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Abstract

Although component middleware is increasingly used to develop distributed, real-time and
embedded (DRE) systems, it poses new fault-tolerance challenges, such as the need for efficient
synchronization of internal component state, failure correlation across groups of components,
and configuration of fault-tolerance properties at the component granularity level. This paper
makes three contributions to R&D on component-based fault-tolerance. First, it describes the
COmponent Replication based on Failover Units (CORFU) component middleware, which pro-
vides fail-stop behavior and fault correlation across groups of components treated as an atomic
unit in DRE systems. Second, it describes how CORFU’s Components with HEterogeneous
State Synchronization (CHESS) module provides mechanisms for real-time aware state transfer
and synchronization in CORFU. Third, we empirically evaluate the client fail over and group
shutdown capabilities of CORFU and its CHESS module and compare/contrast it with existing
object-oriented fault-tolerance methods. Our results show that component middleware (1) has
acceptable fault-tolerance performance for DRE systems, (2) allows timely recovery while con-
sidering failure location, size, and functional topology of the group, and finally (3) eases the
burden of application development by providing middleware support for fault-tolerance at the
component level.

1. Introduction

Ensuring the fault-tolerance for mission-critical distributed real-time and embedded (DRE)
systems, such as air traffic management, total ship computing environments, and fractionated
spacecraft, is essential to meet end-to-end system requirements. Fault-tolerance in the context
of DRE systems is defined as the property that masks failures of servers from clients by trans-
parently redirecting clients to backups of servers that have a consistent state as the failed server.
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Moreover, for DRE systems, this redirection must be achieved in a timely manner so that re-
sponse time of clients is maintained. A recent study [1] indicates that many system crashes and
downtime stem from undependable components and that fault-tolerance mechanisms fail to work
correctly.

Software for DRE systems increasingly uses component middleware [2–5], which is middle-
ware that support the component programming model [6, 7]. A component provides a higher
level of abstraction than traditional objects in object-oriented programming by providing capa-
bilities to encapsulate the application “business” logic, as well as the means of grouping related
interfaces to offer a service family. Individual components can be assembled together to form
applications.

Component middleware helps to reduce application development time and effort [5] by en-
abling the rapid realization of large-scale applications by procuring third-party components.
It also enables the packaging and assembly of components into reusable units of functionality
that can be deployed in the target distributed environment. Despite these advantages, however,
component-based DRE systems incur the following fault-tolerance challenges compared to DRE
systems that use distributed object computing and operate at the granularity of individual objects:
1. Support for fail over and recovery of a group of components. Although DRE system func-
tionality may be obtained rapidly by assembling a group of components procured from multiple
providers, supporting fault-tolerance for this overall functionality requires treating the group of
components as a single unit of failure and recovery.

For example, a real-time analytic stock application may consist of a group of interacting com-
ponents that together provide the analytic capabilities. Since the group of components together
serve a single request (i.e., stock analytics in this case), they share a common state of the client
request. As a result, a failure of even a single component from the group should result in a fail
over to a backup group of components.

Unfortunately, contemporary component middleware, such as Lightweight CORBA Compo-
nent Model (LwCCM) [8], do not provide group-based fail over semantics out-of-the-box. What
is needed, therefore, is first-class support for the notion of a failover group, which is a logical
grouping of components that are treated as an atomic unit for failure detection and recovery.
2. Efficient state dissemination mechanisms for a failover group. DRE systems have to main-
tain a wide variety of application state ranging from scalar types (e.g., int, float) to complex types
(e.g., large structures and sequences). To provide fault-tolerance using passive replication [9],
middleware must provide mechanisms to disseminate this state to application replicas in a timely
manner. Moreover, depending on the size, timing requirements, and degree of replication differ-
ent communication mechanisms are needed to provide optimal performance.

The small-sized state of applications with high reliability requirements should typically be
transferred through synchronous, point-to-point protocols with error correction capabilities. Con-
versely, large-sized state (particularly when transmitted to a large number of replicas) needs
efficient protocols, such as group communication protocols and multicast messages. Directly
encoding the type of communication mechanism into the applications’ implementation results
in a tight coupling between business logic and transport mechanism, and therefore complicates
development and adaptation of the application.
3. Resource-aware deployment and configuration. The benefits gained by using component
abstractions (e.g., reduced application developer effort) are often nullified by inefficient use of
DRE system resources, such as memory, CPU, and network bandwidth. In particular, without
first-class support to manage the semantics of a failover group, it becomes tedious and error-
prone to deploy failover groups and their replicas such that resources are utilized efficiently. Sim-
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ilar problems arise in configuring fault-tolerance properties in the middleware for these failover
groups.

Achieving fault-tolerant DRE systems involves moving from point solutions for specific sce-
narios towards solutions that integrate all aspects of fault-tolerance (detection, recovery and state
consistency) through well-understood models, metrics, development processes and tools. This
paper makes three contributions to address the three challenges described above and provides
a component middleware-based fault tolerance solution that supports the fault-tolerance aspects
presented above.
1. First-class support for group fail over and recovery based on the COmponent Replication
based on Failover Units (CORFU) component middleware. CORFU supports fault-tolerance of
component-based DRE systems that use passive replication, where backup replicas take over
processing quickly when a failure occurs. CORFU implements algorithms that provide efficient
fail-stop behavior of component groups. Rather than reactively providing fail over capabilities
for each component in a group as they fail sequentially, CORFU restores system operation by
activating a fresh group of components while discarding the faulty group in a single logical
execution step. Fail over operations can thus be more deterministic since they deal directly with
the original error and do not propagate errors.
2. First-class support for real-time state dissemination among the group based on CORFU’s
Components with HEterogeneous State Synchronization (CHESS) module. CHESS provides
mechanisms for state dissemination in passively replicated failover groups managed by CORFU.
State can change through client invocations, other system events, or timed signals. CHESS syn-
chronizes the internal states of replicas—particularly replicas of failover groups. It also makes
state synchronization as transparent to developers as possible, while providing the flexibility to
handle varying internal state types (such as scalar types, structures of scalar types, and their
sequences) and assuring timely state transfers.
3. Resource-aware, automated deployment and configuration for group semantics. CORFU
adopts a static deployment approach that captures the complete system structure and the place-
ment of components in a standardized XML format. CORFU uses this declarative system meta-
data to optimize runtime behavior for both individual components and groups of dependent com-
ponents. By capturing component dependencies in specific component groups (called failover
units), CORFU reduces error reaction time at runtime and helps ensure timely response required
by DRE systems. CORFU also provides declarative mechanisms that help automate the deploy-
ment and configuration of components in DRE systems.

