA: Design and Implementation

This section presents the design and implementation
of our URMILA dynamic resource management mid-
dleware.

4.1. Overview of URMILA’s Expected Runtime Behav-
ior

To better understand the rationale for URMILA’s de-
sign and its architecture, let us consider the runtime in-
teractions that ensue once a user session is initiated. The
client-side application is assumed to be aware of UR-
MILA and communicates with it to provide the start
time, source and destination for the trip. URMILA
computes the set of routes that the user may take us-
ing the provided trip details. Then, based on instanta-
neous loads on all fog nodes of the MDCs on the path,
URMILA determines a suitable fog server (i.e., node)
in an MDC on which the IoT application’s cloud/fog-
ready task can be executed throughout the session, and
deploys the corresponding task on that server. URMILA
will not change this selected server for the rest of the
session even if the user may go out of wireless range
from it because the user can still reach it through a
nearby WAP and by traversing the WAN links. This is
reasonable for our approach due to the relatively smaller
size of the geographical area covered by the mobile user.

Latency
Estimation

Route
Calculation

Fog Node
Selection

Service
 Deployment

Deployment EngineRequest
<Src, Dest>

Figure 2: URMILA’s Component-based Architecture and Deploy-
ment

This approach and the architectural components in-
volved in the process are depicted in Figure 2. This se-
quence is repeated whenever a new user is added to the
system. Selecting the appropriate fog server based on
the instantaneous utilizations of the available resources,
which are not known statically, while ensuring SLOs are
met is a hard problem. URMILA’s key contribution lies
in addressing this challenge, and intelligently adapting
between the fog and edge resources based on user mo-
bility and application SLO.

As time progresses, for each period (or a well-defined
epoch) of application execution, the client-side UR-
MILA middleware determines the instantaneous net-
work conditions and determines whether to process the
request locally or remotely on the selected fog server
such that the application’s SLO is met. This process
continues until the user reaches the destination and ter-
minates the session with the service, at which point the
provisioned tasks on the fog resources can be termi-
nated. The architecture for these interactions is pre-
sented in Figure 3, where the controller component on
the client-side middleware is informed by URMILA
to opportunistically switch between fog-based or edge-
based execution in a way that meets application SLOs.
The remainder of this section describes how URMILA
achieves these goals.

Sensors

Actuators

Controller

Local Sensor Data
ProcessingService

Remote Sensor Data
ProcessingService

Sensors

Actuators

Edge Device Fog Device

Figure 3: URMILA’s Architecture for Decision Making

4.2. Route Computation

This component is responsible for determining the
user’s mobility pattern based on the methodology de-
scribed in Section 2.3. In this paper, we leverage the
Google Maps APIs for finding the shortest route be-
tween the user’s specified start and destination loca-
tions. It takes a tuple comprising the start and desti-
nation GPS coordinates, and produces a list of GPS co-
ordinates for the various steps along the route. This raw
list of route points is re-sampled as per a constant ve-
locity model (5 kilometers per hour, which is a typical
average walking speed) with an interval equal to the re-
sponse time deadline enforced by the SLO.

4.3. Latency Estimation

Recall that URMILA will choose to execute task(s)
of the IoT application on the fog server if it can assure
its SLO, which means that for every user and for every
period/epoch of that user’s session, URMILA must be
able to estimate the expected latency as the user moves
along the route. Hence, once the route (or set of alter-
nate routes) taken by the user is determined using mech-
anisms like Google Maps, the Latency Estimator com-
ponent of Figure 2 will estimate the expected latencies
along the route.

7



This is a hard problem to address due to the dy-
namic nature of the Wi-Fi channels and the dynamically
changing traffic patterns (due to changing user densi-
ties) throughout the day. To that end, URMILA employs
a data-driven model that maps every route point on the
path to an expected latency to be observed at that point.
One of the salient features of this estimation model is
its adaptability, i.e., the model is refined continuously
in accordance with the actual observed latencies.

The estimated latency is made up of three parts (see
Equation (2)): the last-hop latency to a WAP along the
route, the WAN latencies to reach the fog server from
the ingress WAP by traversing the WAN links, and the
task execution time on the fog server (See Section 4.4).

Estimating Last-hop Latency tu,ap(u,p): The last hop
latency itself is affected primarily by channel uti-
lization, number of active users and received signal
strength [16]. This component estimates the latency
tnetwork(u, s, p) observed by user u at any period p along
the route on any given server s. Initially, we assume that
the channel utilization and the number of active users
do not impact the latency significantly. As the routes
get profiled, we maintain a database that stores network
latencies for different coordinates and times of the day.
Whenever a request arrives with known route segments,
the latency can be estimated by querying this database.

Equation (14) can be used to compute the signal
strength, where p̂ (resp. p̂0) is the mean received power
at a distance d (resp. d0) from the access point, and γ
is the path loss exponent. Among these parameters, p̂0
and d0 depend on the access point and are known a pri-
ori for typical access points. The path loss exponent γ
depends on the environment, and its typical values for
free space, urban area, sub urban area and indoor (line
of sight) are 2, 2.7 to 3.5, 3 to 5 and 1.6 to 1.8, respec-
tively [17].

p̂(d) = p̂0(d0) − 10γ log
d
d0

(14)

The client device selects a WAP with the highest sig-
nal strength and sticks to it till the strength drops below
a threshold. The network becomes unreliable if the re-
ceived signal strength falls below -67dBm for streaming
applications [16], which we use as the threshold for UR-
MILA. We also use existing well-known methods for
determining the signal strength based on received power
and distance from an access point [17]. Using this to-
gether with the calculated route and WAP’s data, the la-
tency estimator is able to calculate the last-hop latency
for each period/epoch along the route.

Estimating WAN Latency tap(u,p),ap(s): The WAN la-
tency between two access points depends on the link ca-

pacity connecting the nodes and the number of hops be-
tween them. We use another database to maintain the
latencies between different access points.

Estimating Total Latency: Based on the computed
individual components, a map of total network latency
can then be generated for every period/epoch along the
route.

4.4. Fog Server Selection
To avoid the high cost involved in transferring appli-

cation state and initialization, URMILA performs a one-
time fog server selection within a fog layer, and reserves
the resource for the entire trip duration plus a margin to
account for the deviation from the ideal mobility pat-
tern. To determine the right fog server to execute the
task, besides having accurate latency estimates, we also
need an accurate estimate for task execution on the fog
server that will end up being selected, which will de-
pend on the instantaneous co-located workloads on that
server and the incurred performance interference.

To accomplish this, we leverage the INDICES [7]
performance metric collection and interference model-
ing framework. However, the INDICES framework has
a few limitations. In particular, it was designed for vir-
tual machines (VMs). In this work, in order to have
lower initialization cost compared to VMs [18], we rely
on Docker containers. Hence, as a part of URMILA, we
integrated INDICES while extending the framework for
interference-aware Docker container deployment.

In addition, modern hardwares are equipped with non
uniform memory access (NUMA) architecture which
forces the performance estimation and scheduling tech-
niques to consider memory locality. Different applica-
tions have different levels of performance sensitivity on
NUMA architectures [19]. Thus, we needed a mecha-
nism that is able to benchmark applications on different
NUMA nodes and predict their performance and sched-
ule them accordingly. Moreover, recent advancement
in Resource Director Technology (RDT) [20] that in-
cludes Cache Monitoring Technology (CMT) and Mem-
ory Bandwidth Monitoring (MBM) provides further in-
sights about system resource consumption for memory
bandwidth and last-level cache utilization, which can be
leveraged for better performance estimation. We ac-
count for all of these factors in URMILA. Our recent
work on the FECBench framework addresses several
of the limitations in INDICES and provides a holistic,
end-to-end performance monitoring and model building
framework [21], however, FECBench was not ready for
use in the URMILA research.

