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Abstract

Applications are increasingly being deployed in the cloud due to benefits
stemming from economy of scale, scalability, flexibility and utility-based
pricing model. Although most cloud-based applications have hitherto been
enterprise-style, there is an emerging need for hosting real-time streaming ap-
plications in the cloud that demand both high availability and low latency.
Contemporary cloud computing research has seldom focused on solutions
that provide both high availability and real-time assurance to these appli-
cations in a way that also optimizes resource consumption in data centers,
which is a key consideration for cloud providers. This paper makes three con-
tributions to address this dual challenge. First, it describes an architecture
for a fault-tolerant framework that can be used to automatically deploy repli-
cas of virtual machines in data centers in a way that optimizes resources while
assuring availability and responsiveness. Second, it describes the design of a
pluggable framework within the fault-tolerant architecture that enables plug-
ging in different placement algorithms for VM replica deployment. Third, it
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illustrates the design of a framework for real-time dissemination of resource
utilization information using a real-time publish/subscribe framework, which
is required by the replica selection and placement framework. Experimental
results using a case study that involves a specific replica placement algorithm
are presented to evaluate the effectiveness of our architecture.

Keywords: high availability, real-time, quality of service, cloud computing,
middleware, framework.

1. Introduction

Cloud computing is a large-scale distributed computing platform based
on the principles of utility computing that offers resources such as CPU
and storage, systems software, and applications as services over the Inter-
net [1]. The driving force behind the success of cloud computing is economy
of scale. Traditionally, cloud computing has focused on enterprise applica-
tions. Lately, however, a class of soft real-time applications that demand
both high availability and predictable response times are moving towards
cloud-based hosting [2, 3, 4].

To support soft real-time applications in the cloud, it is necessary to
satisfy the response time, reliability and high availability demands of such
applications. Although the current cloud-based offerings can adequately ad-
dress the performance and reliability requirements of enterprise applications,
new algorithms and techniques are necessary to address the Quality of Ser-
vice (QoS) needs, e.g., low-latency needed for good response times and high
availability, of performance-sensitive, real-time applications.

For example, in a cloud-hosted platform for personalized wellness man-
agement [4], high-availability, scalability and timeliness is important for pro-
viding on-the-fly guidance to wellness participants to adjust their exercise or
physical activity based on real-time tracking of the participant’s response to
current activity. Assured performance and high availability is important be-
cause the wellness management cloud infrastructure integrates and interacts
with the exercise machines both to collect data about participant perfor-
mance and to adjust the intensity and duration of the activities.

Prior research in cloud computing has seldom addressed the need for
supporting real-time applications in the cloud.1 However, there is a grow-

1In this research we focus on soft real-time applications since it is unlikely that hard
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ing interest in addressing these challenges as evidenced by recent efforts [5].
Since applications hosted in the cloud often are deployed in virtual machines
(VMs), there is a need to assure the real-time properties of the VMs. A
recent effort on real-time extensions to the Xen hypervisor [5] has focused
on improving the scheduling strategies in the Xen hypervisor to assure real-
time properties of the VMs. While timeliness is a key requirement, high
availability is also an equally important requirement that must be satisfied.

Fault tolerance based on redundancy is one of the fundamental principles
for supporting high availability in distributed systems. In the context of cloud
computing, the Remus [6] project has demonstrated an effective technique
for VM failover using one primary and one backup VM solution that also
includes periodic state synchronization among the redundant VM replicas.
The Remus failover solution, however, incurs shortcomings in the context of
providing high availability for soft real-time systems hosted in the cloud.

For instance, Remus does not focus on effective replica placement. Con-
sequently, it cannot assure real-time performance after a failover decision
because it is likely that the backup VM may be on a physical server that
is highly loaded. The decision to effectively place the replica is left to the
application developer. Unfortunately, any replica placement decisions made
offline are not attractive for a cloud platform because of the substantially
changing dynamics of the cloud platform in terms of workloads and failures.
This requirement adds an inherent complexity for the developers who are
responsible for choosing the right physical host with enough capacity to host
the replica VM such that the real-time performance of applications is met.
It is not feasible for application developers to provide these solutions, which
calls for a cloud platform-based solution that can shield the application de-
velopers from these complexities.

To address these requirements, this paper makes the following three con-
tributions described in Section 4:

1. We present a fault-tolerant architecture in the cloud geared to provide
high availability and reliability for soft real-time applications. Our so-
lution is provided as a middleware that extends the Remus VM failover
solution [6] and is integrated with the OpenNebula cloud infrastructure
software [7] and the Xen hypervisor [8]. Section 4.3 presents a hierar-
chical architecture motivated by the need for separation of concerns

real-time and safety-critical applications will be hosted in the cloud.
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and scalability.

2. In the context of our fault-tolerant architecture, Section 4.4 presents
the design of a pluggable framework that enables application develop-
ers to provide their strategies for choosing physical hosts for replica
VM placement. Our solution is motivated by the fact that not all
applications will impose exactly the same requirements for timeliness,
reliability and high availability, and hence a “one-size-fits-all” solution
is unlikely to be acceptable to all classes of soft real-time applications.
Moreover, developers may also want to fine tune their choice by trading
off resource usage and QoS properties with the cost incurred by them
to use the cloud resources.

3. For the first two contributions to work effectively, there is a need for
a low-overhead, and real-time messaging between the infrastructure
components of the cloud infrastructure middleware. This messaging
capability is needed to reliably gather real-time resource utilization
information from the cloud data center servers at the controllers that
perform resource allocation and management decisions. To that end
Section 4.5 presents a solution based on real-time publish/subscribe
(pub/sub) that extends the OMG Data Distribution Service (DDS) [9]
with additional architectural elements that fit within our fault-tolerant
middleware.

