
Resolving Priority Inversions in Composable Conveyor
Systems

Shivakumar Sastrya,∗, Aniruddha Gokhaleb

aDepartment of Electrical and Computer Engineering,
University of Akron, Akron OH 44325-3904, USA

bDepartment of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37325, USA

Abstract

The well known problem of priority inversions that occurs in classical real-time
systems also manifests in decentralized cyber-physical systems. Using a spe-
cific example of composable conveyor systems, we show how priority inversions
hinder the transport of entities through the conveyor systems. We present a
novel adaptation of the classical priority inheritance protocol for resolving these
cyber-physical priority inversions. While the approach resolves cyber-physical
priority inversions, the structure and constraints of the conveyor systems cause
the jitter associated with the end-to-end latency of the highest priority parts
to increase. Further, these constraints also limit the applicability of the classi-
cal priority ceiling protocol in this class of cyber-physical systems. Simulation
results demonstrate the correctness and reasonable communication overhead of
the approach.

Keywords: Real-time Systems, Priority Inversion, Composable Conveyors,
Networked Systems

1. Introduction

Composable, or reconfigurable, conveyor systems (CCS) are representative
cyber-physical systems that capture the spatio-temporal interactions that can
occur in a variety of emerging automation systems, particularly in the area of
material handling. These cyber-physical systems are flexibile, easy to use, and
can be dynamically reconfigured to assure real-time Quality of Service (QoS) in
operational theaters such as warehouses, manufacturing lines, package sorting
facilities (e.g., FedEx and UPS), or front-line logistics for future military deploy-
ments. CCS are composed using basic building blocks that have pre-defined be-
haviors. These systems are interesting to study because tasks, which involve the

∗Corresponding Author
Email addresses: ssastry@uakron.edu (Shivakumar Sastry), a.gokhale@vanderbilt.edu

(Aniruddha Gokhale)

Preprint submitted to Elsevier Journal of Systems Architecture February 3, 2014



end-to-end transport of an entity in the system, evolve simultaneously both in
time and space. Since these systems are well-structured, the desired behaviors
and the unintended consequences that result from spatio-temporal interactions
between tasks can be studied in a systematic manner. The insights gained from
such a study can be applied to a large-class of cyber-physical systems.

Realizing CCS in practice is challenging. The intertwined dynamics of the
cyber-physical elements, e.g., the logic embedded in individual micro-controllers
of CCS units, the wireless transceivers and protocols for messaging and coor-
dination between the micro-controllers in physically adjacent units, and spatio-
temporal evolution of the entities along end-to-end paths in the conveyor system
present formidable challenges for addressing several design and operational is-
sues. For example, a CCS designer may want to understand if a particular
topology can yield a desired QoS without actually having to deploy and test the
system; the designer may want to understand the robustness or resilience of the
topology with respect to one or more failures. Our recent work [1, 2] addressed
some of these questions. We developed intuitive abstractions and analysis tools
to enable CCS designers to experiment with different layouts and analyze the
QoS that could be achieved from the topology. In this paper, we address the
issue of priority inversions that can occur in CCS because of the spatio-temporal
interactions between tasks.

Consider a new conveyor system that must be designed to sort packages
based on their service category. For example, “next morning delivery,” “next
afternoon delivery,” or “ground delivery” are typical categories that are com-
monly used. This requirement imposes a notion of “priority” on the packages
that are handled by the sorting system. Packages with different priorities arrive
via Inputs (sources) and these packages move along paths to some Output. The
paths of the conveyor system are formed by a sequence of physically adjacent
units called Segments. Each Segment unit comprises a belt that can move the
entity from one end to the other. One or more Segments in the system can
also be incident with Turn units. The Turn units can merge multiple upstream
paths to a single downstream path; alternatively, a Turn unit can also fork a
single upstream path to multiple downstream paths. To improve the utilization
of the units and resilience of the topology, it is necessary for many of these
Input-Output paths to overlap. One consequence of such overlaps is that when
two paths merge, low priority packages that are moving along one path can
block higher priority packages that need to use the same path for an unbounded
duration of time - thus resulting in a classical priority inversion [3]. Although
the cyber-physical priority inversion problem may not cause significant disrup-
tions in a package sorting facility, it will be a significant problem for assembly
plants where parts much reach their designated positions in a timely manner.

The priority inversion described above is a cyber-physical phenomenon for
the following reasons. As will be explained more precisely in Section 2.2, the
cyber-physical priority inversion occurs because of both the physical topology
of the conveyor system and the cyber decisions that impact the flow of enti-
ties on the system. In fact, the cyber-physical priority inversions are caused
by an unfortunate consequence of the temporal sequence of priorities of the

2



arriving entities, the physical location of the Inputs where the entities arrive
on the system, the physical topology of the conveyor system, and the temporal
sequence of routing decisions made at the different Turn units of the system.
Such cyber-physical priority inversions are further exacerbated when the system
is dynamically reconfigured because small changes to the structure can signifi-
cantly impact the QoS that can be achieved using the conveyor system.

Classical techniques for resolving cyber-level priority inversions in centralized
(cyber-only) real-time systems are well-known. The priority inheritance protocol
(PIP) and priority ceiling protocol (PCP) in [3] and the stack resource policy
in [4] are excellent solutions. In this paper we show that PIP can be effectively
adapted to resolve the cyber-physical priority inversions in CCS; on the other
hand, PCP cannot be readily adapted to address the problem.

The rest of the paper is organized as follows: Section 2 presents the problem
statement more formally and surveys related work. We discuss the adaptation
of PIP in Section 3. We show why PCP cannot be readily adapted in Section 4.
Our results and discussion are in Section 5 and we conclude in Section 6.

2. Problem Statement and Related Work

We now illustrate more formally how the cyber-physical priority inversion
problem occurs and briefly describe the related work. To better understand
the problem statement, we first provide the model of composable conveyors we
assume in this work.