URMILA’s fog server selection process consists of an
offline performance modeling stage and an online server

8



selection stage as depicted in Figure 4.

Performance
Monitoring

Performance
Model Learning

(Offline)

Performance 
Estimation 

Network Latency 
Estimation 

State Transfer
Cost Estimation

Server
Selection 
Algorithm 

Online

Figure 4: URMILA’s Fog Server Selection Process

4.4.1. Offline Performance Model Learning
URMILA uses a data-driven approach [22] in its run-

time decision making for which it requires an offline
training stage to develop a performance model for each
latency-sensitive application task that is expected to be
executed on the fog server. More precisely, in order to
calculate texecute(u, p) in Equation (1), we need to de-
velop a performance model to predict tremote(u, s, p), the
remote execution time of the application on a server.
This model depends on the following two factors:

1. Hardware Heterogeneity: Our edge and fog re-
sources are composed of heterogeneous hardware
with different server architectures and configura-
tions. Each application’s performance can vary
significantly from one platform to another [2].
Therefore, we need an accurate benchmark of per-
formance for each hardware platform.

2. Performance Interference: Although hypervisors/
virtual machine monitors and cgroups in case of
Linux containers provide a high degree of security,
fault, and environment isolations, there still exist a
number of interference sources [13, 4, 14], such as
shared last-level cache, interconnect network, disk
and memory bandwidth which are difficult to parti-
tion. This has a profound impact on the remote ex-
ecution time (tremote(u, s, p)), arising from the sen-
sitivity to the co-located applications and its pres-
sure on those applications [15, 13, 3].

To develop a performance model required for deter-
mining tremote(u, s, p), we first benchmark the execution
time tisolation(u,w) of each latency-sensitive application
u on a specific hardware type w in isolation. This way,
we can account for the hardware heterogeneity of our re-
source spectrum. We then execute the application with
different co-located workload patterns and learn its im-
pact, denoted by function gu, on the system-level and
obtain micro-architectural metrics as follows:

Xnew
w = gu(Xcur

w ) (15)

where Xcur
w and Xnew

w denote the vectors of the selected
metrics before and after running application u on hard-
ware w, respectively.

Modern hardware architectures provide access to
many performance metrics. Based on our sensitivity
analysis and to provide a broadly applicable and easily
reproducible approach, we selected the following met-
rics in vector Xcur

w for performance modeling:

• System Metrics: CPU utilization, memory utiliza-
tion, network I/O, disk I/O, context switches and
page faults.

• Hardware Counters: Retired instructions per sec-
ond (IPS), cache utilization, cache misses, last-
level cache (LLC) bandwidth and memory band-
width.

• Scheduler Metrics: Scheduler wait time and sched-
uler I/O wait time.

Another key consideration that we applied for perfor-
mance modeling is NUMA-awareness with CPU core
pinning. On modern multi-chip servers, the memory is
divided and configured locally for each processor. The
memory access time is lower when accessed from local
NUMA node compared to when accessed from remote
NUMA node. Hence, it is desirable to model the perfor-
mance per NUMA node and schedule the Docker con-
tainers accordingly. We achieve this by collecting the
performance metrics per NUMA node and then, wher-
ever possible, developing sensitivity and pressure pro-
files at the NUMA node level instead of at the system
level. The benefit of this approach is validated in Fig-
ure 5. We observe from the figure that CPU core pinning
reduces the performance variability, however, if NUMA
node is not accounted for, it could lead to worse perfor-
mance due to data locality issues.

Shared
Isolation

Shared Pinning
Isolation

Pinning Pinning
NUMA

180
200
220
240
260
280
300

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(a) MobileNet

Shared
Isolation

Shared Pinning
Isolation

Pinning Pinning
NUMA

300
325
350
375
400
425
450
475

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(b) Inception

Figure 5: Execution Time Comparison due to Core Pinning and
NUMA

Lastly, we learn the performance deterioration (com-
pared to isolated performance), denoted by function fu,
for application u under the new metric vector Xnew

w on

9



hardware w to predict its execution time on the fog
server under the same conditions:

tremote(u,w) = tisolation(u,w) · fu(Xnew
w ) (16)

We apply supervised machine learning techniques to
learn both functions gu and fu using the following se-
quence of steps:

• Feature Selection: We adopted the Recursive Fea-
ture Elimination (RFE) approach using Gradient
Boosted Regression Trees [23] as a way to select
the optimal set of features and reduce training time.
We performed RFE in a cross-validation loop to
find the optimal number of features that minimizes
a loss function (mean squared).

• Correlation Analysis: To further reduce the train-
ing time by decreasing the dimensions of the fea-
ture vector, we used the Pearson Coefficient to
eliminate highly dependent metrics with a thresh-
old of ±0.8.

• Regression Analysis: We used the off-the-shelf
Gradient Tree Boosting curve fitting method due
to its ability to handle heterogeneous features and
its robustness to outliers.

Note that Equations (15) and (16) can be applied to-
gether to model both sensitivity and pressure for ap-
plication deployment on each server in order to calcu-
late tremote(u,w), which is then used as an estimate for
the remote execution time tremote(u, s, p) of application
u on server s containing hardware w. The learned per-
formance models for different applications are then dis-
tributed to the different MDCs for each of the hardware
type w that they contain. Since MDCs typically contain
just a few heterogeneous server types, we do not antic-
ipate a large amount of performance model dissemina-
tion.

4.4.2. Online Server Selection
The online stage performs server selection for an ap-

plication, which is done in a hierarchical fashion as fol-
lows. First, when a user initiates a session, the global
manager gm residing at the CDC initiates the fog server
selection process as soon as it receives a request from
the client application. It calculates the route of the user
as described in Section 4.2. Recall that the goal is to de-
termine the expected execution time of the application
task on each fog server in the most appropriate MDC
using the performance model developed in the offline
stage such that the SLOs for the existing applications

can still be met despite expected performance interfer-
ence. Thus, once URMILA knows the route and the
access points the user will be connected to, the gm then
queries the local manager lm of each MDC, which in
turn queries each of their servers to find the expected
execution time of the target application using the per-
formance model developed in the offline stage such that
the SLOs for the existing applications can still be met.
Finally, the gm combines this information with the la-
tency estimates from Section 4.3 to determine the ex-
ecution mode of the application to satisfy the response
time constraints at each step of the route. This allows
us to estimate the cost incurred by the user (i.e., Tuser in
Equation (6)).

To solve the optimization problem, we still need to
estimate the deployment cost (i.e., Tdeploy in Equation
(4)) and the transfer cost (i.e., Ttrans f er in Equation (5)).
The deployment cost is based on the trip duration, which
we can again obtain from the user mobility as described
in Section 4.2. To reduce transfer cost, we use Docker
container images that consist of layers, and each layer
other than the last one is read only and is made of a
set of differences from the layer below it. Thus, with a
base image (such as Ubuntu 16.04) already present on
the server, we only need the delta layers (that dictate
state(u) in Equation (5)) to be transferred for the appli-
cation to be reconstructed at the fog location.