The remainder of this paper is organized as follows: Section 2 uses a DRE system case study
to motivate the need for component middleware and dependency-based component groupings;
Section 3 summarizes the structure and functionality of CORFU and its CHESS state synchro-
nization module; Section 4 analyzes experimental results to evaluate the performance of CORFU
during failover of groups and the impact of CHESS in state synchronization; Section 5 compares
CORFU with related work; and Section 6 presents concluding remarks.

2. Motivating Component Group Fault Tolerance via a Case Study

We use a representative DRE system from the domain of space systems as a case study to
highlight the need for component-based, group failover and recovery requirements that are also
QoS-enabled, i.e., aware of real-time performance requirements. This case study has stringent
requirements for real-time and fault-tolerant behavior. To showcase the challenges confronting
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Figure 1: Component-Based Mission Control System

component-based DRE systems, we focus on the Mission Control System (MCS) being devel-
oped by the European Space Agency [10] to control satellites that perform missions, such as
earth observation or deep-space exploration.

2.1. Overview of the Mission Control System (MCS)

An MCS controls satellites and processes data they gather. It is deployed in a central control
station and communicates with a network of ground stations that provide communication links to
the satellites. Figure 1 shows the structure of a component-based MCS. Since the time windows
for active connections to satellites can be short due to their orbit and visibility to ground stations,
the availability of the MCS during such phases is crucial. The MCS therefore uses redundant
hardware and software. Each entity is deployed twice and some are grouped into chains of
functionality, which are groups of components working together as a unit.

For example, an MCS must be tailored to specific missions and reconfigured for different
mission phases. The Mission Planning System is responsible for configuring and observing the
other system entities based on the mission specific characteristics. Likewise, the Telemetry Server
analyzes telemetry data and preprocesses it for the mission operators. The Archive stores teleme-
try data permanently and is fed by the Telemetry Server. The Telecommand Server is responsible
for creating and sending new commands issued by the mission operators.

These four entities form a task chain that provides the main MCS functionality. To avoid sin-
gle points of failure, this chain is replicated. A primary chain is active during normal operation,
as shown in Figure 1. If a fault occurs in the primary chain, the complete chain must be passivated
and a backup chain must assume operation through a warm-passive fail over. All components of
the backup chain are already deployed to assume responsibility as quickly as possible.

The Network Interface System serves as a gateway from the ground stations to the MCS
through a wide area network. It uses the space link extension protocol to process and transmit
all mission relevant data to and from the MCS. The Network Interface System is not part of the
MCS chain and is replicated separately.
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2.2. Fault-Tolerance Requirements of the MCS Case Study
The MCS chain forms a unit of fail over and recovery. Providing replication and recovery

semantics for component groups must therefore support the following requirements:
Requirement 1: Fault isolation. In the MCS scenario the components within one chain depend
on each other. A failure of one component must lead to the automated shutdown and fail over
of all components within the same chain. If the telemetry server, for example, crashes, all other
components in chain A should be deactivated and the four components in chain B should resume
operation.

MCS therefore needs timely detection of the fault and correlation of this fault to the group
as a whole so that subsequent group-wide shutdown and recovery actions can be initiated in
real-time. Section 3.3.1 describes how CORFU provides timely detection of faults and correlates
them to group-wide semantics.
Requirement 2: Ensure fail-stop behavior. After a fault has been isolated by determining
affected components, it is necessary to regard these components as inconsistent, which may
carry transient faults. Subsequently, this chain must be shutdown to prevent further propagation
of the fault. All affected components must therefore be stopped as soon as possible, i.e., the
time from error detection to the complete stop of all affected components must be minimized.
Section 3.3.2 describes CORFU’s support for fail-stop semantics.
Requirement 3: Service recovery. When components of the primary chain fail and are deacti-
vated, all components in the backup chain must be promoted to serve as the primary, and process
incoming requests. Although the MCS scenario presented here only contains one backup failover
unit (and thus only one backup replica per component), the mechanism generally must account
for any number of backups. With more than one backup, however, the system could have compo-
nents failing over to replicas in different chains, thereby causing performance problems or even
malfunctions due to the way components are deployed on a given infrastructure.

To achieve successful fail over it is necessary to synchronize the promotion of backup com-
ponents. In passive replication this involves ensuring that the correct backup replicas become
primaries. To ensure consistent system state after fail over the middleware must ensure that all
backups that become primaries belong to the same failover group. Section 3.3.3 describes how
CORFU provides support for group-wide failure recovery.
Requirement 4: State dissemination. As the MCS scenario uses passive replication, state dis-
semination mechanisms must be provided to keep the state of the replica components consistent
with that of the primary component. Moreover, state dissemination overhead should not ad-
versely affect the client’s response time. This indicates that as the size of the application state
and number of replicas increase, reliable group communication based mechanisms must be fa-
vored over reliable point-to-point (multiple unicast) communciation. Section 3.3.1 describes how
CORFU supports mechanisms for timely and consistent transfer of state to replicas.

2.3. DRE System and Deployment Model
The MCS is being developed using the Lightweight CORBA Component Model (LwCCM) [11]

and it is deployed using the OMG LwCCM deployment and configuration (D&C) specifica-
tion [12]. The LwCCM D&C specification comprises two parts: (1) a management model that
defines the roles of the various actors and (2) a data model that defines the metadata format for
the deployment and configuration properties of the DRE components that are used by the actors
in deploying and configuring the components. The central entity in the management model of the
LwCCM D&C spec is the ExecutionManager, which is responsible for instantiating DomainAp-
plications as defined in deployment plans.
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Figure 2: CORFU Layered Architecture

A deployment plan is part of the data model of the LwCCM D&C specification. It contains
information about component implementations and corresponding instances present in the sys-
tem. The deployment plan captures component interdependencies through connections between
their ports. It also contain configuration properties that allow tailoring of components to the
specific deployment. Each deployment plan is handled by a DomainApplicationManager that
provides the administration interface to start and stop the application. A component server hosts
containers and provides the runtime process context for the components.