To evaluate the effectiveness of our solution, we use a representative soft
real-time application hosted in the cloud and requiring high availability. For
replica VM placement, we have developed an Integer Linear Programming
(ILP) formulation that can be plugged into our framework. This placement
algorithm allocates VMs and their replicas to physical resources in a data
center that satisfies the QoS requirements of the applications. We present
results of experimentation focusing on critical metrics for real-time applica-
tions such as end-to-end latency and deadline miss ratio. Our goal in focusing
on these metrics is to demonstrate that recovery after failover has negligible
impact on the key metrics of real-time applications. Moreover, we also show
that our high availability solution at the infrastructure-level can co-exist with
an application-level fault tolerance capability provided by the application.

The rest of this paper is organized as follows: Section 2 describes rele-
vant related work comparing it with our contributions; Section 3 provides
background information on the underlying technologies we have leveraged
in our solution; Section 4 describes the details of our system architecture;
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Section 5 presents experimental results; and Section 6 presents concluding
remarks alluding to future work.

2. Related Work

Prior work in the literature of high availability solutions, VM placement
strategies, and resource monitoring are related to the three research contri-
butions we offer in this paper. In this section, we present a comparative
analysis of the literature and how our solutions fit in this body of knowledge.

2.1. Underlying Technology: High Availability Solutions for Virtual Machines

To ensure high-availability, we propose a fault-tolerant solution that is
based on the continuous checkpointing technique developed for the Xen hy-
pervisor called Remus [6]. We discuss the details and shortcomings of Remus
in Section 3.2.

Several other high availability solutions for virtual machines are reported
in the literature. VMware fault-tolerance [10] runs primary and backup VMs
in lock-step using deterministic replay. This keeps both the VMs in sync
but it requires execution at both the VMs and needs high quality network
connections. In contrast, our model focuses on a primary-backup scheme for
VM replication that does not require execution on all replica VMs.

Kemari [11] is another approach that uses both lock-stepping and con-
tinuous check-pointing. It synchronizes primary and secondary VMs just
before the primary VM has to send an event to devices, such as storage
and networks. At this point, the primary VM pauses and Kemari updates
the state of the secondary VM to the current state of primary VM. Thus,
VMs are synchronized with lower complexity than lock-stepping. External
buffering mechanisms are used to improve the output latency over continuous
check-pointing. However, we opted for Remus since it is a mature solution
compared to Kemari.

Another important work on high availability is HydraVM [12]. It is a
storage-based, memory-efficient high availability solution which does not
need passive memory reservation for backups. It uses incremental check-
pointing like Remus [6], but it maintains a complete recent image of VM
in shared storage instead of memory replication. Thus, it claims to reduce
hardware costs for providing high availability support and provide greater
flexibility as recovery can happen on any physical host having access to

5



shared storage. However, the software is not open-source or commercially
available.

2.2. Approaches to Virtual Machine Placement

Virtual machine placement on physical hosts in the cloud critically af-
fects the performance of the application hosted on the VMs. Even when
the individual VMs have a share of the physical resources, effects of context
switching, network performance and other systemic effects [13, 14, 15, 16]
can adversely impact the performance of the VM. This is particularly impor-
tant when high availability solutions based on replication must also consider
performance as is the case in our research. Naturally, more autonomy in VM
placement is desirable.

The approach proposed in [17] is closely related to the scheme we propose
in this paper. The authors present an autonomic controller that dynamically
assigns VMs to physical hosts according to policies specified by the user.
While the scheme we propose also allows users to specify placement poli-
cies and algorithms, we dynamically allocate the VMs in the context of a
fault-tolerant cloud computing architecture that ensures high-availability so-
lutions.

Lee et al. [18] investigated VM consolidation heuristics to understand how
VMs perform when they are co-located on the same host machine. They
also explored how the resource demands such as CPU, memory, and network
bandwidth are handled when consolidated. The work in [19] proposed a mod-
ified Best Fit Decreasing (BFD) algorithm as a VM reallocation heuristic for
efficient resource management. The evaluation in the paper showed that the
suggested heuristics minimize energy consumption while providing improved
QoS. Our work may benefit from these prior works and we are additionally
concerned with placing replicas in a way that applications continues to obtain
the desired QoS after a failover.

2.3. Resource Monitoring in Large Distributed Systems

Contemporary compute clusters and grids have provided special capabil-
ities to monitor the distributed systems via frameworks, such as Ganglia [20]
and Nagios [21]. According to [22], one of the distinctions between grids
and cloud is that cloud resources also include virtualized resources. Thus,
the grid- and cluster-based frameworks are structured primarily to monitor
physical resources only, and not a mix of virtualized and physical resources.
Even though some of these tools have been enhanced to work in the cloud,
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e.g., virtual machine monitoring in Nagios1 and customized scripts used in
Ganglia, they still do not focus on the timeliness and reliability of the dis-
semination of monitored data that is essential to support application QoS
in the cloud. A work that comes closest to ours, [23], provides a compara-
tive study of publish/subscribe middleware for real-time grid monitoring in
terms of real-time performance and scalability. While this work also uses
publish/subscribe for resource monitoring, it is done in the context of grid
and hence incurs the same limitations. [24] also introduced a use of pub-
lish/subscribe middleware for real-time resource monitoring in distributed
environment.

In other recent works, [25] presents a virtual resource monitoring model
and [26] discusses a cloud monitoring architecture for private clouds. Al-
though these prior works describe cloud monitoring systems and architec-
tures, they do not provide experimental performance results of their models
for properties such as system overhead and response time. Consequently,
we are unable to determine their relevance to support timely dissemination
of resource information and hence their ability to host mission-critical ap-
plications in the cloud. Latency results using RESTful services for resource
monitoring are described in [27], however, they are not able to support diverse
and differentiated service levels for cloud clients we are able to provide.

2.4. Comparative Analysis

Although there are several findings in the literature that relate to our
three contributions, none of these approaches offer a holistic framework that
can be used in a cloud infrastructure. Consequently, the combined effect of
individual solutions has not been investigated. Our work is a step in the
direction of fulfilling this void. Integrating the three different approaches
is not straightforward and requires good design decisions, which we have
demonstrated with our work and presented in the remainder of this paper.