Algorithm 1 shows the pseudocode for selecting a
fog server s∗ and deciding a tentative execution-mode
plan y∗[p] for a user u at each period/epoch p in the
route, where y∗[p] = 1 indicates remote execution and
y∗[p] = 0 indicates local execution. Besides deciding
on the server to deploy the target application, the algo-
rithm also suggests a tentative execution-mode plan at
each step of the application execution. This execution
plan will be used for cost estimation by the global man-
ager and is subject to dynamic adjustment at run-time
(See Section 4.5).

Specifically, the algorithm goes through all servers
(Line 3), and first checks whether deploying the target
application u on a server s will result in SLO violation
for each existing application v on that server, as speci-
fied by the user’s response time bound φ(v) (Lines 4-15).
For each application v, its total response time consists
of a fixed pre-processing time tprocess, an execution time
and a network latency. Since it may have a variable net-
work latency and a variable execution time depending
on the user’s location and choice of execution mode, we
should ideally check for its SLO at each period of its
execution. However, doing so may incur unnecessary
overhead on the global manager since the execution-
mode plan for v is also tentative. Instead, the algorithm

10



Algorithm 1: Fog Server Selection
Input: Target application u and other information on the

user’s route, networks, servers and their loads
Output: Server s∗ to deploy u and a tentative execution

mode vector y∗[p] ∈ {0, 1} for each period p during
the user’s route

1 begin
2 Initialize costmin ← ∞, s∗ ← ∅, and y∗[p]← 0 ∀p;
3 for each server s do
4 Xcur ← GetCurrentS ystemMetrics(s);
5 Xnew ← gu(Xcur);
6 V ← GetListO f ExistingApplications(s);
7 for each application v ∈ V do
8 tprocess ← GetPreProcessingT ime(v);
9 tisolation ← GetIsolatedExecT ime(v, s);

10 tremote ← tisolation · fv(Xnew);
11 tS LO

network ← GetPercentileLatency(v, s);
12 if tprocess + tremote + tS LO

network > φ(v) then
13 skip s;
14 end
15 end
16 Initialize y[p]← 0 ∀p; // execute locally by

default;
17 tprocess ← GetPreProcessingT ime(u);
18 tisolation ← GetIsolatedExecT ime(u, s);
19 tremote ← tisolation · fu(Xnew);
20 Tdeploy ← GetDeploymentCost(u, s);
21 Ttrans f er ← GetS tateTrans f erCost(u, s);
22 for each period p in the route do
23 tS LO

network(p)← GetPercentileLatency(u, s, p);
24 if tprocess + tremote + tS LO

network(p) ≤ φ(u) then
25 y[p]← 1; // execute this period

remotely;
26 end
27 end
28 Tuser ← ComputeUserCost(y);
29 cost ← α · Tdeploy + β · Ttrans f er + κ · Tuser;
30 if cost ≤ costmin then
31 costmin ← cost;
32 s∗ ← s and y∗ ← y;
33 end
34 end
35 end

considers the estimated network SLO percentile latency
tS LO
network (e.g., 90th, 95th, 99th) while assuming that in the

worst case the application always executes remotely for
the execution time, i.e., tremote. This approach provides
a more robust performance guarantee for existing appli-
cations in case of unexpected user mobility behavior.

Subsequently, for each feasible server, the algorithm
evaluates the overall cost of deploying the target appli-
cation u on that server (Lines 16-29) and chooses the
one that results in the least cost (Lines 30-33). Note
that the overall cost consists of the server deployment
cost Tdeploy and application state transfer cost Ttrans f er,
both of which are fixed for a given server, as well as the
user’ energy cost Tuser, which could vary depending on

the execution mode vector y. Hence, to minimize the
overall cost, the algorithm offloads the execution to the
remote server as much as possible subject to its SLO
being met (Lines 22-27).

4.5. RunTime Phase
The deployment phase outputs the network address

of the fog server where the application will be deployed
and a list of execution modes as shown in Algorithm 1.
This information is relayed to the client-side middle-
ware, which then starts forwarding the application data
to the fog server as per the execution mode at every step.
However, the execution mode list is based on the ex-
pected values of the network latencies, and hence can
be different from the actual value.

The runtime phase minimizes the SLO violations due
to inaccurate predictions by employing a robust mode
selection strategy that updates the decision at any step
based on the feedback from previous steps. As shown
in Figure 3, the Controller obtains sensor data and se-
lects appropriate mode for processing the data. The pro-
cessed data is transformed and fed back to actuators
which provides the user with output using the chosen
medium (voice description of the classified object in our
use case application).

The Controller consists of a process, Mode Selec-
tor, which is responsible for gathering sensor data, se-
lecting appropriate mode and monitoring the timing
deadline violations. Mode Selector is modeled using
Mealy machine, Msel as shown in Figure 6. Msel con-
sists of 7 symbolic states with Idle being the initial
state. From Idle state, the state machine transitions
to SyncWithSLO state after receiving Start event. The
transition from SyncWithSLO is caused by the activa-
tion of TimeOut(t2) event that pushes the state machine
into GatheringSensorData while emitting GetSen-
sorData event. This event activates a system level pro-
cess to pull data from various sensors. If this task is
not completed in t3 secs, the TimeOut(t3) event forces
the state machine back to SyncWithSLO. If the task of
acquiring sensor data finishes before deadline, the state
machine transitions to SelectingMode while produc-
ing EvaluateConn event.

EvaluateConn starts another asynchronous process,
p, to acquire signal strength level and check the esti-
mated execution mode. If the execution mode is remote
and signal strength is above the threshold, only then re-
mote mode is selected at run time, which is signaled
by this asynchronous task by emitting SwitchToRemote
event, that enables Msel to jump to SendingData. How-
ever, in the past if for the same access point, both the
conditions were met and yet timing deadline had failed,

11



Idle
Gathering
Sensor
Data

Selecting
Mode

Executing
Remote

Executing
Local

Start / 

SwitchToRemote /
SendingData 

SwitchToLocal /

TimeOut(t1) / 

Finished /
EvaluateConn

Finished / 

TimeOut(t4) /

Finished / 

SyncWith-
SLO

TimeOut(t2)/
GetSensorData

TimeOut(t3) / 

TimeOut(t5) /

Sending
Data

TimeOut(t0) /

Finished / 
s

Figure 6: Mode Selector State Machine

then local mode will be selected as long as client device
is connected to the same access point.

After getting SwitchToRemote event, Msel initiates
data sending service by producing SendData event and
moves to SendingData. The state machine waits for t0
to receive the acknowledgment for the transmitted data
by the server. If the acknowledgment does not arrive, it
jumps to ExecutingLocal, whereas in the other case,
the state machine transitions to ExecutingRemote and
waits for the final response. If the response comes
within t4 secs, state machine jumps to SyncWithSLO

and waits for the next cycle. However, if the response
does not come within the deadline, an SLO violation is
noted.

If the asynchronous process, p, produces Switch-
ToLocal or does not emit any signal within time
interval t5 then Msel jumps to ExecutingLocal

from SelectingMode. While transitioning to
ExecutingLocal, the state machine generates an
event, ProcessDataLocal to trigger local data process-
ing service. If the data is not processed with in t1
secs, TimeOut(t1) forces the state machine to move to
SyncWithSLO and SLO violation is noted again. On
the other hand if t1 deadline is not violated, state ma-
chine also moves to back SyncWithSLO and waits till
the next cycle starts.