2.1. Model of Composable Conveyor Systems

The conveyor systems we consider move entities from inputs (I) to outputs
(O). These systems are composed using two kinds of units — Segments(S) and
Turns(X ) — that have fixed behaviors [5]. Each unit is autonomously regulated
by a local microcontroller that interacts with adjacent units over wireless links
to coordinate the transfer of entities. A Segment moves an entity over a fixed
distance, in one of two assigned directions. Input and Output units are Segments
that can move entities only in one direction. A Turn has four ports that can be
configured to either bring in entities or remove entities. We assume that units
can handle only one entity at a time. When two or more entities simultaneously
arrive at the input ports of a Turn, only one entity is accepted by the Turn. We
assume that a Turn will not accept an entity only when it is accepting a different
entity with a higher priority. The entity that is not accepted for transfer must
wait on the unit until it is accepted for transfer; such a wait will propagate
to further upstream units because each unit can only hold a fixed number of
entities.

We assume that Segments and Turns have a fixed direction that remains
unchanged and there are no failures. The underlying directed graph of the
system is acyclic. All units in the system can handle at most one entity; however,
a unit can simultaneously transfer-in and transfer-out an entity. There are
adequate buffers at the inputs to hold entities that are not yet admitted to the

3



system. Recall, that multiple paths along which entities move overlap at one
or more conveyor units. A physical entity that is already on a unit cannot be
“preempted.” In addition, the sequence of entities on adjacent Segments of the
conveyor system cannot be physically reordered. These three reasons collectively
cause priority inversions to occur as we explain below. Such inversions are
inevitable in systems where resources must be preferentially allocated to tasks.
It is, however, important to ensure that such inversion does not occur for an
unbounded duration of time.

A conveyor system can be represented as a directed graph G = (U,E). The
nodes of G, ui ∈ U represent the units, i.e., Segments, Turns, Inputs, and
Outputs. An edge (ui, uj) ∈ E represents the relation that an entity can move
from unit ui to unit uj . Entities that arrive via input Ik ∈ I are delivered to a
specific output Oj ∈ O along a path

P (Ik, Oj) =< u1 = Ik, u2, · · · , un = Oj >

where ui ∈ U . Such paths can either be pre-computed when the system cannot
be reconfigured, or discovered and maintained when the system is reconfigurable
using standard shortest path algorithms [6]. Since the paths merge at Turns,
some of the paths may overlap and share common units.

2.2. Cyber-Physical Priority Inversion Scenarios in Composable Conveyor Sys-
tems

Consider the conveyor system shown in Figure 1. Here, three entities,
namely τa1 , τ

b
2 , and τ c3 , have arrived via input I1, I2 and I3, respectively. Suppose

Segments S1 and S2 simultaneously send a request to Turn X2 to transfer an
entity. Assuming that the entities arriving via lower numbered inputs have
higher priorities, i.e., prio(I2) > prio(I3), X2 must accept τ b2 . Because S1

cannot accept a new entity until its current entity is transferred out, the higher
priority entity, τa1 , on X1 is blocked by the lower priority entity, τ c3 , on S1. This
blocking is an expected consequence of using priorities in the system. However,
since the number of entities that can arrive via input I2 is not bounded, priority
inversion (i.e., blocking for unbounded time) can occur.

Using the definition of priority inversion in [3], we can infer that a cyber-
physical priority inversion occurs whenever a high priority entity stream is in-
tercepted by a low priority entity stream and this latter stream is intercepted
by a medium priority entity stream. Figure 2 illustrates one such scenario.

At unit Xm,m > 3, the low priority entity stream from Im intercepts the
entity stream from I1. Further downstream at X3, the entity stream from I3
intercepts the entity stream from Im. In this example, the streams from Im
and I1 are merged after Xm. Since prio(I3) > prio(Im), entities from Im can
be blocked by entities from I3 at unit X3. When the units along the path
P (Im, X3) each have entities, and an entity from I3 blocks an entity from Im
at X3, a high priority entity that arrives via I1 at unit Xm will be blocked.
Since prio(I1) > prio(I3) and the number of entities that arrive via I3 are not
bounded, cyber-physical priority inversion occurs.

4



Figure 1: When multiple entity streams, each with a different priority, share common conveyor
units, priority inversion can occur.

It is important to recognize that the cyber-physical priority inversion actu-
ally occurs only when certain entities arrive at the Turns at specific times; i.e.,
just because cyber-physical priority inversion can occur, it does not mean that
cyber-physical priority inversion will occur for every entity. For example, in the
example shown in Figure 2, suppose every entity from I3 arrives at X3 after an
entity from Im has been accepted by X3, cyber-physical priority inversions will
not occur. However, the lack of certainty, i.e., whether or not cyber-physical
priority inversion will occur, makes it difficult to predict the throughput, end-
to-end latency, jitter, and the utilization of these systems.

Figure 2: Priority inversion can occur when a low priority entity stream (Im) intercepts (at
Xm) a high priority entity stream (I1) and, subsequently, a medium priority entity stream
(I3) intercepts (at X3) the same high priority entity stream.

For certain topologies and combinations of entity arrival rates at the inputs,
it is possible to offset the entity arrivals temporally or adjust the priorities of the
inputs based on offline analysis. Such approaches are not applicable in general
because the arrival rates are usually not known precisely and the solutions result
in poor utilization and throughput. Moreover, the systems we consider are open
in that we assume that entities of different priorities may arrive via different
Inputs. Since the cyber-physical priority inversions are likely to occur in these
systems, it is necessary to these inversions using an online protocol.