3. Overview of Underlying Technologies

Our middleware solution is designed in the context of existing cloud in-
frastructure middleware, such as OpenNebula [7], and hypervisor technolo-
gies, such as Xen [8]. In particular, our solution is based on Remus [6],

1http://people.redhat.com/~rjones/nagios-virt
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which provides high availability to VMs that use the Xen hypervisor, and
the real-time pub/sub technology provided by the OMG DDS [9] for the
scalable dissemination of resource utilization information. For completeness,
we describe these building blocks in more detail here.

3.1. Cloud Infrastructure and Virtualization Technologies

Contemporary cloud infrastructure platforms, such as OpenStack [28],
Eucalyptus [29], or OpenNebula [7], manage the artifacts of the cloud in-
cluding the physical servers, networks, and other equipment, such as storage
devices. One of the key responsibilities such infrastructure is to manage user
applications on the virtualized servers in the data center. Often, these plat-
forms are architected in a hierarchical manner with a master or controller
node oversees the activities of the worker nodes that host applications. In
the OpenNebula platform we use, the master node is called the Front-end
Node, and the worker nodes are called the Cluster Nodes.

Hypervisors, such as Xen [8] and KVM [30], offer server virtualization that
enables multiple applications to execute within isolated virtual machines.
The hypervisor manages the virtual machines and ensures both performance
and security isolation between different virtual machines hosted on the same
physical server. To ensure that our solution can be adopted in a range of
hypervisors, we use the libvirt [31] software suite that provides a portable
approach to manage virtual machines. By providing a common API, lib-
virt is able to interoperate with a range of hypervisors and virtualization
technologies.

3.2. Remus High Availability Solution

Remus [6] is a software system built for the Xen hypervisor that provides
OS- and application-agnostic high-availability on commodity hardware. Re-
mus provides seamless failure recovery and does not require lock step-based,
whole-system replication. Instead, the use of speculative execution in the Re-
mus approach ensures that the performance degradation due to replication
is kept to a minimum. Speculative execution decouples the execution of the
application from state synchronization between replica VMs by interleaving
these operations and, hence, not forcing synchronization between replicas
after every update made by the application.

Remus uses a pair of replica VMs: a primary and a backup. Since Remus
provides protection against single host fail-stop failures only, if both the
primary and backup hosts fail concurrently, the failure recovery will not
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be seamless; however, Remus ensures that the system’s data will be left
in a consistent state even if the system crashes. Additionally, Remus is not
concerned with where the primary and backup replicas are placed in the data
center. Consequently, it cannot guarantee any performance properties for the
applications. The VM placement is the responsibility of the user, which we
have shown to be a significant complexity for the user. Our VM failover
solution leverages Remus while addressing these limitations in Remus.

3.3. OMG Data Distribution Service

The OMG DDS [9] supports anonymous, asynchronous and scalable data-
centric pub/sub communication model [32] where publishers and subscribers
exchange topic-based data. OMG DDS specifies a layered architecture com-
prising three layers – two of these layers make DDS a promising design choice
for use in the scalable and timely dissemination of resource usage information
in a cloud platform. One layer, called the Data Centric Publish/Subscribe
(DCPS), provides a standard API for data centric, topic-based, real-time
pub/sub [33]. It provides efficient, scalable, predictable, and resource-aware
data distribution capabilities. The DCPS layer operates over another layer
that provides a DDS interoperability wire protocol [34] called Real-Time
Publish/Subscribe (RTPS).

One of the key features of DDS when compared to other pub/sub mid-
dleware is its rich support for QoS offered at the DCPS layer. DDS provides
the ability to control the use of resources, such as network bandwidth and
memory, and non-functional properties of the topics, such as persistence, re-
liability, timeliness, and others [35]. We leverage these scalability and QoS
capabilities of DDS to support real-time resource monitoring in the cloud.

4. Middleware for Highly Available VM-hosted Soft Real-time Ap-
plications

This section presents our three contributions that collectively offer a high
availability middleware architecture for soft real-time applications deployed
in virtual machines in cloud data centers. We first describe the architecture
and then describe the three contributions in detail.

4.1. Architectural Overview

The architecture of our high-availability middleware, as illustrated in Fig-
ure 1, comprises a Local Fault Manager (LFM) for each physical host, and
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a replicated Global Fault Manager (GFM) to manage the cluster of physical
machines. The inputs to the LFMs are the resource information of physical
hosts and VMs gathered directly from the hypervisor. We collect information
for resources such as the CPU, memory, network, storage, and processes.
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Figure 1: Conceptual System Design Illustrating Three Contributions

The GFM is responsible for making decisions on VM replica manage-
ment including the decisions to place a replica VM. It needs timely resource
utilization information from the LFMs. Our DDS-based framework enables
scalable and timely dissemination of resource information from LFMs (the
publishers) to the GFM (the subscriber). Since no one-size-fits-all replica
placement strategy is appropriate for all applications, our GFM supports a
pluggable replica placement framework.
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4.2. Roles and Responsibilities

Before delving into the design rationale and solution details, we describe
how the system will be used in the cloud. Figure 2 shows a use case diagram
for our system in which roles and responsibilities of the different software
components are defined. A user in the role of a system administrator will
configure and run a GFM service and the several LFM services. A user in
the role of a system developer can implement deployment algorithms to find
and use a better deployment solution. The LFM services periodically update
resource information of VMs and hosts as configured by the user. The GFM
service uses the deployment algorithms and the resource information to create
a deployment plan for replicas of VMs. Then, the GFM sends messages to
LFMs to run a backup process via high-availability solutions that leverages
Remus.

Local Fault Manager (LFM)

Global Fault Manager (GFM)

System Admin

Configure/Run 
GFM

Configure/Run 
LFM

GFM System

LFM System
Run/Stop backup 

process

Update VM and Host 
Information

Run deployment 
algorithms

«uses»

Implement  
deployment 
algorithms

«uses»

System Developer

Figure 2: Roles and Responsibilities

4.3. Contribution 1: High-Availability Solution

This section presents our first contribution that deals with providing a
high availability middleware solution for VMs running soft real-time appli-
cations. Our solution assumes that a VM-level fault recovery is already
available via solutions, such as Remus [6].