5. Experimental Validation

We now present the results of empirically evaluat-
ing URMILA’s capabilities and validating the claims we
made by answering the following questions:

• How effective is URMILA’s execution time esti-
mation on heterogeneous hardware? §5.3.1

• How effective is URMILA’s connectivity and net-
work latency estimation considering user mobil-
ity? §5.3.2

• How effective is URMILA in assuring SLOs?
§5.3.3

• How much energy can URMILA save for mobile
user?§5.3.3

• How does URMILA compare to other algo-
rithms?§5.3.3

5.1. IoT Application Use Case

We assume the applications are containerized and can
be deployed across edge and fog/cloud thereby elimi-
nating the need to continuously re-deploy the applica-
tion logic between the fog and edge devices. However,
for platforms such as Android cannot yet run contain-
ers, a separate implementation for Android device and
fog/cloud are used and it is just a matter of dynamically
(de)activating the provisioned task on either the edge or
fog device based on URMILA’s resource management
decisions.

For the experimental evaluation, we use the cogni-
tive navigational assistance use case from Section 2.2.
Since similar use cases reported in the literature are not
available for research or use obsoleted technologies, and
also to demonstrate the variety in the edge devices used,
we implemented two versions of the same application.
The first implementation uses an Android smartphone
that inter-operates with a Sony SmartEyeGlass, which
is used to capture video frames as the user moves in a
region and provides audio feedback after processing the
frame. The second version comprises a Python applica-
tion running on Linux-based board devices such as Min-
nowBoard with a Web camera. The edge-based and fog-
based image processing tasks implement MobileNet and
Inception V3 real-time object detection algorithms from
Tensorflow, respectively.

For our evaluations we assume that users of URMILA
will move within a region, such as a university campus,
with distributed WAPs or wireless hotspots owned by
internet service providers some of which will have an
associated MDC. We also assume an average speed of
5 kms/hour or 3.1 miles/hour for user mobility while
accessing the service.4 Note that URMILA is not re-
stricted to this use case alone nor to the considered user
mobility speeds. Empirical validations in other scenar-
ios remain part of our future work.

5.2. Experimental Setup

We create two experimental setups to emulate real-
istic user mobility for our IoT application use case as
follows:

4https://goo.gl/cMxdtZ

12



First Setup: We create an indoor experimental sce-
nario with user mobility emulated over a small region
and using our Android-based client. The Android client
runs on a Motorola Moto G4 Play phone with a Qual-
comm Snapdragon 410 processor, 2 GB of memory and
Android OS version 6.0.1. The battery capacity is 2800
mAh. It is connected via bluetooth to Sony SmartEye-
glass SED-E1 which acts as both the sensor for captur-
ing frames and the actuator for providing the detected
object as feedback. The device can be set to capture the
video frames at variable frames per second (fps). We
used a Raspberry Pi 2B running OpenWRT 15.05.1 as
our WAP, which operates at a channel frequency of 2.4
GHz.

We set the application SLO to 0.5 second based on a
previous study, which reported mean reaction times to
sign targets to be 0.42-0.48 second in one experiment
and 0.6-0.7 second in another [24]. Accordingly, we
capture the frames at 2 fps, while the user walking at
5 kms/hour expects an update within 500 ms if the de-
tected object changes.

Second Setup: We emulate a large area containing
18 WAPs, four of which have an associated MDC. We
experiment with different source and destination scenar-
ios and apply the latency estimation technique to es-
timate the signal strength at different segments of the
entire route. We then use three OpenWRT-RaspberryPi
WAPs to emulate the signal strengths over the route by
varying the transmit power of the WAPs at the handover
points, i.e., where the signal strength exceeds or drops
below the threshold of -67 dBm. We achieve this by
creating a mapping of the received signal strength on
the client device at the current location and varying the
transmit power of the WAP from 0 to 30 dBm.

For the client, we use our second implementation
comprising Minnowboard Turbot, which has an Intel
Atom E3845 processor with 2 GB memory. The device
runs Ubuntu 16.04.3 64-bit operating system and is con-
nected to a Creative VF0770 webcam and Panda Wire-
less PAU06 WiFi adapter on the available USB ports. In
this case too, we capture the frames at 2 fps with a frame
size of 224x224. To measure the energy consumption,
we connect the Minnowboard power adapter to a Watts
Up Pro power meter. We measure the energy consump-
tion when our application is not running, which on av-
erage is 3.37 Watts. We then run our application and
measure the power every second. By considering the
power difference in both scenarios, we derive the energy
consumption per period for a duration of 500 ms.

Application Task Platform: The Android device
runs Tensorflow Light 1.7.1 for the MobileNet task. The
Linux client runs the task in a Docker container. We use

this model so that we can port the application across
platforms and benefit from Docker’s near native perfor-
mance [25]. We use Ubuntu 16.04.3 containers with
Keras 2.1.2 and Tensorflow 1.4.1.

Micro Data Center Configuration: For the deploy-
ment, we use heterogeneous hardware configurations
shown in Table 2. The servers have different number of
processors, cores and threads. Configurations F, G and
H also support hyper-threads but we disabled them in
our setting. We randomly select from a uniform distri-
bution of the 16 servers specified in Table 2 and assign
four of them to each MDC. In addition, for each server,
the interference load and their profiles are selected ran-
domly such that the servers have medium to high load
without any resource over-commitment, which is typi-
cal of data centers [26]. Although the MDCs are con-
nected to each other over LAN in our setup, to em-
ulate WANs with multi-hop latencies, we used www.

speedtest.net on intra-city servers for ping latencies
and found 32.6 ms as the average latency. So, we added
32.6 ms ping latency with a 3 ms deviation between
WAPs using the netem network emulator.

The Docker guest application has been assigned 2 GB
memory and 4 CPU-pinned cores. For our experimen-
tation, we use a server application that listens on TCP
port for receiving the images and sending the response.
Please note, our framework is independent of the com-
munication mechanism as long as we have an accurate
measure of network latency for the size of data trans-
ferred. Thus, we could also support UDP (unreliable)
and HTTP (longer latency).

The size of a typical frame in our experiment
is 30 KB. For the co-located workloads that cause
performance interference, we use 6 different test
applications from the Phoronix test suite (www.
phoronix-test-suite.com/), which are either CPU,
memory or disk intensive, and our target latency-
sensitive applications, which involve Tensorflow infer-
ence algorithms.

5.3. Empirical Results
To obtain the response time, we need the edge-based

task execution time, and the fog-based execution time
plus network delay. In Equation (3), there are three main
components, tlocal(u), tremote(u, s) and tnetwork(u, s, p) and
we need accurate estimates of all three at deployment
time such that we could adhere to SLO requirements.
tlocal(u) has negligible variations as long as the client
device is running only the target application u which is
a fair assumption for the mobile devices.

When the MinnowBoard Linux client device pro-
cesses a 224x224 frame, the measured mean execution

13



Table 2: Server Architectures

Conf sockets/cores/
threads/ GHz

L1/L2/L3
Cache(KB)

Mem Type/
MHz/GB

Count

A 1/4/2/2.8 32/256/8192 DDR3/1066/6 1
B 1/4/2/2.93 32/256/8192 DDR3/1333/16 2
C 1/4/2/3.40 32/256/8192 DDR3/1600/8 1
D 1/4/2/2.8 32/256/8192 DDR3/1333/6 1
E 2/6/1/2.1 64/512/5118 DDR3/1333/32 7
F 2/6/1/2.4 32/256/15360 DDR4/2400/64 1
G 2/8/1/2.1 32/256/20480 DDR4/2400/32 2
H 2/10/1/2.4 32/256/25600 DDR4/2400/64 1

times for MobileNet and Inception V3 are 434 ms and
698.6 ms, with standard deviations of 8.6 ms and 12.9
ms, respectively.