3. The Structure and Functionality of CORFU

Addressing the fault-tolerance and timeliness requirements of DRE systems described in
Section 2.2 requires innovative solutions that can leverage and integrate with the middleware
platforms used by DRE systems. This section describes how the structure and functionality of
CORFU provides DRE systems with passive replication of a group of components treated as
a logical failover unit [13], which contains a set of components that have dependencies with
respect to failure propagation. Failover units allow for failure reaction times suitable for DRE
systems by terminating a group of components with a single logical execution step, rather than
reacting on slow failure propagations.

CORFU’s layered architecture is shown in Figure 2. This architecture enables CORFU to
provide sophisticated fault-tolerance capabilities, including support for component group repli-
cation and failover. Each layer of fault-tolerance functionality is provided along four fundamen-
tal dimensions of fault-tolerance, including (1) replica grouping, which defines the replicas that
form one logical entity for group failover, recovery, and synchronization of internal state, (2) er-
ror detection, which detects and reports failures to initiate fail over operations for the group, (3)
fail over mechanism, which redirects processing of client requests in case of a detected failure,
and (4) state dissemination, for maintaining the state of replicas consistent with the primary.

The rest of this section describes how CORFU’s layered architecture provides these four
dimensions of fault-tolerance, starting at the lowest layer working up through the layers.

3.1. Architectural Foundation of CORFU: Fault-Tolerance for Individual Objects

CORFU’s lowest layer of support for fault-tolerance at the level of individual objects is based
on our earlier work on FLARe [14], which is a middleware framework that achieves real-time
fault-tolerance through passive replication of distributed objects, as shown in Figure 3. FLARe is
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Figure 3: The FLARe Middleware Architecture

based on the CORBA architecture and provides lightweight fault-tolerance for CORBA objects
(i.e., not LwCCM components). We base CORFU on FLARe for the following reasons that make
it suitable for DRE systems: (1) FLARe uses passive replication and allows failover mechanisms
that are suitable for resource constrained DRE systems and (2) its adaptive and predictable failure
recovery mechanisms provide algorithms and mechanisms to assure real-time performance even
in the presence of failures.

FLARe supports the four dimensions of fault-tolerance outlined above as follows:
1. Replica grouping. The primary entity for replica grouping is the ReplicationManager

(Label A in Figure 3), which is a standalone server that registers all existing replicas of a DRE
system. Replicas representing one logical object are registered with the ReplicationManager by
the server application using a shared replica object ID string. The ReplicationManager builds a
list of replica object references per object ID, which is known as the RankList.

A RankList defines the order in which replicas are activated in case of their predecessors
failing. This mechanism allows FLARe to change the order at system runtime based on moni-
tored load on hosts. The replica object ID is added to each fault-tolerant object reference on the
server side through an IORInterceptor that allows modifications of Interoperable Object Refer-
ences (IORs).

2. Error detection. FLARe detects errors in two ways. Clients detect errors based on
CORBA exceptions that occur when establishing or using a connection. The ClientRequestIn-
terceptor (Label C in Figure 3) gets notified and can analyze which exception was thrown. If the
exception indicates a server failure, a fail over is initiated (as described next). The Replication-
Manager obtains information about failed hosts and failed processes through the HostMonitor
applications that run on each host.

A host failure is detected by receiving heart-beat messages from the HostMonitors. If a
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message is not received within a given time, a host failure is assumed. Each server application
on a host registers with the local HostMonitor, which then observes the liveliness of the process
through a TCP/IP connection. If the connection is closed without previous deregistration of the
application, a process failure is assumed and reported to the ReplicationManager.

Fail over mechanism. Fail overs are performed transparently on the client. For this purpose,
a ClientFailoverManager (Label B in Figure 3) contains a RedirectionAgent that is updated pe-
riodically and proactively with fail over and redirection targets by the ReplicationManager as it
tracks group membership and load changes.

The ClientRequestInterceptor is a part of the ClientFailoverManager and is registered with
CORBA’s object request broker. Whenever a connection to a server object fails, the request is
forwarded automatically to a backup replica. The client application contains a RedirectionAgent
that receives and stores up-to-date RankLists from the ReplicationManager on a regular basis.
In case of a connection error, the request interceptor communicates with the redirection agent to
obtain the next known reference to a server replica. A fail over can thus be performed decentrally
in every client without the need to communicate with the central ReplicationManager during
fail over, thereby enhancing FLARe’s scalability and preventing the ReplicationManager from
becoming a bottleneck.

4. State dissemination. With every application, FLARe provides a StateTransferAgent (La-
bel D in Figure 3) to allow server objects within one group to synchronize their application
states. To minimize impact on client-perceived response times, the StateTransferAgent supports
two strategies of state dissemination. First, point-to-point communication like in FLARe using
CORBA and second, group communication using anonymous publish-subscribe substrate. Un-
like FLARe, however, CORFU hides the complexity of using these strategies by exposing only
a choice to be made by the application developers using declarative meta-data.

3.2. First-Class Support for Component-level Fault-Tolerance
The next layer in CORFU’s architecture provides fault-tolerance to individual components.

This layer adds no new fault-tolerance capability, but instead raises the level of fault-tolerance
abstraction provided by FLARe to encompass components rather than (just) objects. The four
dimensions of CORFU fault-tolerance supported at this layer include the following:

1. Replica grouping. Since components can consist of several objects, replica objects must
be grouped according to which object they represent and by the component to which they be-
long. CORFU’s component server helps automate the registration of replicas within the FLARe
infrastructure. The component server will create as many names as there are objects implement-
ing a component, using the component name as a prefix of the replica object ID name. This
design allows grouping the replicas according to their component and also preserving the object
ID scheme of the basic FLARe mechanism.