4.3.1. Rationale: Why a Hierarchical Model?

Following the strategy in Remus, we host the primary and backup VMs
on different physical servers to support the fault tolerance.
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In a data center with hundreds of thousands of physical servers, a Remus-
based solution managing fault tolerance for different applications may be de-
ployed on every server. Remus makes no effort to determine the effective
placement of replica VMs; it just assumes that a replica pair exists. For our
solution, however, assuring the QoS of the soft real-time systems requires
effective placement of replica VMs. In turn, this requires real-time monitor-
ing of the resource usage on the physical servers to make efficient placement
decisions.

A centralized solution that manages faults across an entire data center is
infeasible. Moreover, it is not feasible for some central entity to poll every
server in the data center for resource availability and their usage. Thus, an
appropriate choice is to develop a hierarchical solution based on the prin-
ciples of separation of concerns. At the local level (i.e., host level), a fault
management logic can interact with its local Remus software while also being
responsible for collecting the local resource usage information. At the global
level, a fault management logic can decide effective replica placement based
on the timely resource usage information acquired from the local entities.

Although a two-level solution is described, for scalability reasons, multiple
levels can be introduced in the hierarchy where a large data center can be
compartmentalized into smaller regions.

4.3.2. Design and Operation

Our hierarchical solution is to utilize several Local Fault Managers (LFMs)
associated with a single Global Fault Manager (GFM) in adjacent levels of the
hierarchy. The GFM coordinates deployment plans of VMs and their replicas
by communicating with the LFMs. Every LFM retrieves resource informa-
tion from a VM that is deployed in the same physical machine as the LFM,
and sends the information periodically to a GFM. We focus on addressing
the deployment issue because existing solutions such as Remus delegates the
responsibility of placing the replica VM onto the user. An arbitrary choice
may result in severe performance degradation for the applications running in
the VMs.

The replica manager is the core component of the GFM and is responsible
for running the deployment algorithm provided by a user of the framework.
This component determines the physical host machine where the replica of
a VM should be replicated as a backup. The location of the backup is then
supplied to the LFM running on the host machine where the VM is located
to take the required actions, such as informing the local Remus of its backup
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copy.
The LFM runs a High-Availability Service (HAS) that is based on the

Strategy pattern [36]. This interface includes starting and stopping replica
operations, and automatic failover from a primary VM to a backup VM in
case of a failure. The use of the strategy pattern enables us to use a solution
different from Remus, if one were to be available. This way we are not tightly
coupled with Remus. Once the HAS is started and while it is operational, it
keeps synchronizing the state of a primary VM to a backup VM. If a failure
occurs during this period, it switches to the backup VM making it the active
primary VM. When the HAS is stopped, it stops the synchronization process
and high-availability is discontinued.

In the context of the HAS, the job of the GFM is to provide each LFM
with backup VMs that can be used when the HAS is executed. In the event
of failure of a primary VM, the HAS ensures that the processing switches
to the backup VM and it becomes the primary VM. This event is triggered
when the LFM informs GFM of the failure event and requests additional
backup VMs on which a replica can start. It is the GFM’s responsibility to
provide resources to the LFM in a timely manner so that the latter can move
from a crash consistent state to seamless recovery fault tolerant state as soon
as possible thereby assuring average response times of performance-sensitive
soft real-time applications.

In the architecture shown in Figure 3, replicas of VMs are automatically
deployed in hosts assigned by a GFM and LFMs. The following are the steps
of the system described in the figure.

1. A GFM service is started, and the service waits for connections from
LFMs.

2. LFMs will join the system by connecting to the GFM service.

3. The joined LFMs periodically send their individual resource usage in-
formation of VMs hosted on their nodes as well as that of the physical
host, such as CPU, memory, and network bandwidth to the GFM using
the DDS solution described in Section 4.5.

4. Based on the resource information, the GFM determines an optimal
deployment plan for the joined physical hosts and VMs by running
a deployment algorithm, which can be supplied and parametrized by
users as described in Section 4.4.

5. The GFM will notify LFMs to execute HAS in LFMs with information
of source VMs and destination hosts.
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Figure 3: System Architecture

A GFM service can be deployed on a physical host machine or inside a
virtual machine. In our system design, to avoid a single point of failure of a
GFM service, a GFM is deployed in a VM and a GFM’s VM replica is located
in another physical host. When the physical host where the GFM is located
fails, the backup VM containing the GFM service is promoted to primary and
the GFM service continues to its execution via the high availability solution.

On the other hand, LFMs are placed in physical hosts used to run VMs in
data centers. LFMs work with a hypervisor and a high availability solution
(Remus in our case) to collect resource information of VMs and hosts and
to replicate VMs to other backup hosts, respectively. Through the high
availability solution, a VM’s disk, memory, and network connections are
actively replicated to other hosts and a replication of the VM in a backup
host is instantiated when the primary VM is failed.
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4.4. Contribution 2: Pluggable Framework for Virtual Machine Replica Place-
ment

This section presents our second contribution that deals with providing
a pluggable framework for determining VM replica placement.

4.4.1. Rationale: Why a Pluggable Framework?

Existing solutions for VM high availability, such as Remus, delegate the
task of choosing the physical host for the replica VM to the user. This is
a significant challenge since a bad choice of a heavily loaded physical host
may result in performance degradation. Moreover, a static decision is also
not appropriate since a cloud environment is highly dynamic. To provide
maximal autonomy in this process requires online deployment algorithms
that make decisions on VM and replica VM placement.

Deployment algorithms determine which host machine should store a VM
and its replica in the context of fault management. There are different types
of algorithms to make this decision. Optimization algorithms, such as bin
packing, genetic algorithms, multiple knapsack, and simulated annealing are
some of the choices used to solve similar problems in a large number of in-
dustrial applications today. Moreover, different heuristics of the bin packing
algorithm are commonly utilized techniques for VM replica placement opti-
mization, in particular.