Since we have already measured the efficacy of
NUMA-aware deployment in Figure 5, we employ
NUMA-awareness in all the experimental scenarios.

5.3.1. Accuracy of Performance Estimation
We report on the accuracy of the offline learned per-

formance models. For tremote(u, s), in addition to hard-
ware type w, we also consider the server load. We first
measure tisolation(u,w) for each hardware type given in
Table 2, and the results are shown in Figure 7a. We
observe that the CPU speed, memory and cache band-
width and the use of hyper-threads instead of physi-
cal cores play a significant role in the resulting perfor-
mance. Thus, the use of a per-hardware configuration
performance model is a key requirement met by UR-
MILA. We also profile the performance interference us-
ing gradient tree boosting regression model with tools
we developed in [7].

Figure 7b shows the estimation errors on different
hardwares, which are well within 10% and hence can
be used in our response time estimations by allowing
for a corresponding margin of error.

5.3.2. Accuracy of Latency Estimation
We evaluate the accuracy of URMILA’s network la-

tency estimation module that calculates tnetwork(u, s, p).
From Equation (2), there are two main components to it:
last-hop latency, tu,ap(u,p) and WAN latency, tap(u,p),ap(s).
tap(u,p),ap(s) remains stable over a duration of time [27,
28] which is sufficient for URMILA scenarios and we
emulate these as described in Section 5.2. Thus, we are
left with tu,ap(u,p). As the received signal strength is a key
factor for last hop latency, we determine γ for Equation
(14) for a typical access point described in Section 5.2
for the indoor environment of our lab. We used the An-
droid device to measure signal strength and network la-
tency for the used data transfer size. Figure 8a shows

A B C D E F G H
0

100

200

300

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

MobileNet
Inception

(a) Execution Time in Isolation

A B C D E F G H
0
2
4
6
8

10
12

M
AP

E

MobileNet
Inception

(b) Mean Absolute Percentage Error

Figure 7: Performance Estimation Model Evaluations

the results where we found γ to be 1.74, inline with the
expected indoor value of 1.6-1.8 as described in Sec-
tion 4.3. Figure 8b, affirms our assertion that network
latency remains near constant within a fixed range of
received signal strength.

Next, we measure network latency for five different
routes on our selected campus area with 18 WAPs. We
chose γ = 2 for outdoors [17] and generated varied sig-
nal strengths for the entire path on five routes. Using
these values, we setup the WAPs such that the client de-
vice experiences WAP handovers and regions with no
connectivity. Figure 9 shows the results for the five
routes (R1–R5). The shaded areas show the regions
with no network connectivity and regions with differ-
ent colors show connectivity to different WAPs. The
green line is the signal strength and the black line is the
mean latency. There are gaps in latency values, which
indicate that the client device is performing handover to
the access point. We observe from these plots that even
though the mean latency values are low when connected
to the wireless network, there are large latency devia-
tions. For example, on route R1 at t = 400s, the mean

14



2 4 6 8 10 12 14 16
Distance (m)

70
65
60
55
50
45
40
35
30

Re
ce

iv
ed

 S
ig

na
l 

 S
tre

ng
th

 (d
Bm

)

(a) RSSI

2 4 6 8 10 12 14 16
Distance (m)

0
25
50
75

100
125
150
175
200

Ne
tw

or
k 

La
te

nc
y 

(m
s)

(b) Network Latency

Figure 8: Signal Strength and Network Latency Variations with Dis-
tance

latency is 52ms but the 99th percentile latency is 384ms.
Hence, for ensuring SLOs, we need to use the required
SLO percentile values from our database of network la-
tencies on the user’s route as described in Algorithm 1.

5.3.3. Efficacy of URMILA’s Fog Server Selection
We evaluate how effective is URMILA’s server selec-

tion technique in ensuring that SLOs are met. We eval-
uate the system for the five routes described above and
set four of the 18 available access points as MDCs and
assign servers as described in Section 5.2. We compare
URMILA against different mechanisms. One approach
is when we perform everything locally (Local), and an-
other approach is the maximum network coverage (Max
Coverage) algorithm, where the server is selected based
on the network connectivity.

For this set of experiments, we keep the deployment
(Equation (4)) and transfer (Equation (5)) costs constant
in our Algorithm 1 for all the scenarios. We also set the
required SLO at 95th percentile of the desired response
time of 500ms (2 fps). We then optimize for energy con-
sumption (Equation (6)) while meeting the constraints
(Equations (8)-(13)).

Figure 10a reveals that if we run higher accuracy In-
ception as the target application, the Local mode always
misses the deadline of 500ms, however, the lower accu-
racy MobileNet always meets the deadline (Figure 10b).
Nevertheless, from Figure 11 we observe that while ex-
ecuting higher accuracy Inception V3 algorithm, UR-
MILA consumed 39.61% less energy compared to Lo-
cal mode on an average . Figure 10d shows that UR-

MILA meets the SLO 95% of the time for all routes
while consuming 9.7% less energy in comparison to
Max Coverage (Figure 10c).

The Max Coverage algorithm performed worse than
URMILA for energy consumption and on 4 out of 5
routes for response time consumes 9.7%. For these ex-
periments Least loaded performs at par with URMILA.
Please note as URMILA considers both the server load
and and network coverage, it will perform at least at par
to the other two techniques for assuring SLOs.

We now demonstrate the scenario when URMILA
performs better that Least loaded. In our current exper-
imental setup, we considered there is similar latencies
between the access points tap(u,`),api and for the last hop,
tu,ap(u,`) channel utilization and connected users are less.
However, this is not usually the case. Thus, we intro-
duce use a latency value of 100.0ms with 10% devia-
tion for some of the access points. In real deployments,
URMILA will be aware of this latency by WAP to WAP
measurements. Thus, as depicted in Figure 12, for Least
Loaded, SLOs will be violated even for best perform-
ing server due to the ignorance about the network com-
munication delay. However, URMILA’s robust runtime
component is aware of the deployment plan and per-
forms execution locally for the WAPs that cannot meet
the constraints.

In the above experiments, we considered that there is
sufficient gap between when the user requests the ser-
vice and when she actually needs it. However, this may
not be true and we need to consider the transfer and ini-
tialization costs of Equation (5). We setup Docker pri-
vate registry and shaped the network bandwidth such
that we could do the measurements for image overlays
being transferred of different sizes. Table 3 depicts the
same.