2. Error detection. The component server not only automatically initializes the ClientRe-
questInterceptor that detects connection failures as described earlier, but also automatically starts
a thread for communication with the local HostMonitor. It also establishes the necessary connec-
tion to the HostMonitor, thereby ensuring that each fault-tolerant component server is monitored
automatically.

3. Fail over mechanism. CORFU automates server- and client-side initialization of FLARe’s
mechanisms for fail over, including the redirection agent on the client-side that allows all compo-
nent servers to automatically receive the rank lists from the ReplicationManager. On the server
all IORInterceptors are automatically registered and transparently modify IORs to contain the
replica object ID necessary for fail over operations.
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4. State dissemination. State dissemination process in CORFU is divided in two distinct
steps: state extraction and state transfer. For state extraction, CORFU exposes FLARe’s State-
TransferAgent to components. The interfaces for state transfer between replicated components
are described in [15], which are integrated into the component container and into required com-
ponent interfaces.

For state transfer, CORFU not only provides FLARe’s point-to-point communication using
CORBA but also supports anonymous publish-subscribe communication using Data Distribution
Service (DDS) [16]. CORFU provides XML annotations in the deployment plan to allow ap-
plication developers to choose the transport mechanism they desire. Section 3.3.4 describes this
mechanism in detail.

3.3. First-Class Support for Fault-Tolerant Component Groups
The topmost layer in CORFU is responsible for providing fault-tolerance to groups of compo-

nents that are designated as failover units. This capability is a significant contribution of CORFU
and is explained below in accordance with the four dimensions of fault-tolerance described ear-
lier.

3.3.1. Replica Grouping for Component Groups
Challenge. The challenge of managing replicas of component groups results from the need to

group dependent components into entities that expose fail-stop behavior as a whole and provide
the basis for fail overs. Meeting this challenge is hard since the component-based DRE system
description given by a deployment plan is flat lacking support for component hierarchies or
fault-tolerance related properties. Likewise, the LwCCM runtime management interfaces do not
support operations on groups of components or support fault-tolerance configuration. Addressing
these limitations while remaining compliant to the standard is necessary since it ensures that the
standard LwCCM programming model and existing application code is not impacted.

Solution → Failover units managed by a FaultCorrelationManager. Adding support for
failover units involves two steps: (1) extend LwCCM D&C metadata format to support the no-
tion of failover units in a way that does not violate the standard and (2) at the runtime level,
maintain logical failover units in the management service. At the D&C level, CORFU realizes
each failover unit as a separate deployment plan. Additional standard compliant properties are
added to the D&C descriptors in the form of infoProperties, which indicate the ID of the failover
unit and its rank in the list of fail over targets. These additions enable CORFU to seamlessly use
existing D&C actors to start and shutdown a failover unit when necessary.

The runtime aspects of failover units are realized by a management service called the Fault-
CorrelationManager, which manages failover units belonging to a system. To integrate the Fault-
CorrelationManager into the existing D&C infrastructure, the Decorator pattern [17] is applied.
The FaultCorrelationManager implements the ExecutionManager interface and can therefore be
accessed by any service that uses the ExecutionManager interface. The resulting deployment
system structure is depicted in Figure 4.

The benefit of CORFU’s FaultCorrelationManager design is that for a client (i.e., the Plan-
Launcher) it is indistinguishable whether it interacts with the ExecutionManager directly or with
a FaultCorrelationManager. The FaultCorrelationManager will forward all requests to the Exe-
cutionManager, but will also perform additional actions based on the failover unit info-properties
prior to delegating to the ExecutionManager. Moreover, the FaultCorrelationManager design en-
sures that all computation-intensive operations are performed at system start-up, which optimizes
reaction times after a system is activated.
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Figure 4: FaultCorrelationManager Integration into the D&C Infrastructure

3.3.2. Efficient Error Detection at Component Group Level
Challenge. If any component of a failover unit fails, the entire component group must fail

and the recovery must be triggered quickly. The challenge for error detection is that failover
units can be large. Despite the size, it is necessary that errors be detected quickly and correlated
with the failover unit semantics since otherwise it may adversely impact the QoS requirements
of DRE systems.

Solution → A fast fault correlation algorithm. CORFU relies on the underlying FLARe
layer to detect a fault in a single object, and hence in a single component. CORFU provides
a fast fault correlation algorithm to correlate these detected errors with the failover unit so that
shutdown operations for the unit can be initiated. Algorithm 1 depicts the fault correlation al-
gorithm. The efficiency of Algorithm 1 hinges on the actions of the FaultCorrelationManager
during the deployment phase and on how it populates the data structures. For efficient lookups,
FaultCorrelationManager makes use of hash maps.

Algorithm 1 operates on these maps to process fault notifications during system operation.
This processing occurs in two phases. In phase one, all affected failover units (represented as
deployment plans) are determined based on the failure information using the internal maps. In
phase two, existing D&C actors (namely the DomainApplicationManagers) stop all component
applications that belong to these deployment plans.

The runtime complexity of this algorithm is proportional to the number of affected node
applications, which can maximally be O(m∗n), where m is the number of deployment plans in
the system and n the number of nodes in the system. This complexity stems from the fact that
each NodeApplication of each affected deployment plan must be shut down separately according
to the D&C interfaces. The complexity of the part that determines which plans are affected is
proportional only to the number of received failure entities and is optimized by using hash maps.

3.3.3. Failover of Component Groups
Challenge. Supporting failover units as a first-class attribute in the CORFU middleware

implies that after failure, all components within the group must fail over to a replica failover
unit. Since CORFU enhances the object-level fail over capabilities provided by FLARe, it is
necessary to map the semantics of the group to a collection of objects. Moreover, since FLARe
uses the notion of a ranked ordering for objects, this concept should carry over to the semantics
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Algorithm 1: FAILURE-REACTION (h,F)
Input: host name h
Input: list of failed object ids F
Data: Component Instance Map I
Data: Node Map N
Data: DomainApplicationManager Map M

/* phase 1 - determining affected failover units */;
look up object_id map O with key h in N;
create empty set P of deployment plan names;
for each Fi ∈ F do

look up instance name i with key Fi in O;
look up plan name p with key i in I;
if p is not in P then

add p to P;
end

end
/* phase 2 - shutting down all affected components */;
for each p ∈ P do

look up DomainApplicationManager m with key p in M;
retrieve list of ApplicationManagers A through m.getApplications () ;
for each NodeApplication a ∈ A do

call m.destroyApplication ( a);
end

end

of the failover unit. Adding these semantics directly within the ReplicationManager would break
the abstraction layering, since the ReplicationManager operates on the object level.