Solutions generated by such algorithms and heuristics have different prop-
erties. Similarly, the runtime complexity of these algorithms is different.
Since different applications may require different placement decisions and
may also impose different constraints on the allowed runtime complexity of
the placement algorithm, a one-size-fits-all solution is not acceptable. Thus,
we needed a pluggable framework to decide VM replica placement.

4.4.2. Design of a Pluggable Framework for Replica VM Placement

In bin packing algorithms [37], the goal is to use minimum number of bins
to pack the items of different sizes. Best-Fit, First-Fit, First-Fit-Decreasing,
Worst-Fit, Next-Fit, and Next-Fit-Decreasing are the different heuristics of
this algorithm. All these heuristics will be part of the middleware we are
designing, and will be provided to the framework user to run the bin packing
algorithm.

In our framework, we view VMs as items and the host machines as the
bins. Resource information from the VMs, are utilized as weights to employ
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the bin packing algorithm. Resource information is aggregated into one sin-
gle scalar value, and one dimensional bin packing is employed to find the
best host machine where the replica of a VM will be stored. Our framework
uses the Strategy pattern to enable plugging in different VM replica place-
ment algorithms. A concrete problem we have developed and used in our
replication manager is described in Section 5.

4.5. Contribution 3: Scalable and Real-time Dissemination of Resource Us-
age

This section presents our third contribution that deals with using a pub/sub
communication model for real-time resource monitoring. Before delving into
the solution, we first provide a rationale for using a pub/sub solution.

4.5.1. Rationale: Why Pub/Sub for Cloud Resource Monitoring and Dissem-
ination?

Predictable response times are important to host soft real-time applica-
tions in the cloud. This implies that even after a failure and recovery from
failures, applications should continue to receive acceptable response times.
In turn this requirement requires that the backup replica VMs be placed on
physical hosts that will deliver the application-expected response times.

A typical data center comprises hundreds of thousands of commodity
servers that host virtual machines. Workloads on these servers (and hence
the VMs) demonstrates significant variability due to newly arriving customer
jobs and the varying number of resources they require. Since these servers
are commodity machines and due to the very large number of such servers
in the data center, failures are quite common.

Accordingly, any high-availability solution for virtual machines that sup-
ports real-time applications must ensure that primary and backup replicas
must be hosted on servers that have enough available resources to meet the
QoS requirements of the soft real-time applications. Since the cloud environ-
ment is a highly dynamic environment with fluctuating loads and availability
of resources, it is important that real-time information of the large number of
cloud resources be available to the GFM to make timely decisions on replica
placement.

It is not feasible to expect the GFM to pull the resource information from
every physical server in the data center. First, this will entail maintaining
a TCP/IP connection. Second, failures of these physical servers will disrupt
the operation of the GFM. A better approach is for resource information
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to be asynchronously pushed to the GFM. We surmise therefore that the
pub/sub [32] paradigm has a vital role to play in addressing these require-
ments. A solution based on the ”push” model, where information is pushed
to the GFM from the LFMs asynchronously, is a scalable alternative. Since
performance, scalability, and timeliness in information dissemination are key
objectives, the OMG Data Distribution Service (DDS) [9] for data-centric
pub/sub is a promising technology that can be adopted to disseminate re-
source monitoring data in cloud platforms.

4.5.2. Design of a DDS-based Cloud Resource Monitoring Framework

A solution based on the “push” model where information can be pushed
to the GFM asynchronously lends itself to a more scalable alternative.

The GFM is consuming information from the LFMs and is a subscriber.
The resources themselves are the publishers of information. Since LFMs are
hosted on the physical hosts from which the resource utilization information
is collected, the LFMs can also play the role of a publisher. The roles are
reversed when a decision from GFM is pushed to the LFMs.

Figure 4 depicts the DDS entities used for our framework. Each LFM
node has its domain participant containing a DataWriter and a DataReader.
A DataWriter in LFM is configured to periodically disseminate resource in-
formation of VMs to a DataReader in GFM via a LFM Topic. The LFM
obtains this information via the libvirt APIs. A DataReader in LFM is to
receive command messages from a DataWriter in GFM to start and stop a
HAS via GFM Topic when a decision is made by algorithms in GFM.

5. Experimental Results and Case Study

In this section we present results to show that our solution can seamlessly
and effectively leverage existing solutions for fault tolerance in the cloud.

5.1. Rationale for Experiments

Our high-availability solution for cloud-hosted soft real-time applications
leverages existing VM-based solutions, such as the one provided by Remus.
Moreover, it is also possible that the application running inside the VM itself
may provide its own application-level fault tolerance. Thus, it is important
for us to validate that our high availability solution can work seamlessly and
effectively in the context of existing solutions.
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Figure 4: DDS Entities

Moreover, since we provide a pluggable framework for replica placement,
we must validate our approach in the context of a concrete placement algo-
rithm that can be plugged into our framework. To that end, we have devel-
oped a concrete placement algorithm, which we describe below and used it
in the evaluations.

5.2. Representative Applications and Evaluation Testbed

To validate both the claims: (a) support for high-availability soft real-time
applications, and (b) seamless co-existence with other cloud-based solutions,
we have used two representative soft real-time applications. For the first
set of validations, we have used an existing benchmark application that has
the characteristics of a real-time application [38]. To demonstrate how our
solution can co-exist with other solutions, we used a word count application
that provides its own application-level fault-tolerance. We show how our
solution can co-exist with different fault-tolerance solutions.

Our private cloud infrastructure for both the experiments we conducted
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comprises a cluster of 20 rack servers, and Gigabit switches. The cloud
infrastructure is operated using OpenNebula 3.0 with shared file systems
using NFS (Network File System) for distributing virtual machine images.
Table 1 provides the configuration of each rack server used as a clustered
node.