Table 3: Transfer and Initialization Cost Measurements

Image
Size
(MB)

Duration
at 10 Mbps

Duration
at 1 Mbps

Cached - 13.2s 13.46s
Overlay 1 111 31.6s 127.08s
Overlay 2 440 50.26s 261.87s

6. Related Work

Since URMILA considers the three dimensions of
performance interference issues, mobility-aware re-
source management and exploiting edge/fog holisti-
cally, we provide a sampling of the prior work in these
areas and compare the URMILA solution with these ef-
forts. An earlier, shorter version of the URMILA work

15



0

100

200

300

400

500
Ne

tw
or

k 
La

te
nc

y 
(m

s)

100 200 300 400 500 600 700
Time (secs)

68
66
64
62
60
58
56
54
52
50

Si
gn

al
 S

tre
ng

th
 (d

Bm
)

(a) R1

0

100

200

300

400

500

Ne
tw

or
k 

La
te

nc
y 

(m
s)

200 400 600 800
Time (secs)

68
66
64
62
60
58
56
54
52
50

Si
gn

al
 S

tre
ng

th
 (d

Bm
)

(b) R2

0

100

200

300

400

500

Ne
tw

or
k 

La
te

nc
y 

(m
s)

100 200 300 400 500 600 700 800
Time (secs)

68
66
64
62
60
58
56
54
52
50

Si
gn

al
 S

tre
ng

th
 (d

Bm
)

(c) R3

0

100

200

300

400

500

Ne
tw

or
k 

La
te

nc
y 

(m
s)

200 400 600 800 1000 1200
Time (secs)

68
66
64
62
60
58
56
54
52
50

RS
SI

 (d
Bm

)

(d) R4

0

100

200

300

400

500

Ne
tw

or
k 

La
te

nc
y 

(m
s)

25 50 75 100 125 150 175 200 225
Time (secs)

68
66
64
62
60
58
56
54
52
50

RS
SI

 (d
Bm

)

(e) R5

Figure 9: Observed Mean, Std Dev, 95th and 99th Percentile Network Latencies and Received Signal Strengths on Emulated Routes

appears in [9]. This paper significantly improves upon
the earlier version by providing an optimization prob-
lem formulation, more details on the latency estimation
and effects of corepinning, and detailed steps during
run-time. To the best of our knowledge, we have not
found any prior efforts that consider all these three di-
mensions simulataneously.

6.1. Performance Interference-aware Resource Opti-
mization

There have been a number of prior efforts that
account for performance interference during server
selection to host cloud jobs. Bubble-Flux [4] is
a dynamic interference measurement framework that
performs online QoS management while maximizing
server utilization and uses a dynamic memory bubble
for profiling by pausing other co-located applications.
Freeze’nSense [29] is another approach that performs a
short duration freezing of interfering co-located tasks.
The advantage of an online solution is that an a priori
knowledge of the target application is not required and it

does not need additional hardware resources for bench-
marking. Although in these works, a priori knowledge
of the target application is not required nor extra bench-
marking efforts, pausing (even for short duration) of co-
located applications is not desirable and in several cases
not even possible as these applications will have their
own SLOs to be met.

DeepDive [30] is a benchmarking based effort
that identifies the performance interference profile by
cloning the target VM and benchmarking it when
QoS violations are encountered. However, this is too
expensive an operation to be employed at run-time.
Paragon [2] is a heterogeneity- and interference-aware
data center scheduler the applies analytical techniques
to reduce the benchmarking workload. URMILA falls
in this category of work, nevertheless, it goes a step fur-
ther and also considers scheduler-specific metrics which
play a significant role in accurate performance estima-
tion on multi-tenant platforms.

16



R1 R2 R3 R4 R5200
300
400
500
600
700
800

Re
sp

on
se

 T
im

e 
(m

s)

(a) Local Inception
R1 R2 R3 R4 R5200

300
400
500
600
700
800

Re
sp

on
se

 T
im

e 
(m

s)

(b) Local Mobilenet
R1 R2 R3 R4 R5200

300
400
500
600
700
800

Re
sp

on
se

 T
im

e 
(m

s)

(c) Max Coverage Inception
R1 R2 R3 R4 R5200

300
400
500
600
700
800

Re
sp

on
se

 T
im

e 
(m

s)

(d) URMILA Inception

Figure 10: Response Time for Different Techniques on the Routes. and depict the 95th and 99th percentile, respectively

R1 R2 R3 R4 R5
0.0

0.2

0.4

0.6

En
er

gy
 C

on
su

m
pt

io
n

 p
er

 S
te

p 
(Jo

ul
e)

Local Mode Max Coverage URMILA

Figure 11: Energy Consumption Comparison

Least Loaded URMILA

300
400
500
600
700

Re
sp

on
se

 T
im

e 
(m

s)

Figure 12: Response Time Comparison for Route R5 when one of the
WAP is Experiencing Larger Latency

6.2. Mobility-aware Resource Management

MOBaaS [31] is a mobile and bandwidth prediction
service based on dynamic Bayesian networks. Sousa et
al. [6] utilize MOBaaS to enhance the follow-me cloud
(FMC) model, where they first perform mobility and
bandwidth prediction with MoBaaS and then apply a
multiple attribute decision algorithm to place services.
However, this approach needs a history of mobility pat-
terns by monitoring the users. URMILA currently uses
a deterministic path for the user, which provides a more
accurate and efficient solution. However, future work
will explore probabilistic routes taken by the mobile
user.

MuSIC defines applications as location-time work-
flows, and optimizes their QoS expressed as the power
of the mobile device, network delay and price [32]. Like
MuSIC, URMILA aims to minimize energy consump-
tion of edge devices, communication costs, and cost of
operating fog resources. Unlike MuSIC, which evalu-
ates its ideas via simulations, URMILA has been eval-
uated empirically. In addition, MuSIC assumes certain
variations in network patterns without applying any pre-

diction/estimation methodology, while URMILA pro-
vides concrete capabilities to predict/estimate network
behavior.

Additional prior work includes [33], which consid-
ers different classes of mobile applications and apply
three scheduling strategies on fog resources. Likewise,
Wang et al. [34] account for user mobility and pro-
vide both offline and online solutions for deploying ser-
vice instances considering a look-ahead time-window.
Both these approaches do not consider edge resources
for optimization as we do in URMILA. Similarly, ME-
VoLTE [35] is an approach to offload video encoding
from mobile devices to cloud for reducing energy con-
sumption. However, the approach does not consider la-
tency issues when offloading.

6.3. Resource Management involving Fog/Edge Re-
sources:

Cloudlet [1] is a miniature data center closer to the
user, possibly just one wireless hop away, that is meant
to overcome the latency issues faced by edge-based ap-
plications that must use centralized cloud resources that
are many network hops away. This vision was refined
into a three tier architecture [8] comprising the edge, fog
and cloud tiers. This is the model used by URMILA.

CloudPath [36] expands on the cloud-fog-edge ar-
chitecture [8] by proposing the notion of path comput-
ing comprising n tiers between the edge and the cloud,
where applications can be dynamically hosted to meet
their processing and storage requirements. CloudPath
requires applications to be stateless and made up of
short-lived functions – similar to the notion of function-
as-a-service, which is realized by serverless comput-
ing solutions with state in externalized databases. We
believe that the research foci of CloudPath and UR-
MILA are orthogonal; the CloudPath platform and its
path computing paradigm can potentially be used by
URMILA to host its services and by incorporating our
optimization algorithm in CloudPath’s platform.

The LAVEA project [37] comes close to our vision of
URMILA yet their goals are complementary. LAVEA

17



supports a video analytics framework that executes in
the fog/edge hierarchy similar to URMILA. They use a
slightly different terminology referring to the edge de-
vices as mobile devices, and fog devices as edge de-
vices. “Edge-first” (i.e., execute on the fog resources)
is the main philosophy for LAVEA. Like CloudPath,
LAVEA also leverages serverless computing thereby
requiring stateless applications. LAVEA focuses on
scheduling and prioritizing tasks on the fog resources
when multiple, independent client jobs get offloaded
to fog nodes. It also supports coordination among
fog nodes. While URMILA can certainly benefit from
LAVEA’s fog node scheduling algorithms, it focuses on
ensuring SLOs of individual services and makes every
effort to maintain high availability of the service by ex-
ecuting it either on the edge or the fog node, and more-
over, also allows mobility of users.