Solution → Fail over constraints. CORFU handles this challenge by modifying the Repli-
cationManager’s RankList ordering algorithm such that it can process fail over constraints. Fig-
ure 5 shows an example system infrastructure with three replicated components grouped into a
failover unit with two backup units.

The FaultCorrelationManager transforms this information into fail over constraints that de-
fine an order of objects per replica object ID. An ordered sequence of host names defines the fail
over order of each replica. The first host list entry indicates where the primary is hosted and the
following hosts contain backup component replicas. Since every host has only one replica of the
same group, this object ID uniquely identifies a replica.

The FaultCorrelationManager provides another algorithm called Failover Unit (FoU)-Ordering
to create constraints based on information from the deployment plan. Each deployment plan
representing a failover unit has an assigned rank within its group of failover unit replicas. Al-
gorithm 2 describes how the failover unit-based replica ordering is done. All known plans are
processed in the order of their failover unit rank. Each component entity results in one host name
entry in the corresponding object replica group. Constraints are updated using this algorithm
whenever the system structure changes. These changes occur when new deployment plans are
loaded or when failures occur and deployments are removed.

3.3.4. Real-time Aware Group-wide State Dissemination
Challenge. To address the timeliness requirements, applications may dictate when snapshots

shall be distributed from the primary replica to backup replicas. There are two main types of
timing behavior: (1) cyclic timing, where state is updated based on a given time interval, and (2)
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Figure 5: Interaction between FaultCorrelationManager and ReplicationManager through Failover Constraints

Algorithm 2: FoU-Ordering
Data: List of deployment plans D
Output: A constraint list L
partially sort plans in D by their ranks;
for each plan d ∈ D do

for each instance i ∈ d do
get object_id o property from i;
get host name n property from i;
append n to list entry of L with object_id o;

end
end

acyclic timing, where specific events (such as a client request handling in the primary) triggers
state synchronization. Since the timing cannot be predicted in the acyclic case, active involve-
ment of applications is needed to disseminate state at the right time. Combining both cases into
a general framework mechanism is thus needed to ease the burden of the application developer
without restricting timing schemes.

Solution→CHESS framework. We designed the Components with HEterogeneous State
Synchronization (CHESS) framework within CORFU that treats both cases in a uniform way.
This approach includes several steps of interaction between an application and a StateSynchro-
nizationAgent, which is a CORFU-supplied agent for state synchronization. Each process con-
taining server object replicas also hosts a StateSynchronizationAgent that is responsible for all
replication related functionality and therefore removes this obligation from the application de-
veloper.

The sequence of interactions described in Figure 6 provides a mechanism for flexible and
generic state dissemination, as described below:

a. Registration of components with the StateSynchronizationAgent through a unique appli-
cation ID allows the manager to retrieve state from the application when needed. The
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Figure 6: State transmission sequence based on a common interface

registration is performed during the start-up phase of the component.
b. The StateSynchronizationAgent exposes the interface method state_changed (in string

id) that allows the component to indicate a change of its internal state, which then triggers
state synchronization. The id parameter is needed by the agent to identify the component
among all locally deployed components managed by this agent.

c. It is the agent’s responsibility to react to the notification of a state change and retrieve the
component state from the component that issued the notification. Agents retrieve compo-
nent state by calling back the get_state() method, which is an upcall method invocation
on the application object to retrieve application state that is serialized for distribution.

d. As the final step, the StateSynchronizationAgent will then distribute component state to
backup replicas in form of the CORBA any instance, which stores the data type informa-
tion together with the value in a serialized format.

To allow for variability in state size and transport mechanisms used, CHESS uses the Strat-
egy pattern [17, pp.315f] so applications can flexibly select the desired protocol at runtime. The
state dissemination mechanism is represented by an object interface that provides a generic way
to access all variants of state dissemination in a uniform manner. This pattern shields component
developers from the concrete protocol for state dissemination. The Strategy pattern implementa-
tion is available as part of the StateSynchronizationAgent.

When applications create and register component replicas they can set a policy to determine
which mechanism will be used by the agent. The agent then will instantiate the appropriate con-
crete strategy object instance and associate it with the application to use with every dissemination
of state information.

Figure 7 shows how CHESS supports two different communication mechanisms using the
Strategy pattern: (1) synchronous CORBA calls and (2) multicast communication based on
OMGs Data Distribution Service (DDS) [16]. By providing a strategized approach to state
synchronization, applications can choose to configure the mechanism best suited to their per-
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Figure 7: The Strategy Pattern Applied to State Synchronization

formance and fault-tolerance requirements.

4. Qualitative and Quantitative Analysis of CORFU

This section evaluates CORFU using two different approaches. First, we conduct a qualita-
tive analysis of development effort by comparing object-oriented development of fault-tolerant
applications with development using the CORFU component-based infrastructure. Second, we
evaluate CORFU’s timing behavior to show its suitability for DRE systems by measuring failover
unit shutdown latency and client perceived fail over latency (which includes the state transfer ca-
pabilities provided by CHESS).

4.1. Evaluating Component-based Fault-Tolerance with Object-Oriented Fault-Tolerance

Developing applications based on distributed object-oriented fault-tolerance (e.g., using the
mechanisms provided by FLARe) incurs additional effort relative to component-based fault-
tolerance (e.g., using the mechanisms provided by CORFU). Below, we qualify this additional
effort and contrast it with CORFU.