Table 1: Hardware and Software specification of Cluster Nodes

Processor 2.1 GHz Opteron
Number of CPU cores 12

Memory 32 GB
Hard disk 8 TB

Operating System Ubuntu 10.04 64-bit
Hypervisor Xen 4.1.2

Guest virtualization mode Para

Our guest domains run Ubuntu 11.10 32-bit as operating systems, and
each guest domain has 4 virtual CPUs and 4GB of RAM.

5.3. A Concrete VM Placement Algorithm

Our solution provides a framework that enables plugging in different user-
supplied VM placement algorithms. We expect that our framework will com-
pute replica placement decisions in an online manner in contrast to making
offline decisions. We now present an instance of VM replica placement al-
gorithm we have developed. We have formulated it as an Integer Linear
Programming (ILP) problem.

In our ILP formulation we assume that a data center comprises multiple
hosts. Each host can in turn consist of multiple VMs. We also account for
the resource utilizations of the physical host as well as the VMs on each host.
Furthermore, not only do we account for CPU utilizations but also memory
and network bandwidth usage. All of these resources are accounted for in
determining the placement of the replicas because on a failover we expect
our applications to continue to receive their desired QoS properties. Table 2
describes the variables used in our ILP formulation.

We now present the ILP problem formulation shown below with the de-
fined constraints that need to be satisfied to find an optimal allocation of VM
replicas. The objective function of the problem is to minimize the number of
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Table 2: Notation and Definition of the ILP Formulation

Notation Definition

xij Boolean value to determine the ith VM to the jth phys-
ical host mapping

x′
ij Boolean value to determine the replication of the ith VM

to the jth physical host mapping
yj Boolean value to determine usage of the physical host j
ci CPU usage of the ith VM
c′i CPU usage of the ith VM’s replica
mi Memory usage of the ith VM
m′

i Memory usage of the ith VM’s replica
bi Network bandwidth usage of the ith VM
b′i Network bandwidth usage of the ith VM’s replica
Cj CPU capacity of the jth physical host
Mj Memory capacity of the jth physical host
Bj Network bandwidth of the jth physical host

physical hosts by satisfying the requested resource requirements of VMs and
their replicas. Constraints (2) and (3) ensure every VM and VM’s replica
is deployed in a physical host. Constraints (4), (5), (6) guarantee that the
total capacity of CPU, memory, and network bandwidth of deployed VMs
and VMs’ replicas are packed into an assigned physical host, respectively.
Constraint (7) checks that a VM and its replica is not deployed in the same
physical host since the physical host may become a single point of failure,
which must be prevented.
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minimize
m∑
j=1

yj (1)

subject to
m∑
j=1

xij = 1 ∀i (2)

m∑
j=1

x′
ij = 1 ∀i (3)

n∑
i=1

cixij +
n∑

i=1

c′ix
′
ij ≤ Cjyj ∀j (4)

n∑
i=1

mixij +
n∑

i=1

m′
ix

′
ij ≤Mjyj ∀j (5)

n∑
i=1

bixij +
n∑

i=1

b′ix
′
ij ≤ Bjyj ∀j (6)

n∑
i=1

xij +
n∑

i=1

x′
ij = 1 ∀j (7)

xij = {0, 1}, x′
ij = {0, 1}, yj = {0, 1} (8)

5.4. Experiment 1: Measuring the Impact on Latency for Soft Real-time Ap-
plications

To validate our high-availability solution including the VM replica place-
ment algorithm, we used the RTI DDS Connext latency benchmark. 2 RTI
Connext is an implementation of the OMG DDS standard [9]. The RTI Con-
next benchmark comprises code to evaluate the latency of DDS applications,
and the test code contains both the publisher and the subscriber.

Our purpose in using this benchmark was to validate the impact of our
high- availability solution and replica VM placement decisions on the latency
of DDS applications. For this purpose, the DDS application was deployed
inside a VM. We compare the performance between an optimally placed VM

2For the experiment, our application is using DDS and is not to be confused with our
DDS-based resource usage dissemination solution. In our solution, the DDS approach is
part of the middleware whereas the application resides in a VM.
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replica using our algorithm described in Section 5.3 and a potentially worse
case scenario resulting from a randomly deployed VM. In the experiment,
average latency and standard deviation of latency, which is a measure of the
jitter, are compared for different settings of Remus and VM placement. Since
a DDS application is a one directional flow from a publisher to a subscriber,
the latency measurement is estimated as half of the round-trip time which
is measured at a publisher. In each experimental run, 10,000 samples of
stored data in the defined byte sizes in the table are sent from a publisher
to a subscriber. We also compare the performance when no high-availability
solution is used. The rationale is to gain insights into the overhead imposed
by the high-availability solution.

Figure 5 shows how our Remus-based high-availability solution along with
the effective VM placement affects latency of real-time applications. The
measurements from the experimental results for the case of Without Remus,
where VM is not replicated, shows consistent range of standard deviation and
average of latency compared to the case of Remus with Efficient Placement.
When Remus is used, average latency does not increase significantly, however,
a higher fluctuation of latency is observed by measuring standard deviation
values between both cases. From the results we can conclude that the state
replication overhead from Remus incurs a wider range of latency fluctuations.

However, the key observation is that significantly wider range of latency
fluctuations are observed in the standard deviation of latency in Remus with
Worst Case Placement. On the contrary, the jitter is much more bounded us-
ing our placement algorithm. our framework guarantees that the appropriate
number of VMs are deployed in physical machines by following the defined
resource constraints so that contention for resources between VMs does not
occur even though a VM or a physical machine has crashed. However, if a
VM and its replica is randomly placed without any constraints, unexpected
latency increases for applications running on the VM could occur. The re-
sulting values of latency’s standard deviation in Remus with Worst Case
Placement demonstrate how the random VM placement negatively influences
timeliness properties of applications.