5



2.3. Related Work

A token-based scheme for achieving distributed mutual exclusion in a com-
pletely interconnected system is reported in [7]. Tasks executing on a node
can access one or more resources by issuing a request with a specific priority.
Each resource is guarded by a token; every node maintains a local queue of
requests for its resource. The distributed queues are updated as requests were
generated, acquired, or released. The paper presents four protocols to resolve
priority inversion — priority ceiling (PCP), dynamic priority ceiling (DPCP),
priority ceiling emulation (PCEP), and priority inheritance (PIP). The ceiling
protocols associate a ceiling priority with each resource; this value represents
the highest priority among all tasks that could request the resource.

In PCP the ceiling priority is computed via off-line analysis and in DPCP,
this is computed online during resource contention. DPCP requires the state
of all resources to determine the ceiling priority and is, hence, not scalable.
Both DPCP and PCP may require priorities to change multiple times while a
resource is acquired resulting in increased overheads. PCEP simplifies PCP by
increasing the task priority to the ceiling priority when a resource is acquired.
This eliminates priority changes when a resource is held, but could result in
unnecessary blocking that PCP does not require. With the exception of DPCP,
the ceiling protocols are suitable for systems with static priorities. PIP does
not require a ceiling priority to be computed, and is suitable for systems with
dynamic priorities.

In PIP, a task that uses a resource inherits the priority of the current high-
est priority task that is blocked on the resource. The structural neutrality of
the system model, i.e., any task (node) could request any resource, limits the
applicability of these protocols to the conveyor systems we consider.

Priority inheritance was successfully used to support remote procedure calls [8].
The system comprises nodes that have a predefined set of computations (tasks).
Each task can invoke tasks on other nodes. All the nodes communicate with each
other. Every incoming request to a node results in the creation of a dedicated
task for the request that persists until it sends a response to the requester. Each
node could only support a finite number of active tasks and this finite number
represents the resources at that node. A task that invokes additional tasks in
other nodes remains blocked until a response is received. Requests that arrive
at a node are queued until sufficient resources are available to service it.

The authors present a distributed protocol that prevents deadlocks by limit-
ing when a request could be issued. Priority inversions can occur when requests
have priorities. To prevent unbounded priority inversion, PIP is used as follows:
if a task τ1 invokes a task τ2 on another node, and τ2 cannot be serviced by the
remote node, all tasks and requests blocked on this resource inherit the priority
of the highest task using the resource. The system model, the task model, and
the structure of connectivity among all the nodes are not compatible with that
necessary for the conveyor systems we consider.

In [9], priority inheritance is used in a multistage packet switching network
to prevent priority inversions. This network routes packets from N inputs to

6



N outputs along fixed paths that each contain log2(N) routers. Each router
has two in-ports, two out-ports, and capacity to hold a single packet. Before
sending packets, each router with a packet forwards the priority of its packet
to the next router along its path. A router accepts the packet from its in-ports
with the highest priority. The restricted topology of the network severely limits
the applicability of this technique in the conveyor systems we consider. Flow
control techniques [10] are not directly applicable because the routes over which
entities move are not known in advance, and also because there are no buffers
in the system where entities can be stored and forwarded. While scheduling
techniques [11] can be used to minimize priority inversions, online techniques
that can cope with varying arrival rates and changes in the system structure
present formidable challenges.

3. Adapting the Priority Inheritance Protocol

We now present modifications to the existing cyber-level priority inheritance
protocol to resolve cyber-physical priority inversions in composable conveyor
systems. We also present a proof of correctness for the modified protocol, and
an unintended consequence that results in increasing the jitter associated with
the end-to-end latency of the highest priority entities.

3.1. Resolving Priority Inversions in Composable Conveyor CPS

Since we adopt and adapt the known cyber-level solution in the context of
a cyber-physical problem, to make this protocol applicable we must map some
of the physical entities into the cyber realm. In our formulation of the modified
protocol, we view the movement of an entity from an input Ik to output Oj

along P (Ik, Oj) as a task. Entities arrive sporadically at Ik with a minimum
inter-arrival time of Tk and a relative deadline Dk, i.e., the entities must be
delivered to Oj before Dk. The conveyor building blocks or units along the
path P (Ik, Oj) are the resources that are required by the task. All the entities

are assigned a unique nominal priority. We use τ jk to refer to the jth entity that
arrived via input Ik.

A conveyor unit uk is now imagined to be processing a entity within a finite
time Cuk

. Time in the system advances in discrete ticks of duration ttick >
maxk{Cuk

}. All units of the conveyor are synchronized at the beginning of
each tick. In each tick, the units communicate to adjust entity priorities, agree
on which entities can be transferred to corresponding downstream units, and
ultimately physically transfer such entities. Note that because the electronic
messages between the nodes propagate at a speed that is several orders higher
than the speed at which entities move from one unit to another, we can assume
that all the units can exchange electronic messages before the transfer of each
entity.

Algorithm 1 depicts our cyber-physical priority inheritance protocol (CP-
PIP) for composable conveyor systems. In the protocol, uk is the unit that
currently has entity τai . The objective is to determine the current priority for

7



each entity on the system, prio(τai ). We assume that each unit has already
executed a topology discovery algorithm and knows its downstream unit, ud for
each entity that it handles and the length of the longest path in the conveyor
system, LP 1. The function haveMessage() will be true for a unit uj whenever
uj has an entity τxj and prio(τxj ) < received-priority.

Algorithm 1: A Cyber-Physical Priority Inheritance Protocol (CP-PIP)

Input : nominal priority, uk, τai
Output: prio(τai )

CP − PIP (nominal priority, uk, τ
a
i )

current priority = nominal priority(τai )
ud = downstreamUnit(τai , uk)

send(ud, current priority)

for round← 1 to LP do
if haveMessage() then

current priority = received priority
send(ud, current priority)

end

end

return current priority

end

The basic idea behind our modified protocol is as follows: to alleviate priority
inversion, we allow a lower priority entity to temporarily inherit the priority
of a higher priority entity it is blocking. The priorities of entities are used
by the Turns to determine which entity must be preferentially accepted when
multiple entities arrive simultaneously. Since there can be several Segments
between Turns, it is necessary to propagate the inherited priorities over several
downstream units to ensure that priority inversion cannot occur. In the worst
case, and in certain pathological system topologies, this propagation may span
all the units in the system and severely degrade the QoS.