Development obligations of object-oriented fault-tolerance. FLARe requires different
means to implement fault-tolerance on the server than on the client. The difference stems from
variations in the infrastructure on the client and server. Figure 8 describes the obligations re-
lated to server development. These obligations can be grouped into (1) object implementation
obligations that each CORBA servant must implement to integrate into the fault-tolerance infras-
tructure, (2) initialization obligations an application needs to perform to use FLARe functionality
and (3) configuration obligations at start-up that configure application fault-tolerant aspects.
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Figure 8: Responsibilities for Server-Side Fault-Tolerance

Some initialization steps (such as HostMonitor thread instantiation and registration) are just
performed once per process. Other steps (such as object implementation obligations, application
configuration, and registration of objects with the ReplicationManager), must be done for each
object in a process. Client initialization is not as complex, but still involves several process-
wide initialization steps (such as creating and registering the redirection agent and the request
interceptor).

Consequences for application development. The presented obligations result in consid-
erable effort for application development. Manually implementing these initialization steps in
clients and servers increases the risk of accidentally omitting or confusing steps. It also limits
software reuse for different deployment scenarios since the number and types of object replicas
per-server process are hard coded. Collocating objects within one process require recompilation
of the server application and changes of configuration metadata.

Benefits of CORFU’s component-based approach. By integrating FLARe functionality
into a fault-tolerant component server, CORFU overcomes many limitations with traditional
object-oriented fault-tolerance approaches. For example, CORFU’s client and server capabilities
are available within the same component server, which is an important architectural capability
since CORBA objects often play both client and server roles simultaneously. Below we present
the benefits of CORFU’s component server approach by evaluating them in terms of the three
different types of obligations outlined above:

a. Component-based application business logic. The application business logic in a com-
ponent is provided by the servant executor, which is similar to an object implementation in
CORBA 2.x. Unlike CORBA 2.x, however, LwCCM provides code generation function-
ality in the form of the IDL and CIDL compilers that can automatically create necessary
code artifacts thereby completely decoupling a servant executor from having to provide
additional code to integrate with the fault tolerance mechanisms.

b. Initialization. Most client and server initialization states can be done automatically.
CORFU’s fault-tolerant component server hides the complexity of initializing FLARe en-
tities from component developers. The registration of individual components with the
framework are also done automatically by CORFU’s fault-tolerance-aware session con-
tainer.

c. Configuration. Instead of using proprietary mechanisms on a per-application level, CORFU’s
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component server approach enables the use of standardized configuration mechanism pro-
vided by the LwCCM D&C specification. Special fault-tolerant component attributes are
used in the context of CORFU’s automated configuration framework, so that no proprietary
solutions that differ from application-to-application are needed.

Summary of analysis. CORFU increases the transparency of using fault-tolerance mecha-
nisms for both client and server development. This transparency allows application developers
to focus on implementing their application business logic, while fault-tolerance aspects can be
added and configured orthogonally. It is possible to collocate fault-tolerant components without
changing their implementation code. CORFU therefore also substantially improves the flexi-
bility of system deployment and system evolution. Moreover, there are fewer possibilities for
accidental faults in application development since initialization is performed in a standard way
by the component server.

4.2. Experimental Results

Below we present experiments that evaluate the timing behavior of CORFU and quantify
the overhead and latencies involved in its fail over mechanisms. First, we evaluate the over-
head in client’s call-path due to client-side interceptor and its capability to fail over to the next
server replica in the order of RankList. Second, we evaluate the overall time taken by CORFU’s
FaultCorrelationManager to react to a failure and shutdown the primary failover unit. Third,
we evaluate the client perceived latency with the increasing size of the failover unit and where
the failure occurs within a failover unit. Finally, we evaluate how CORFU reacts in the case of
processor failure. All experiments except the last one assume process failures only.

4.2.1. Testbed
All experiments have been conducted on ISISLab (www.isislab.vanderbilt.edu ), which

is a LAN virtualization environment containing upto 56 identical blades connected through 4
Gbps switches that allow for dedicated links per experiment. Each blade has two 2.8GHz Xeon
CPUs and 1 gigabyte RAM. The Fedora Core 6 Linux distribution with rt11 real-time kernel
patches is used as operating system. The enhancements to FLARe and the CORFU implemen-
tation are based on TAO version 1.6.8, a real-time CORBA implementation and CIAO version
0.6.8, which is an implementation of LwCCM. CORFU and all testing applications have been
built using the GNU compiler collection (gcc) version 3.4.6.

4.2.2. Overhead Measurements
Experiment setup. This experiment compares the overhead a client experiences for CORBA

2.x object-oriented applications and LwCCM component-based applications. A client applica-
tion periodically invokes an operation on a replicated server application. For each call the server
processing time and the response time on the client side are measured. The communication
latency is calculated by subtraction of the processing time from the response time.

Requests are made with a period of 200 milliseconds. A defined execution time of 20 mil-
liseconds is realized through the CPU worker component of the system execution modeling tool
CUTS[18]. On the eleventh invocation, a fault is injected in the server process to shut it down,
which then causes the client to fail over to the server’s backup replica.

All primary servers are hosted on one host, the backup servers are hosted on a separate host.
The clients are deployed on an additional host. CHESS state synchronization module is disabled
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in this experiment because it is needed only when the primary servers modify their state.1

The experiment is implemented in two variants. The first variant is object-oriented and con-
sists of a client and a server executable that directly use FLARe functionality. The second variant
is component-based and uses CORFU’s fault-tolerant component server. Each variant has three
different experiment configurations with one, two, and four client server groups running simul-
taneously. We repeat each measurement configuration 100 times to obtain representative results.

Analysis of results. An example for a single measurement for fail over latency given in
Figure 9 represents the component-based case with one running component. Ten invocations

Figure 9: Single Fail over Latency Measurement

before and after the failure event are recorded. The first ten invocations show a communication
overhead between zero and one millisecond, which represents failure-free communication with
the primary server component.

The client experiences an increased response time on the eleventh request, since the primary
server is no longer responding. This results in a client fail over that involves the interception
of a CORBA exception and the forwarding to a backup replica. As shown in Figure 9, latency
increases from one millisecond to four milliseconds for the client.

Figure 10 shows the latency averages and jitter minima and maxima as measured in all
six configurations. The CORBA 2.x-based object-oriented experiment with one application
shows a communication overhead of approximately three milliseconds, while the correspond-
ing component-based experiment has a latency of four milliseconds. This result shows that the
extra cost for CORFU’s LwCCM component-based fault-tolerance with 25 percent additional
overhead is relatively small.