Precog [38] is another edge-based image recognition
system. Like URMILA they also recognize the need to
conserve battery resources on edge devices and hence
can perform selective image recognition on the edge de-
vices. To speed up execution on fog nodes, they sup-
port the notion of the so called recognition cache, which
prefetch only parts of the trained models that are used to
recognize images. Unlike Precog, URMILA performs
these tasks by maintaining two different versions of the
service: one that can execute on the edge and one on the
fog, and dynamically switches between them to meet
the SLOs.

Our prior work called INDICES [7] is an effort that
exploits the cloud-fog tiers. INDICES decides the best
cloudlet (i.e., fog resource) and the server within that
cloudlet to migrate a service from the centralized cloud
so that SLOs are met. INDICES does not handle user
mobility and its focus is only on selecting an initial
server on a fog resource to migrate to. It does not deal
with executing tasks on the edge device. Thus, UR-
MILA’s goals are to benefit from INDICES’ capabilities
by exploiting its initial server selection in the fog layer
and extend it by intelligently adapting between fog and
edge resources while supporting user mobility.

7. Conclusion

Although fog/edge computing have enabled low la-
tency edge-centric applications by eliminating the need
to reach the centralized cloud, solving the performance
interference problem for fog resources is even harder
than traditional cloud data centers. User mobility am-
plifies the problem further since choosing the right fog
device becomes critical. Executing the service at all
times exclusively on the edge devices or fog resources

is not an alternative either. This paper presented UR-
MILA to holistically address these issues by adaptively
using edge and fog resources to make trade-offs while
satisfying SLOs for mobility-aware IoT applications.

7.1. Discussion and Broader Impact

URMILA has broader applicability beyond cognitive
assistance application that is evaluated in this work. For
instance, URMILA can be used in cloud gaming (such
as Pokemon GO), 3D modeling, graphics rendering, etc.
We could apply URMILA for energy efficient route se-
lection and navigation. For that, we can easily modify
Algorithm 1 to find the most energy efficient route.

By no means does URMILA address all the chal-
lenges in this realm and our future work will involve: (a)
considering probabilistic routes taken by the user; (b)
evaluating URMILA in other applications, e.g., smart
transportation where the speed is higher and distances
covered are larger so choosing only one fog server at ini-
tialization may not be feasible; (c) leveraging the ben-
efits stemming from upcoming 5G networks; and (d)
showcasing URMILA’s strengths in the context of mul-
tiple competing IoT applications.

The software and experimental setup of URMILA is
available in open source at github.com/doc-vu.

7.2. Opportunities for Future Work

The following form the dimensions of our future
work.

Last Hop latency: For un-profiled routes, we only
considered received signal strength for wireless network
latency estimation. However, channel utilization and
connected users play a significant role in latency varia-
tions. To overcome this potentially less accurate latency
estimation, we can collect these metrics from WAPs, but
this will require access to their data. Other option is to
use a predictive approach based on data collected for
other profiled routes.

Speed of mobility and route determination: For
the user mobility, we considered constant speed mobil-
ity and deterministic routes, however, in general the user
can deviate from the ideal route and have a varying ve-
locity. This may render the initial deployment plan sub-
optimal. We account for this in our server allocation,
but, the runtime algorithm can further be improved to
intelligently adjust the route plan based on current dy-
namics and probabilistic routes.

Overhead: URMILA incurs cost for both the client
device and the service provider due to metric collection
on each server. The overhead of INDICES monitoring
agents [7] is ≈ 1%. We also need to maintain a database

18



of performance metrics at each MDC and the gm needs
to perform learning. In addition, the cost of profiling
each new application may not be insignificant depend-
ing on the lifespan of the application, However, this is
a one time cost and is required for overcoming perfor-
mance interference. On the client device, we made a
conscious effort to not to use GPS coordinates while the
user is mobile. This is because GPS has significant en-
ergy overhead and we did not want our application to be
limited to navigational applications. In addition, turn-
ing on wireless and handovers are expensive. However,
most mobile devices have their wireless service turned
on these days, so we do not consider it as additional
cost.

Serverless Computing: Since we target container-
ized stateless applications, we could potentially make
our solution apt for serverless computing, wherein the
same containers are shared by multiple users and the
application scale as the workload varies, and are highly
available.

Future Direction: Apart from what we discussed,
our solution can be enhanced by controlling frame rates
based on the user needs and location. We considered
monolithic applications, we could allocate services with
multiple components that are deployed across the spec-
trum optimally. In future, we could address concerns re-
lated to trust, privacy, billing, fault tolerance and work-
load variations.

Acknowledgments

This work was supported in part by NSF US Ignite CNS 1531079,
AFOSR DDDAS FA9550-18-1-0126 and AFRL/Lockheed Martin’s
StreamlinedML program. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of these funding agencies.

References

[1] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, P. Pil-
lai, Cloudlets: At the Leading Edge of Mobile-Cloud Conver-
gence, in: Mobile Computing, Applications and Services (Mo-
biCASE), 2014 6th International Conference on, IEEE, 2014,
pp. 1–9.

[2] C. Delimitrou, C. Kozyrakis, Paragon: QoS-aware Scheduling
for Heterogeneous Datacenters, in: ACM SIGPLAN Notices,
Vol. 48, ACM, 2013, pp. 77–88.

[3] W. Kuang, L. E. Brown, Z. Wang, Modeling Cross-Architecture
Co-Tenancy Performance Interference, in: 15th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing
(CCGrid), IEEE, 2015, pp. 231–240.

[4] H. Yang, A. Breslow, J. Mars, L. Tang, Bubble-Flux: Precise
Online QoS Management for Increased Utilization in Ware-
house Scale Computers, in: ACM SIGARCH Computer Archi-
tecture News, Vol. 41, ACM, 2013, pp. 607–618.

[5] S. Shekhar, H. A. Aziz, A. Bhattacharjee, A. Gokhale, X. Kout-
soukos, Performance Interference-Aware Vertical Elasticity for
Cloud-Hosted Latency-Sensitive Applications, in: IEEE Inter-
national Conference on Cloud Computing (CLOUD), San Fran-
cisco, CA, USA, 2018, pp. 82–89.

[6] B. Sousa, Z. Zhao, M. Karimzadeh, D. Palma, V. Fonseca,
P. Simoes, T. Braun, H. Van Den Berg, A. Pras, L. Cordeiro, En-
abling a Mobility Prediction-Aware Follow-Me Cloud Model,
in: Local Computer Networks (LCN), 2016 IEEE 41st Confer-
ence on, IEEE, 2016, pp. 486–494.

[7] S. Shekhar, A. Chhokra, A. Bhattacharjee, G. Aupy, A. Gokhale,
INDICES: Exploiting Edge Resources for Performance-Aware
Cloud-Hosted Services, in: IEEE 1st International Conference
on Fog and Edge Computing (ICFEC), Madrid, Spain, 2017, pp.
75–80. doi:10.1109/ICFEC.2017.16.

[8] M. Satyanarayanan, Edge Computing: a New Disruptive Force,
Keynote Talk at the 3rd ACM/IEEE International Conference
on Internet of Things Design and Implementation (IoTDI) (Apr.
2018).