In each time tick of the system, we determine the current priority of every
entity. The priority of every entity is reset to its nominal priority, i.e., the
priority that was assigned to it when it arrived on the system. Every conveyor
unit sends an inheritance request to its downstream unit on which the entity
will travel. If a unit has an entity with a lower priority, it inherits the higher
priority from the inheritance request it receives. The inherited priorities are
propagated further to downstream units until no downstream priorities need to
be elevated. Note that this inheritance is not permanent, and is only specific

1Since we have assumed that the underlying graph is a directed acyclic graph, the length
of the longest path can be efficiently computed.

8



to the entity that is carried by the unit. The inherited priorities need not be
propagated further when (a) a downstream unit does not have an entity, (b)
a downstream unit already has a higher priority entity, or (c) beyond the last
Turn along which the entity will move to its output bin.

Once the priority inheritance requests for the concerned entity are propa-
gated to all the applicable downstream units, every unit will subsequently send a
entity transfer request to its downstream using its current priority. Every
unit that receives a entity transfer request must respond by sending either
an accept response or a reject response. Since a unit that is currently
handling an entity cannot accept a new entity from its upstream unit until it
receives a accept response from its downstream unit, the accept response

messages must also be propagated along several units in the same time tick.
Recall that a downstream unit sends a reject response only when it has sent
an accept response to a different upstream unit. All the involved units will
then physically transfer their respective entities simultaneously to their down-
stream units or wait until they receive an accept response. Note that if there
is a high-priority entity waiting in an upstream unit, all the involved entities
would inherit an elevated priority; if there is no such high-priority entity, then
the entities only use their nominal priority. This approach works because the
number of hops over which the inheritance request and accept response

messages are propagated is bounded and the time scales of electronic messages
are several orders of magnitude smaller than the time scales of physical entity
transfers.

3.2. Correctness of the Cyber-Physical Priority Inheritance Protocol

Note that in our approach, to prevent priority inversions, the higher prior-
ity of a blocked entity must be propagated downstream via the inheritance

request messages. We can understand the correctness of this approach by
considering the protocol shown in Algorithm 1 and the lemmas below.

Lemma 1. After n rounds of Algorithm 1, a high priority of entity τai on unit
uk will be inherited by downstream unit uj along the path on which τai moves,
whenever uj is less than or equal to n hops away from uk and has the potential
to block τai .

Proof. Each unit knows its neighboring units, i.e., upstream and downstream
units, in the conveyor system and the entities along which entities move. Fur-
ther, we have assumed no communication failures. Consequently, the proof
follows immediately from induction on n.

Lemma 2. When Algorithm 1 terminates, all the current priority of entities
on all the units in the conveyor system is the highest priority that the entity
must use.

Proof. The scenario when priority inversions occur in the worst-case is depicted
in Figure 3. Let, prio(Ij) > prio(Ik) whenever j < k. Here, entities from I1

9



Figure 3: In the worst-case, priority inversions can occur on all units along a longest path in
the system.

have the highest priority and entities from Im have the lowest priority. Priority
inversions also occur only when entities arrive in a specific temporal sequence.

Suppose m is even (for ease of notation). Consider the scenario when enti-
ties from Im are already on all units along the path P (Im, T2,m) and an entity
arrives at X2,m from I2. X2,m accepts the entities from I2. If an entity ar-
rives from I1 at X1,m, priority inversion occurs. Suppose now that before the
entities from I2 arrive at X2,m−1, entities from Im−1 fill the units along the
path P (Im−1, X3,m−1) and entities arrive from I3 at X3,m−1. Once again, since
X3,m−1 must accept the entities from I3, priority inversions occur X2,m−1 and
X1,m. This pathological example can be extended further by reasoning in a
similar manner. Nevertheless, the length of the path along which the priority
inversions have occurred in this worst-case, is still less than or equal to the
length of the shortest path. Consequently, the priority of the highest entity,
i.e., the entity from I1 will be inherited by an entity from Im−(m

2 +1) before it
can be blocked by an entity τam

2
, i.e., an entity that arrives from input Im

2
.

Lemma 3. When all units use the current priorities of their entities, no pri-
ority inversions can occur.

Proof. From Lemma 2 we know that the highest priority of an entity in the
conveyor system has been inherited by an entity that can be farthest away
along the longest path and can potentially be intercepted by a medium priority
entity. Moreover, this priority has been inherited in the same time tick in which
the next entity transfer must happen. Since no medium priority entity can block
the highest priority entity in the system, the Lemma follows.

It follows from Lemma 1, Lemma 2, and Lemma 3 that

10



Theorem 1. Algorithm 1 correctly resolves all priority inversions in every
time tick of the system.

3.3. Same Priority Blocking

Blocking is a pervasive phenomenon in any priority-based resource allocation
framework. An entity can be blocked because a downstream Turn is respecting
a priority assignment, or there is a communication failure, or priority inversion
occurred. In our view, an entity is blocked for the duration of a time tick;
however, the same entity can continue to remain blocked, perhaps for a different
reason, in several consecutive time ticks.

Definition 1. An entity τ ji is blocked on unit uk whenever uk does not receive
an accept response in the same time tick after it sends a entity transfer

request.

With reference to the system in Figure 7, an entity from I4 can be blocked

1. at X16 because entities from I5 are on units X1 and S34, and unit X5 is
accepting entities from I3, or

2. at S2 because X2 is accepting entities from I3, or

3. at S2 because X10 is accepting entities from I1.