The component-based experiments with configurations of two and four applications have a
much lower jitter and a similar average of four milliseconds, whereas the object-oriented ex-

1Since state synchronization overhead is highly application dependent and can skew overhead measurements, we take
state synchronization time into account in the third experiment, where we measure client perceived fail over latency.
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Figure 10: Results for Failover Latency Measurements

amples have growing latencies. This latency and jitter increase—which is proportional to the
number of applications—is not directly related to the fail over mechanism but reflects the im-
plicit differences between the experiment variants. In the object-based case, executables start
processing right away while a component is first loaded into the container and then triggered
later on to start processing. Nevertheless, the results show that there is no unreasonably high
overhead for CORFU’s component-based fault-tolerance.

4.2.3. Failover Unit Shutdown Latency
Experiment setup. This second experiment measures the latency involved in the process

of shutting down failover units of various sizes. The following factors contribute to shutdown
latency:

a. Error detection and notification delay from the failure of a component to the beginning of
the notification processing in the FaultCorrelationManager.

b. Reaction delay within the FaultCorrelationManager to determine which components are
affected and which deployments therefore need to shutdown. This latency is dependent on
the size of the failover unit.

c. Shutdown time using the LwCCM D&C services (DomainApplicationManager) and its
interfaces to destroy the affected NodeApplications. Depending upon how D&C services
are implemented, this latency may or may not depend on the size of the failover unit.

To observe the impact of the size of the failover unit, we increased the number of components
in a failover unit from two to five. The structure of the five component experiment and the
sequence of events are shown in Figure 11. The setup includes seven processing nodes of which
one node is dedicated for the CORFU management entities, such as the ReplicationManager,
the FaultCorrelationManager, the ExecutionManager, and other elements of the LwCCM D&C
run-time. Five other nodes have a HostMonitor deployed to observe the system state per node.
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Figure 11: Setup for FOU Shutdown Latency Measurement

Each node hosts one component for each of the five deployed failover units. There is one
primary failover unit that includes one component per node, named A0 to E0. This failover unit
is replicated four times ensuring that no two replicas of the same component are collocated on
the same node. Each backup unit contains replica components An to En of each component in
the primary unit. The fail over order of the units corresponds to their number.

The client is deployed on node-7 as shown in Figure 11. At the beginning of the experiment,
the client initiates communication with component A0. The failures are triggered at the prede-
termined iterations in the active server component. Subsequently, client fails over to the next
replica of component An, which belongs to the next failover unit.

As the experiment progresses, failures are triggered leading to a failover sequence of primary
FOU, backup FOU 1, backup FOU 2, and so on. Each experiment run therefore allows us to
measure four fail over latencies. Due to the need for consistent time, all measurements are taken
on node-1 in the FaultCorrelationManager, which alleviates the need for synchronized clocks.
The events are timestamped in the following sequence:

a. A failure is provoked in component An of the active FOU, which is detected by the Host-
Monitor and reported to the ReplicationManager.

b. The ReplicationManager notifies the FaultCorrelationManager about the failure and the
FaultCorrelationManager takes a timestamp t1.

c. The FaultCorrelationManager performs the FAILURE-REACTION algorithm and takes a
timestamp t2 after the affected failover units have been identified in phase 1.

d. The FaultCorrelationManager accesses the DomainApplicationManager to retrieve all node
applications for the corresponding deployment plans and iterates through them to shut
them down. After the last call is returning, a third timestamp, t3, is taken to indicate the
end of the shutdown request.

e. The HostMonitors notify ReplicationManager about all the shutdowns of the affected com-
ponents, which in turn notifies FaultCorrelationManager. Upon reception of the last shut-
down notification, a time-stamp t4 is taken in FaultCorrelationManager that represents the
time when the failover unit is completely shutdown.

Analysis of results. The results are summarized in Table 1. Three essential components of
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Size of tround-trip (t4 - t1) tshutdown (t3 - t2)
failover unit (ms) (ms)

min avg max min avg max
2 192 215.6 265 13 14.4 16
3 138 225.4 283 18 21.9 26
4 130 263.1 313 23 26.9 31
5 252 267.4 310 32 32.9 35

Table 1: Shutdown Latencies (Min and Max) of Failover Units of Various Sizes

the latency from this experiment include the following:

• Reaction time (treaction), which is the time spent within the FaultCorrelationManager be-
tween the arrival of the first failure notification and the beginning of the shutdown pro-
cess. The reaction time constitutes the time needed to execute the FAILURE-REACTION
algorithm and to serialize incoming notifications into a thread-safe queue to ensure cor-
rect processing of potentially concurrent error notifications. We observed that treaction was
consistently under one millisecond in the experiment and therefore we do not consider it
further in the experiment.

• Shutdown time (tshutdown), which is the time needed to invoke D&C services provided by
the DomainApplicationManager to terminate the remaining live components in the failover
unit where the failure occurred. Table 1 shows that minimum, average, and maximum
values of tshutdown increase linearly with the increasing size of the failover unit. This result
is clearly an artifact of the implementation detail because an iterative construct is used in
the FaultCorrelationManager to invoke the LwCCM D&C services.

• Round-trip time (tround-trip), which is the time difference between the notifications of the
first component failure and the last component shutdown (treaction and tshutdown are both
subcomponents of tround-trip). In spite of the predictability of prior two sub-components,
Table 1 indicates that tround-trip is not predictable (but bounded at 313 milliseconds). This
result is expected due to the inherent non-determinism in three timing subcomponents:
(1) the time taken by component server processes to shutdown gracefully, (2) the subse-
quent failure notification going from the HostMonitor to the ReplicationManager, and (3)
concurrent handling of these notifications in the FaultCorrelationManager.

4.2.4. Impact of Failover unit Size on Client Perceived Shutdown Latency
Experiment setup. The third experiment measures client perceived fail over latency and

how the location of the failing component in a failover unit affects it. The deployment of compo-
nents and failover units in this experiment is identical to the previous one, though we make two
important changes in the functionality of the application:

• We enabled CORFU’s state synchronization module to allow server components to syn-
chronize their internal state with their replicas. Synchronization occurs synchronously
using CORBA at the end of the remote method call. We did not use DDS in these experi-
ments.