[9] S. Shekhar, A. D. Chhokra, H. Sun, A. Gokhale, A. Dubey,
X. Koutsoukos, URMILA: Dynamically Trading-off Fog and
Edge Resources for Performance and Mobility-Aware IoT
Services, in: IEEE Symposium on Real-time Comput-
ing (ISORC 2019), Valencia, Spain, 2019, pp. 118–125.
doi:10.1109/ISORC.2019.00033.

[10] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck,
A close examination of performance and power characteristics
of 4g lte networks, in: Proceedings of the 10th international con-
ference on Mobile systems, applications, and services, ACM,
2012, pp. 225–238.

[11] C. Gray, R. Ayre, K. Hinton, R. S. Tucker, Power Consump-
tion of IoT Access Network Technologies, in: Communication
Workshop (ICCW), 2015 IEEE International Conference on,
IEEE, 2015, pp. 2818–2823.

[12] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, H.-I.
Yang, The case for cyber foraging, in: Proceedings of the 10th
workshop on ACM SIGOPS European workshop, ACM, 2002,
pp. 87–92.

[13] J. Mars, L. Tang, R. Hundt, K. Skadron, M. L. Soffa, Bubble-up:
Increasing utilization in modern warehouse scale computers via
sensible co-locations, in: 44th annual IEEE/ACM International
Symposium on Microarchitecture, ACM, 2011, pp. 248–259.

[14] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
J. Wilkes, Cpi2: Cpu performance isolation for shared com-
pute clusters, in: Proceedings of the 8th ACM European Con-
ference on Computer Systems, EuroSys ’13, ACM, New York,
NY, USA, 2013, pp. 379–391.

[15] C. Xu, X. Chen, R. P. Dick, Z. M. Mao, Cache contention and
application performance prediction for multi-core systems, in:
Performance Analysis of Systems & Software (ISPASS), 2010
IEEE International Symposium on, IEEE, 2010, pp. 76–86.

[16] K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li,
T. Moscibroda, Characterizing and Improving WiFi Latency in
Large-Scale Operational Networks, in: 14th Annual Interna-
tional Conference on Mobile Systems, Applications, and Ser-
vices, MobiSys ’16, ACM, New York, NY, USA, 2016, pp. 347–
360.

[17] T. S. Rappaport, et al., Wireless Communications: Principles
and Practice, Vol. 2, prentice hall PTR New Jersey, 1996.

[18] S. Shekhar, M. Walker, H. Abdelaziz, F. Caglar, A. Gokhale,
X. Koutsoukos, A Simulation-as-a-Service Cloud Middleware,
Journal of the Annals of Telecommunications 74 (3-4) (2016)
93–108. doi:10.1007/s12243-015-0475-6.

[19] J. Rao, K. Wang, X. Zhou, C.-Z. Xu, Optimizing virtual ma-
chine scheduling in numa multicore systems, in: High Perfor-

19



mance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on, IEEE, 2013, pp. 306–317.

[20] Intel resource director technology, last accessed: 11.08.2019.
URL https://github.com/intel/intel-cmt-cat/wiki

[21] Y. Barve, S. Shekhar, S. Khare, A. Bhattacharjee, Z. Kang,
H. Sun, A. Gokhale, FECBench: A Lightweight Interference-
aware Approach for Application Performance Modeling, in:
IEEE International Conference on Cloud Engineering (IC2E),
Prague, Czech Republic, 2019, pp. 211–221.

[22] E. Blasch, S. Ravela, A. Aved, Handbook of Dynamic Data
Driven Applications Systems, Springer, 2018.

[23] J. Elith, J. R. Leathwick, T. Hastie, A working guide to boosted
regression trees, Journal of Animal Ecology 77 (4) (2008) 802–
813.

[24] K. G. Hooper, H. W. McGee, Driver Perception-Reaction Time:
Are Revisions to Current Specification Values in Order?, Tech.
rep. (1983).

[25] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated per-
formance comparison of virtual machines and linux containers,
in: Performance Analysis of Systems and Software (ISPASS),
2015 IEEE International Symposium On, IEEE, 2015, pp. 171–
172.

[26] L. A. Barroso, J. Clidaras, U. Hölzle, The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-scale Ma-
chines, Synthesis lectures on computer architecture 8 (3) (2013)
1–154.

[27] S. K. Barker, P. Shenoy, Empirical evaluation of latency-
sensitive application performance in the cloud, in: Proceedings
of the first annual ACM SIGMM conference on Multimedia sys-
tems, ACM, 2010, pp. 35–46.

[28] S. Sundaresan, W. De Donato, N. Feamster, R. Teixeira,
S. Crawford, A. Pescapè, Broadband Internet Performance: A
View from the Gateway, in: ACM SIGCOMM computer com-
munication review, Vol. 41, ACM, 2011, pp. 134–145.

[29] A. Kandalintsev, D. Kliazovich, R. Lo Cigno, Freeze’nsense:
estimation of performance isolation in cloud environments,
Software: Practice and Experience.

[30] D. Novaković, N. Vasić, S. Novaković, D. Kostić, R. Bianchini,
DeepDive: Transparently Identifying and Managing Perfor-
mance Interference in Virtualized Environments, in: USENIX
Conference on Annual Technical Conference, USENIX
ATC’13, USENIX Association, Berkeley, CA, USA, 2013, pp.
219–230.
URL http://dl.acm.org/citation.cfm?id=2535461.

2535489

[31] M. Karimzadeh, Z. Zhao, L. Hendriks, R. d. O. Schmidt,
S. la Fleur, H. van den Berg, A. Pras, T. Braun, M. J. Corici,
Mobility and Bandwidth Prediction as a Service in Virtualized
LTE Systems, in: Cloud Networking (CloudNet), 2015 IEEE
4th International Conference on, IEEE, 2015, pp. 132–138.

[32] M. R. Rahimi, N. Venkatasubramanian, A. V. Vasilakos, Mu-
SIC: Mobility-aware Optimal Service Allocation in Mobile
Cloud Computing, in: Cloud Computing (CLOUD), 2013 IEEE
Sixth International Conference on, IEEE, 2013, pp. 75–82.

[33] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana,
M. Parashar, Mobility-aware application scheduling in fog com-
puting, IEEE Cloud Computing 4 (2) (2017) 26–35.

[34] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, K. K. Le-
ung, Dynamic service placement for mobile micro-clouds with
predicted future costs, IEEE Transactions on Parallel and Dis-
tributed Systems 28 (4) (2017) 1002–1016.

[35] M. T. Beck, S. Feld, A. Fichtner, C. Linnhoff-Popien, T. Schim-
per, Me-volte: Network functions for energy-efficient video
transcoding at the mobile edge, in: Intelligence in Next Gener-
ation Networks (ICIN), 2015 18th International Conference on,

IEEE, 2015, pp. 38–44.
[36] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips, E. de Lara,

CloudPath: A Multi-Tier Cloud Computing Framework, in:
Second ACM/IEEE Symposium on Edge Computing, ACM,
2017, p. 20.

[37] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, Q. Li, Lavea:
Latency-aware video analytics on edge computing platform, in:
Proceedings of the Second ACM/IEEE Symposium on Edge
Computing, ACM, 2017, p. 15.

[38] U. Drolia, K. Guo, P. Narasimhan, Precog: prefetching for im-
age recognition applications at the edge, in: Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, ACM,
2017, p. 17.

20