It is interesting to note that the structure of the conveyor systems causes
the jitter associated with the end-to-end latency for the highest priority entities
to increase when the CP-PIP protocol is used. When entities with the same
current priority arrive at a Turn via different paths, i.e., via different ports of
the Turn, the best possible strategy for the Turn is to accept the entities in a
round-robin manner. Note that since CP-PIP is used, such entities must have
the same priority. This is a special kind of blocking, in which entities are blocked
by other entities of the same priority. Hence, we refer to this as Same Priority
Blocking.

Same Priority Blocking is a direct consequence of using CP-PIP because
inputs have unique priorities and the system admits no cycle. Consequently,
there is no opportunity for entities of equal nominal priority to compete for
some unit in the same round. Once again, it is important to recognize that just
because Same Priority Blocking can occur, it does not mean that it will occur.

4. Limitations of Using Priority Ceiling Protocol for Composable
Conveyor Systems

The objective of the PCP protocol [3, 7] is to compute a ceiling priority for
each resource; this priority is the highest priority among all tasks that could
use the resource. When a task acquires a resource, the priority of the task
is temporarily elevated to the ceiling priority of the resource. At first sight, it
appears that a similar idea will be useful in the cyber-physical conveyor systems
we consider.

11



This idea is appealing because once the ceiling priorities are computed, we
need to recompute these priorities only when the topology of the system changes
and there is no need to execute a priority inheritance protocol such as the one
shown in Algorithm 1. Since the paths along which entities (tasks) move and
the topology of the system is known, we can compute the ceiling priorities. Let
ceil(ui) be the ceiling priority for unit ui. Whenever an entity τ jk initiates a
request from ui, it uses ceil(ui) as its current priority. Using this approach,
there would not be any need for messaging between the conveyor units to tem-
porarily inherit priorities.

The structure of the conveyor systems allows us to compute the ceiling pri-
orities in the two possible ways. Despite the attractiveness of the PCP, we now
present counter examples to demonstrate that the ceiling priorities are inade-
quate for resolving cyber-physical priority inversions in conveyor systems.

4.1. Case 1: Direct Paths Computation

Let Pui = P1, P2, · · · , PK be a set of paths in the conveyor system such that
ui ∈ Pj , 1 ≤ j ≤ K. Then,

ceil(ui) = max
1≤j≤K

{prio(Ij)} (1)

where prio(Ij) is the nominal priority of the entities on Pj . Consider the system
in Figure 4; entities that arrive via Ik are sent to Ok. The number that is shown
on each unit is the ceiling priority computed using direct paths computation.

Figure 4: Direct Paths Computation Example. For each unit ui, ceil(ui) is the highest priority
among all entities that can move through this unit.

Consider the counter-example in Figure 5; the lowest priority entities from
I3 use the ceiling priorities of the resource and move along the path P (I3, O3).
This entity stream is blocked by higher priority entities from I2. Because X1

cannot accept τ11 from S1 until it has moved out τ23 , the high priority entity from

12



Figure 5: Counter Example. Ceiling priorities obtained using Direct Paths Computation are
inadequate to prevent priority inversion.

I1 is being blocked by a low priority entity from I3. Meanwhile, τ12 on S3 and
τ13 on S5 are competing for X2. Since ceil(S5) = prio(I3) < ceil(S3) = prio(I2),
X2 will accept τ12 . Since the number of entities from I2 is not bounded, the
blocking time for τ13 on S5, and hence the blocking time for τ23 on X1, is also
unbounded.

Ceiling priorities computed here are inadequate to prevent priority inversions
because the computation does not consider all the ways in which a high priority
entity stream can be blocked by a lower priority entity stream. In the system
shown in Figure 5, an entity from input I3 that was on X1 used ceil(T1) to move
from X1 to S5. However, on S5, this entity must use ceil(S5) = prio(I3). Con-
sequently, this entity gets blocked by higher priority entities from I2. However,
because of the physical structure of the conveyor system and because X1 can-
not “preempt” τ23 , the ceiling priority of S5 also influences the priority-handling
behavior of X1.

4.2. Case 2: Blocking Paths Computation

In this approach, the ceiling priority of a unit is determined not only by the
paths that include the unit, but also by considering the paths (tasks) it could
block when it is blocked. Let APui

= P1, P2, · · · , PK be a set of directed paths
such that, Pj = P (Ij , ui), 1 ≤ j ≤ K, if such a path exists. That is, these are
the directed paths that start at some input and end at unit ui. Then, the ceiling
priority using the Blocking Paths Computation is

ceil′(ui) = max
1≤j≤K

{prio(Ij)} (2)

where prio(Ij) is nominal priority of entities in Pj . Here, the ceiling priority of
a unit is the highest priority among all paths that include ui and the paths that
can be blocked when an entity on ui is blocked. For the system in Figure 5, all
units except S3 would have a ceiling priority prio(I1) because there is a directed
path from I1 to all other units. While this approach can resolve the priority

13



Figure 6: Counter Example for Blocked Paths Computation. Entities from all the inputs use
ceil′(ui) = prio(I1) and hence the priority assignments in the system are not respected.

inversion that occurred in the counter example in Figure 5, it introduces a new
problem.

In certain topologies, this approach can result in ceiling priorities for all units
being equal to the highest priority in the system. Consider the system shown in
Figure 6. Since there is a directed path from I1 to all units, ceil′(ui) = prio(I1),
irrespective of the input from which an entity arrives, it always uses the ceiling
priority in the system. Hence, the priority assignments in the system are not
respected.

In summary, we have seen that the structure of the conveyor systems allows
us to compute ceiling priorities in two ways — namely, the direct paths com-
putation and the blocking paths computation. The two counter-examples we
present show that the ceiling priorities that are obtained in both approaches are
inadequate to resolve priority inversions.