5.5. Experiment 2: Validating Co-existence of High Availability Solutions

Often times the applications or their software platforms support their
own fault-tolerance and high-availability solutions. The purpose of this ex-
periment is to test whether it is possible for both our Remus-based high
availability solution and the third party solution could co-exist.
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Figure 5: Latency Performance Test for Remus and Effective Placement

To ascertain these claims, we developed a word count example imple-
mented in C++ using OMG DDS. The application supports its own fault
tolerance using OMG DDS QoS configurations as follows. OMG DDS sup-
ports a QoS configuration called Ownership Strength, which can be used as
a fault tolerance solution by a DDS pub/sub application. For example, the
application can create redundant publishers in the form of multiple data writ-
ers that publish the same topic that a subscriber is interested in. Using the
OWNERSHIP STRENGTH configuration, the DDS application can dictate
who the primary and backup publishers are. Thus, a subscriber receives the
topics only from the publisher with the highest strength. When a failure
occurs, a data reader (which is a DDS entity belonging to a subscriber) au-
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tomatically fails over to receive its subscription from a data writer having
the next highest strength among the replica data writers.

Although such a fault-tolerant solution can be realized using the owner-
ship QoS, there is no equivalent method in DDS if a failure occurs at the
source of events such as a node that aggregates multiple sensors data and
a node reading a local file stream as a source of events. In other words, al-
though the DDS ownership QoS takes care of replicating the data writers and
organizing them according to the ownership strength, if these data writers
are deployed in VMs of a cloud data center, they will benefit from the replica
VM placement strategy provided by our approach thereby requiring the two
solutions to co-exist.

Figure 6: Example of Real-time Data Processing: Word Count

To experiment with such a scenario and examine the performance over-
head as well as message missed ratio (i.e., lost messages during failover), we
developed a DDS-based “word count” real-time streaming application. The
system integrates both the high availability solutions. Figure 6 shows the
deployment of the word count application running on the highly available
system. Four VMs are employed to execute the example application. VM1
runs a process to read input sentences and publishes a sentence to the next
processes. We call the process running on the VM1 as the WordReader. In
the next set of processes, a sentence is split into words. These processes are
called WordNormalizer. We place two VMs for the normalizing process and
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each data writer’s Ownership QoS is configured with the exclusive connec-
tion to a data reader and the data writer in VM3 is set to the primary with
higher strength. Once the sentences get split, words are published to the next
process called the WordCounter, where finally the words are counted. In the
example, we can duplicate processes for WordNormalizer and WordCounter
as they process incoming events, but a process for WordReader cannot be
replicated by having multiple data writers in different physical nodes as the
process uses a local storage as a input source. In this case, our VM-based
high availability solution is adopted.

Table 3: DDS QoS Configurations for the Word Count Example
DDS QoS Policy Value

Data Reader
Reliability Reliable
History Keep All
Ownership Exclusive
Deadline 10 milliseconds
Data Writer
Reliability Reliable
Reliability - Max Blocking Time 5 seconds
History Keep All
Resource Limits - Max Samples 32
Ownership Exclusive
Deadline 10 milliseconds
RTPS Reliable Reader
MIN Heartbeat Response Delay 0 seconds
MAX Heartbeat Response Delay 0 seconds
RTPS Reliable Writer
Low Watermark 5
High Watermark 15
Heartbeat Period 10 milliseconds
Fast Heartbeat Period 10 milliseconds
Late Joiner Heartbeat Period 10 milliseconds
MIN NACK Response Delay 0 seconds
MIN Send Window Size 32
MAX Send Window Size 32

Table 3 describes the DDS QoS configurations used for our word count
application. The throughput and latency of an application can be varied by
different DDS QoS configurations. Therefore, our configurations in the table
can provide a reasonable understanding of our performance of experiments
described below. In the word count application, since consistent word count-
ing information is critical, reliable rather than best effort is designated as
the Reliability QoS. For reliable communication, history samples are all kept
in the reader’s and writer’s queues. As the Ownership QoS is set to exclu-
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sive, only one primary data writer among multiple data writers can publish
samples to a data reader. If a sample has not arrived in 10 milliseconds, a
deadline missing event occurs and the primary data writer is changed to the
one which has the next highest ownership strength.

The results of experimental evaluations are presented to verify perfor-
mance and failover overhead of our Remus-based solution in conjunction
with DDS Ownership QoS. We experimented six cases shown in the Figure 7
to understand latency and failover overhead of running Remus and DDS
Ownership QoS for the word count real-time application. The experimental
cases represent the combinatorial fail over cases in an environment selectively
exploiting Remus and DDS Ownership QoS.

Figure 7: Experiments for the Case Study

Figure 8 depicts the results of Experiment E1 and E2 from Figure 7.
Both the experiments have Ownership QoS setup as described above. Ex-
periment E2 additionally has VM1 running the WordReader process, which
is replicated to VM1’ whose placement decision is made by our algorithm.
The virtual machine VM1 is replicated using Remus high availability solution
with the replication interval set to 40 milliseconds for all the experiments.
This interval is also visibly the lowest possible latency for all the experiments,
which has ongoing Remus replication. All the experiments depicted in Fig-
ure 7 involved a transfer of 8,000 samples from WordReader process on VM1
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to WordCount process running on VM4. In the experiments E1 and E2,
WordNormalizer processes run on VM2 and VM3 and incur the overhead of
DDS Ownership QoS. In addition, experiment E2 has the overhead of Remus
replication.
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Figure 8: Latency Performance Impact of Remus Replication

The graph in Figure 8 is a plot of average latency for each of the 80
samples set for a total of 8,000 samples transfer. For experiment E1 with no
Remus replication, it was observed that the latency fluctuated within a range
depending upon the queue size of WordCounter and each of WordNormalizer
processes. For experiment E2 with Remus replication, the average latency
for sample transfer did not have much deviation except for a few jitters. This
is because of the fact that Remus replicates at a stable, predefined rate (here
40 ms), however, due to network delays or delay in checkpoint commit, we
observed jitters. These jitters can be avoided by setting stricter deadline
policies in which case, some samples might get dropped and they might need
to be resent. Hence, in case of no failure, there is very little overhead for this
soft real-time application.