5. Evaluating the Cyber-Physical Priority Inheritance Protocol

We now present simulation results that demonstrate the effectiveness of the
cyber-physical priority inheritance protocol (CP-PIP) in composable conveyor
systems. The motivation for conducting the experiments was to understand
whether resolving cyber-physical priority inversion impacts the QoS achieved
for high priority entities, and whether the number of communication rounds
necessary in Algorithm 1 were reasonable.

5.1. Simulation Approach

We designed a simulator for the composable conveyor systems using the
OMNet++ discrete event simulation framework [12]. The results reported in
this section are based on the representative package sorter conveyor system (Fig-
ure 7) that captures many of the challenges for cyber-physical priority inversion.

14



X1	   S1	  

I1 

I6 

I3 

I4 

I5 

O1 

O3 

O2 

I2 

X2	   S2	  

S9	  

X3	  

S10	  

S3	   S4	   S5	   S6	   S7	   X4	   S8	   X5	  

X6	  

S11	   S12	  

S13	   S14	   X7	   S15	   X8	   S16	   X9	   S17	   X10	   S18	   X11	  

S19	   S20	  

S21	   S22	  

S24	  S23	  

X13	   X14	  S28	   X15	  S29	   S30	   S31	  X12	   S25	   S26	   S27	  

Figure 7: A Package Sorting Conveyor system. Entities arriving via Input Ik have priority k
with entities from I1 having the highest priority.

Entities move from one of the six inputs, I1, I2 · · · I6, to one of the three
outputs, O1, O2, and O3; entities from I1 move through the turns X12, X13,
X8, X9, X10, and X11 to reach O2. Entities from I2 move to O3 via the turns
X14 and X15 and entities from I3 move to O3 via the turns X12, X13, X14, and
X15. Entities from I4 move to O1 along the units on the top row of the figure.
Entities from I5 move to O3 via the turns X1, X2, X6, X7, X8, X9, X14, and
X15. Finally, entities from I6 move through the turns X6, X7, X3, X4, and
X5 to O1. Entities from I1 had the highest priority and those from I6 had the
lowest priority, as described earlier.

Notice that the path P (I4, O1) does not intersect with P (I1, O2) or P (I2, O3).
When entities from I5 are on the units on P (X6, S15), the entities from I1 can
block the ones from I6. That is, entities from I6 are rarely affected by entities
from higher priority inputs I1 and I2. When entities from I6 are on units in
P (S13,S10), and the unit X3 is transferring entities from I4, the entities from
I5 can be blocked an for unbounded duration. Thus, entities from I4 have the
highest priority stream in the top part of the system in Figure 7, and entities
from I1 have the highest priority have the highest priority stream in the bottom
part of this system. For this reason, we do not present the latencies along all
the paths; since our focus is on evaluating the effect of priority inversions, we
focus on the QoS for entities arriving via I1.

To carry out the simulations, we injected entities into the conveyor system

15



from each of the six inputs; the injection rate at Input Ik was Rk entities per
second (eps). To evaluate the QoS achieved by entities from Input I1, we varied
R1 from 0.1 to 1; simultaneously, to understand how entities arriving via other
inputs affect the QoS of entities from I1, we fixed the entity injection rates
from all other Inputs, Rk, 2 ≤ k ≤ 6 at fixed values - namely, 0.1, 0.4, 0.6, 0.8
and 1; these values are shown as ”RR” in the figure legends in this section.
These injection rates correspond to a sporadic task model with Tk = 1

Rk
. We

simulated the system under two scenarios — no protocol was used to resolve
priority inversions in the first scenario, and in the second scenario, the current
priorities of the entities were derived using the CP-PIP (Algorithm 1). Each
scenario was simulated for 3600 seconds. The maximum capacity of the turn
units was 0.8 eps and, hence, not all the generated entities were admitted into
the system.

5.2. Impact of Resolving Cyber-Physical Priority Inversions

Figure 8 presents the average end-to-end latencies achieved (Y -axis) for en-
tities from I1 in both scenarios as the injection rate R1 (X-axis) changes. The
different lines illustrate the results for different values of entity injection rates
(RR) at all the other Inputs. As illustrated in the figure on the left, entities
from I1, i.e., the ones with highest priority in the system, experience large av-
erage latencies that are sensitive to the injection rates. Notice that when the
injection rates at all the other inputs are low, i.e., RR = 0.1, the average la-
tency for entities from I1 is low. When R1 is increased, the average latency also
increases. The steady increase noted from R1 = 0.6 is because of congestion
in the system. Notice that when the injection rates at the other Inputs are
increased, the latency for entities from I1 also increases; this is likely because
of unresolved priority inversions. The figure on the right shows that even when
the injection rates at all the other inputs are high, the latencies for entities from
I1 remains low. The increase in latency at R1 = 0.8 is because the turn units
have a maximum capacity2 of about 0.8 eps and congestion occurs even when
only the entities from I1 move through the system.

To confirm that Algorithm 1 respects the priorities in the system, we carried
out a simulation in which we jointly increased the injection rates at I1 and I3
while holding the injection rates at all the other inputs at fixed rates as described
before. The average end-to-end latencies for entities from I3 that were observed
are shown in Figure 9. Note that as the injection rates increased, the latencies
for entities from I3 increased, while the latencies for entities from I1 did not
change from that shown in Figure 8.

Figure 10 presents the throughput achieved in the two scenarios, i.e., with
and without a protocol for priority inversions. Notice that when no protocol was
used (left), even when R1 increased, the throughput remained low, especially
when the entity injection rates at all the other Inputs were high. The spike at

2In our simulation, every turn unit required 1.15s to process each entity; hence the capacity
was 1

1.15
= 0.869.

16



0.2 0.4 0.6 0.8 1
0

100

200

300

Release Rate

A
v
g
.
L
a
te
n
cy

(s
ec
s)

RR=0.1 RR=0.4 RR=0.6 RR=0.8 RR=1

0.2 0.4 0.6 0.8 1
0

100

200

300

Release Rate

A
v
g
.
L
a
te
n
cy

(s
ec
s)

RR=0.1 RR=0.4 RR=0.6 RR=0.8 RR=1

Figure 8: Average end-to-end latency for entities moving along P (I1, O2) in the Package Sorter
system when R1 increased. The different lines show the effect of injection rates (RR) at all
the other Inputs. The figure on the left presents average latency when no protocol was used
to resolve priority inversions. The figure on the right shows that resolving priority inversions
using Algorithm 1 improves the average latency for entities from I1 even when the injection
rates at the other Inputs increase.

0.2 0.4 0.6 0.8 1
0

100

200

300

Release Rate

A
v
g
.
L
a
te
n
cy

(s
ec
s)

RR=0.1 RR=0.4 RR=0.6 RR=0.8 RR=1

Figure 9: Average Latency for entities from I3 increase with injection rate because Algorithm 1
respects priorities in the system and gives preferential treatment to entities from I1.

17



0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Release Rate

T
h
ro
u
g
h
p
u
t
(p
p
s)

RR=0.1 RR=0.4 RR=0.6 RR=0.8 RR=1

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Release Rate

T
h
ro
u
g
h
p
u
t
(p
p
s)

RR=0.1 RR=0.4 RR=0.6 RR=0.8 RR=1

Figure 10: Throughput of entities from I1 as R1 increased. When no protocol was used to
resolve the priority inversions (left) the throughput was low even when R1 increased. When
Algorithm 1 was used to resolve priority inversions, the throughput increased linearly with
R1, as expected.

the end is because all the entities were eventually flushed out of the system in
the simulation. The figure on the right shows that the throughput of entities
from I1 increased linearly with R1 when Algorithm 1 was used to derive the
current priorities of the entities.

From the results in this section, we can conclude that Algorithm 1 effectively
resolves cyber-physical priority inversions. The protocol performs well in the
presence of congestion and achieves the best possible throughput. The results
in the next section demonstrate the scalability of the approach.

5.3. Communication Rounds

The units in the conveyor system must propagate inheritance request

messages downstream over multiple hops; entity transfer request messages
always propagate one hop downstream, and accept response messages prop-
agate multiple hops upstream. Since the entity transfer request messages
always travel one hop, their overhead is fixed. To empirically validate the scala-
bility of the proposed algorithm, we simulated the conveyor system in Figure 7
using the setup as discussed in the preceding evaluation. The number of priority
inversions that occur and the number of hops over which each kind of message
was propagated was recorded. The simulator did not limit the communication;
instead, we messages were allowed to propagate until they could not propagate
any further.

For the system shown in Figure 7, the maximum number of communication
rounds for propagating the inheritance request messages is from I5 to O3,
i.e., LP = P (I5, O3). The actual number of hops over which the inheritance

request message is propagated depends on the current priorities of the entities
on the downstream units and entity injection rate at all the inputs. When
the injection rates increase, the number of entities in the system increases and,
hence, the chance of priority inversions occurring also increases. The number of
priority inversions that occur is also a function of the exact sequence in which

18



0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
·104

Release Rate

P
ri
or
it
y
I
n
v
er
si
on

C
ou

n
t

RR=0.1 RR=0.4 RR=0.6 RR=0.8 RR=1

Figure 11: Total Number of priority inversion observed for different entity injection rates.

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Release Rate

H
op
s

Min Avg Max

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Release Rate

H
op
s

Min Avg Max

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Release Rate

H
op
s

Min Avg Max

Figure 12: The average number of hops over which and maximum number of hops inherit

priority message was propagated.

entities arrive on the system from different Inputs. Figure 11 presents the
number of priority inversions that occurred; we obtained this by counting the
number priority inheritance requests in the simulation. Notice that when the
injection rates at all the inputs was low, i.e., RR = 0.1, the number of priority
inversions was low. The number does not increase linearly as the injection rates
increase because priority inversion.

Figure 12 presents the minimum, average, and maximum number of hops
over which the inheritance request message was propagated in three scenar-
ios, namely RR = 0.1 (left), RR = 0.4 (center) and RR = 1 (right). When
RR = 0.1, the maximum number of hops over which these messages are prop-
agated is low and the average is close to the maximum. As the injection rate
at I1 increased, the maximum increased consistent with the number of priority
inversions that occurred (Figure 11). The figures for the cases RR = 0.4 (cen-
ter) and RR = 1 are similar. Although we noted that the length of the longest
path is an upper bound on the number of communication rounds necessary, this
bound is not tight and these empirical results demonstrate the need to develop
tighter bounds in the future.

The maximum number of hops over which the accept response messages
propagated were also observed. For the Package Sorter, the reverse path from
O3 along P (I5, O3) to X8 followed by the reverse path from X8 along P (I1, O2)

19



0.2 0.4 0.6 0.8 1
0

5

10

15

Release Rate

H
op
s

Min Avg Max

0.2 0.4 0.6 0.8 1
0

5

10

15

Release Rate

H
op
s

Min Avg Max

0.2 0.4 0.6 0.8 1
0

5

10

15

Release Rate

H
op
s

Min Avg Max

Figure 13: Minimum, average and maximum number of hops accept response message was
propagated along the upstream units.

to I1 represents the worst-case for the accept response messages. If every unit
on this path had an entity and each of these was able to advance to the next
unit, we would require 20 communication rounds to complete the transfers. The
minimum, maximum, and the average number of hops observed for the accept

response messages is shown in Figure 13. Notice that the number of hops over
which these messages propagated were considerably higher than the number of
hops over which the inheritance request messages were propagated. This is
because priority inversions do not occur for all the possible entity transfers on
the system. Further, inheritance request messages stop propagating when it
encounters an unit that is processing an entity with current priority higher than
the inherited priority. The units over which the accept response messages
propagate are determined the decisions made at turns and the number of entities
that can advance at any system time tick.