Figure 9 is the result for experiment E3 where WordReader process on
VM1 is replicated using Remus and it experienced a failure condition. Before
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the failure, it can be observed that the latencies were stable with few jitters
due to the same reasons explained above. When the failure occurred, it took
around 2 seconds for the failover to complete during which a few samples
got lost. After the failover, no jitters were observed since Remus replication
has not yet started for VM1’, but the latency showed more variation as the
system was still stabilizing from the last failure. Thus, the high availability
solution works for real-time applications even though a minor perturbation
is present during the failover.
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Figure 9: DDS Ownership QoS with Remus Failover

Table 4 represents the missed ratio for different failover experiments per-
formed. In experiments E4 and E5, VM2 failed and the WordNormalizer pro-
cess failed over to VM3. Since the DDS failover relied on publisher/subscriber
mechanism, the number of lost samples is low. The presence of Remus repli-
cation process on WordReader process node VM1 did not have any adverse
effect on the reliability of the system. However, in case of experiments E3
and E6, where Remus failover took place, the number of lost samples was
higher since the failover duration is higher in case of Remus replication than
DDS failover. These experiments show that ongoing Remus replication does
not affect the performance of DDS failover, even though Remus failover is
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slower than DDS failover. However, since DDS does not provide any high
availability for the source, infrastructure-level high availability provided by
our Remus-based solution must be used.

Table 4: Failover Impact on Sample Missed Ratio

Missed Samples
(total of 8000)

Missed Samples
Percentage (%)

Experiment 3 221 2.76
Experiment 4 33 0.41
Experiment 5 14 0.18
Experiment 6 549 6.86

6. Conclusion

As real-time applications move to the cloud, it becomes important for
cloud infrastructures and middleware to implement algorithms that provide
the QoS properties (e.g., timeliness, high-availability, reliability) of these ap-
plications. In turn this requires support for algorithms and mechanisms for
effective fault-tolerance and assuring application response times while simul-
taneously utilizing resources optimally. Thus, the desired solutions require
a combination of algorithms for managing and deploying replicas of virtual
machines on which the real-time applications are deployed in a way that
optimally utilizes resources, and algorithms that ensure timeliness and high
availability requirements.

This paper presented the architectural details of a middleware frame-
work for a fault-tolerant cloud computing infrastructure that can automat-
ically deploy replicas of VMs according to flexible algorithms defined by
users. Finding an optimal placement of VM replicas in data centers is an
important problem to be resolved because it determines the QoS delivered
to performance-sensitive applications running in the cloud. To that end this
paper presents an instance of an online VM replica placement algorithm we
have formulated as an ILP problem.

The work presented in this paper addresses just one dimension of a num-
ber of challenges that exist in supporting real-time application in the cloud.
For example, scheduling of virtual machines (VMs) on the host operating
system (OS) and in turn scheduling of applications on the guest OS of the
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VM in a way that assures application response times is a key challenge that
needs to be resolved. Scheduling alone is not sufficient; the resource alloca-
tion problem must be addressed wherein physical resources including CPU,
memory, disk and network must be allocated to the VMs in a way that will
ensure that application QoS properties are satisfied. In doing so, traditional
solutions used for hard real-time systems based on over-provisioning are not
feasible because the cloud is an inherently shared infrastructure, and oper-
ates on the utility computing model. Autoscaling algorithms used in current
cloud computing platforms must be such that response times are not ad-
versely impacted when resources are scaled up or down, and applications
must be migrated.

The gamut of the problem space described above is vast. Addressing these
needs forms the bulk of our future work. Our ongoing research is focusing
on refining the presented architecture. Additionally, substantial validation
of the solutions is necessary. To that end we are seeking to test a range of
performance-sensitive applications hosted in the cloud. We are leveraging
a private cloud testbed we have deployed at our institution where we have
access to a variety of latest hardware and network switches, as well as a
variety of open-source cloud infrastructure platforms, such as OpenStack
and OpenNebula as well as hypervisors, such as Xen and KVM.

Even though we have experimented on a small private cloud, we believe
our solution is scalable enough to deal with a large cloud environment. We
surmise this on the basis that our underlying technology is Remus, which
works between a pair of replicas. Hence, multiple instances of Remus will be
active to deal with multiple such pairs of replicas. The impact of message
exchanges on the network due to multiple independent Remus replicas needs
to be investigated, however. We believe that traffic isolation solutions may be
used to alleviate the impact on network bandwidth. The VM replica place-
ment algorithm requires real-time monitoring, which is provided by DDS.
Clearly, we cannot expect to use a single VM placement engine for a large
data center nor can be use an entire data center as one single DDS domain
within which the resource monitoring is performed. Rather, a large data
center can be partitioned into multiple regions and have the DDS monitor-
ing capability restricted to individual regions by using the concept of a DDS
domain. Consequently, the DDS traffic is now limited to within individual
domains and each region can have its own VM replica placement engine.
Hierarchical solutions can also be built. To test our hypothesis, however, in
future, we would need to work with cloud providers to gain access to large

30



clusters and validate the scalability of our solution.
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Appendix A. Glossary

Integer Linear Programming (ILP) is a mathematical method to
achieve the best outcome (lowest cost) where all the unknown variables are
integers.

Continuous check-pointing is a high availability solution in which at
frequent intervals of time, the execution of primary VM is paused to capture
its state.

Lock step execution is a redundant execution paradigm where both
the primary and secondary VMs execute the same set of instructions.

Deterministic replay is defined as reenactment of the program state
from one VM to the other.

Speculative execution is an optimization technique in which primary
VM continues to execute next set of instructions without waiting for the
response from secondary VM. However, the results are discarded if any error
occurs at the secondary VM.

Fail-stop failure is a failure condition where the failed host stops work-
ing and all associated data are lost.

Stable storage is a data storage technique where data is preserved even
after host failure.
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