5.4. Discussion

In cyber-physical systems, the primary objective for resolving cyber-physical
priority inversions is to improve the predictability for high-priority entities. The
structure of the conveyor systems and the distributed realization of online proto-
cols for resolving cyber-physical priority inversions introduces interesting chal-
lenges. First, the results showed that while the modified CP-PIP can resolve
priority inversions, same priority blocking occurs and this results in increased
jitter, and consequently reduced predictability, for the highest-priority entities.
It is very interesting to examine techniques to mitigate the jitter for the highest
priority entities.

We also encountered two counter examples that demonstrate that it is chal-
lenging to compute ceiling priorities that can effectively resolve priority inver-
sions in these conveyor systems. It is interesting to explore whether there are
alternative methods for determining ceiling priorities that are viable.

Finally, the cyber-physical equivalent of the task model considered in this
paper was simple because each unit could handle only one entity. Depending
on the application of the conveyor system, this task model must change. For
example, a unit may handle multiple entities or batches of k entities from the
same input and with the same nominal priority may move in the system. It
remains to be seen how cyber-physical priority inversions manifest under these
variations of the task models.

20



6. Conclusions

In this paper we presented how priority inversions, which are well-known in
classical real-time systems, manifest in composable conveyor systems. When en-
tities that arrive on the conveyors via some input have priorities, cyber-physical
priority inversions can occur because multiple paths in the system share com-
mon resources. These inversions cause a higher priority entity to wait potentially
for an unbounded duration on lower priority entities. To address this problem
we presented an adaptation of the classical priority inheritance protocol that
applies to cyber-level real-time systems to resolve cyber-physical priority inver-
sion. While this protocol correctly resolves priority inversion, it increases the
jitter for the entities with the highest priority in the system under certain situa-
tions. We presented two examples to show that a simple computation of ceiling
protocols based on the paths along which entities move are inadequate to re-
solve cyber-physical priority inversion. In the case of direct path computations,
cyber-physical priority inversions continue to occur and in the case of blocked
path computation the priorities of the entities are no longer respected.

The simulation results confirmed that cyber-physical priority inversion is
indeed resolved by the priority inheritance protocol and that the jitter caused
for the entities with the highest priority is significant. The results also demon-
strated that the performance of the priority ceiling protocol using the blocked
paths computation was no better than that achieved using no protocol to resolve
priority inversion. Priority inheritance continues to perform as expected in the
presence of congestion. The communication overhead required for propagating
the inherited priorities in the system was significantly lower than the estimated
bounds. There are several interesting questions that remain to be addressed
in this investigation. For example, it would be interesting to design scalable
protocols that resolve priority inversion and deliver improved QoS in such sys-
tems. Considering failures and reconfiguration of the conveyor topologies in the
system while still addressing the cyber-physical priority inversion problem will
form the basis of our future work.

Acknowledgments

The authors thank Kranthi Mamidisetty, Brandon Archer, and Mukesh
Chippa for executing some of the simulations. This work was supported in
part by a grant from National Science Foundation under grant CNS-0720736.
The opinions expressed are those of the authors and do not necessarily represent
that of the National Science Foundation.

References

[1] K. An, A. Trewyn, A. Gokhale, S. Sastry, Model-driven Performance Analy-
sis of Reconfigurable Conveyor Systems used in Material Handling Applica-
tions, in: Second IEEE/ACM International Conference on Cyber Physical
Systems (ICCPS 2011), IEEE, Chicago, IL, USA, 2011, pp. 141–150.

21



[2] K. An, A. Trewyn, A. Gokhale, S. Sastry, Formal and Practical Aspects of
Domain-specific Languages: Recent Developments, IGI Global, 2012, Ch.
Design and Transformation of a Domain-specific Language for Reconfig-
urable Conveyor Systems, Chapt 19, pp. 553–571.

[3] L. Sha, R. Rajkumar, J. P. Lehoczky, Priority inheritance protocols: An
approach to real-time synchronization, IEEE Transactions on Computers
39 (9) (1990) 1175–1185. doi:http://dx.doi.org/10.1109/12.57058.

[4] T. Baker, Stack-based scheduling of real-time processes, Real-time Systems
3 (1991) 67–99.

[5] B. Archer, S. Sastry, A. Rowe, R. Rajkumar, Profiling the primitives of
networked embedded automation, in: Proceedings of the IEEE Conference
on Automation Science and Engineering, Bangalore, India, 2009, pp. 531–
536.

[6] R. Bellman, Dynamic Programming, Princeton University press, Princeton,
N.J, 1957.

[7] F. Mueller, Priority inheritance and ceilings for distributed mutual exclu-
sion, in: IEEE Real-time Systems Symposium, 1999, pp. 340–349.

[8] C. Sanchez, H. Sipma, C. Gill, Z. Manna, Distributed priority inheritance
for real-time and embedded systems, in: A. Shvartsman (Ed.), Principles
of Distributed Systems, Vol. 4305 of Lecture Notes in Computer Science,
Springer Berlin, 2006, pp. 110–125.

[9] K. Toda, K. Nishida, S. Sakai, T. Shimada, A priority forwarding scheme
for real-time multistage interconnection networks, in: Real-Time Systems
Symposium, 1992, 1992, pp. 208 –217.

[10] D. Cansever, Decentralized algorithms for flow control in networks, in: Pro-
ceedings of the 28th Conference on Decision and Control, Athens, Greece,
1986, pp. 2107–2112.

[11] Y. Ma, C. Chu, C. Zuo, A survey of scheduling with deterministic machine
availability constraints, Computers and Industrial Engineering 58 (2010)
199–211.

[12] A. Vargas, OMNET++Discrete Event Simulation System (2010).
URL www.omnetpp.org

22