• We allow nested synchronous invocations from component Ai to Bi, Bi to Ci, Ci to Di,
and Di to Ei for every invocation made by the client, where i indicates then active failover
unit. Upon invocation, every component (except En) immediately invokes its following
component and waits for it to return. Upon returning, it consumes CPU for a predetermined
(20 milliseconds) amount of time. These nested invocations allow us to trigger failures
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in different components instead of the just the head component client talks to. In this
experiment, we trigger failures in the head component (Ai) as well as in the tail component
(En) and observe its effect on the client perceived fail over letency.

When a tail component fails, the client remains unaware of such a failure and continues wait-
ing for the head component to return. Client interceptors detect failure of the head component
only after FaultCorrelationManager shuts it down as described in the previous experiment. In
such a case, failover unit shutdown latency and the order in which components are shutdown
affect the client perceived failover latency.

Analysis of results.
Figure 12 and Figure 13 summarize the effects of location of the failing component on client

perceived fail over latency with increasing size of failover unit.

Figure 12: Client Perceived Fail over Latency When the Head Component Fails

Figure 13: Client Perceived Fail over Latency When the Tail Component Fails
When the head component (An) of a failover unit dies, client recognizes the failure imme-

diately, and CORFU’s interceptors redirect the client to the next available failover unit. We
therefore do not observe a linear increase in the client perceived fail over latency, even with the
increasing size of failover unit in Figure 12.
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The observed latency also remains unaffected by the order in which D&C services shutdown
the components. In forward (An to En) and reverse (En to An) iteration order, the fail over latency
remains tightly bounded at 13 milliseconds. The increase in the client perceived fail over latency
compared to the first experiment is due to the state synchronization overhead at the end of each
nested invocation.

In contrast to the head component failure, client perceived fail over latency is sensitive to
the varying sizes of failover units when the tail component fails. Figure 13 shows that when
LwCCM D&C services shutdown components in the forward (An to En) order, client perceived
fail over latency remains relatively constant because as soon as the head component is shutdown,
the client fails over to the backup failover unit.

In the case of reverse (En to An) iteration, conversely, the head component is the last one
to shutdown causing client to wait longer in proportion to the size of the failover unit. More-
over, tshutdown component described in the earlier experiment also gets added to the overall client
perceived latency.

4.2.5. Impact of Processor Failures.
Experiment setup. The fourth experiment measures the impact on client perceived fail over

latency when processors fails. We maintained the same experimental setup as before to compare
process and processor failures. We ran two variants of the experiment: the first simulates a
processor failure of the node hosting the head component and the second simulates a processor
failure of the node hosting the tail component.

To simulate processor failure we used the iptables utility, which allows us to setup, maintain,
and inspect the tables of IPv4 packet filter rules in the Linux kernel. We insert a new filter rule
in the OUTPUT chain of the kernel’s iptables that drops every outgoing TCP packet to the nodes
involved in the experiment. The filtering rule has the following two effects on the experiment:

• ReplicationManager ceases to obtain the periodic heart-beat beacon from the HostMonitor
running on the node that fails. When the ReplicationManager fails to receive 3 consecutive
heart-beats from the same node, it declares node failure and informs the FaultCorrelation-
Manager.

• The component that invoked the remote method call on the component running on failed
node, waits till the method call returns. In fact, the method call never returns because all the
outgoing TCP traffic is dropped at the failed node. The client will remain blocked till the
remote method call returns from the head component if the node hosting that component
fails.

Analysis of results. In case of the tail node failure, the client perceived fail over latency was
identical to that of Figure 13 since FaultCorrelationManager begins shutting down the primary
failover unit as soon as it receives a failure notification from the ReplicationManager. The head
component the client is talking to is also shutdown by D&C services and subsequently, the client
fails over to its next available failover unit.

In the case of head node failure, however, we observed that client perceived fail over latency
is much higher than before, although FaultCorrelationManager shuts the failover unit down. In
fact, it is bounded by TCP’s retry timeout, which is at least 100 seconds as specified in RFC
1122 [19]. We verified this result by modifying the default value, 15, of tcp_retries2 variable of
kernel’s IPv4 module using ipsysctl utility. When the value of tcp_retries2 variable was low, the
client TCP connection times out much earlier.

This experiment indicates that current CORFU’s infrastructure requires enhancements, par-
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ticularly in the RedirectionAgent, to force clients fail over in a timely fashion in the case of head
processor failure. In the following section we describe how we plan to improve client perceived
latency and address other limitations.

4.2.6. Summary of the Analysis
The experiment results described above showcase several benefits of CORFU. Using a client-

side fail over mechanism allows for short fail over latencies since communication with the central
replication manager in the instant of a failure is avoided. This interaction with the Replication-
Manager would be a bottleneck in performance of large-scale DRE systems.

As shown by the first experiment, the client-side fail over latency is relatively small, being
four milliseconds for the component variant. Having evaluated the benefits for CORFU con-
cerning application development and system deployment we also needed to ensure that this does
not drastically degrade performance and therefore render the solution unusable for DRE appli-
cations. As our experiment shows, client fail over in CORFU is comparable in performance and
incurs only minimal overhead, having an average response time of four milliseconds.

Compared to the client fail over latency the failover unit shutdown latency of more than 200
milliseconds on average is relatively high. The reason for this is partly to be found in the iterative
way a deployment has to be shutdown based on the domain application and node application in-
terfaces. Another source of high response times is the communication time between the different
entities, such as the HostMonitors, the ReplicationManager and the FaultCorrelationManager.
The internal reaction time of the FaultCorrelationManager to determine deployments that are af-
fected by faults is already optimized through the use of hash maps with close to constant access
times.

Based on these sources of overhead, we envision the following four approaches to reduce the
round-trip latency for failover unit shutdown and improve client perceived fail over latency:

• Concurrent shutdown. To reduce the shutdown latency, the calls initializing shutdowns
for affected node applications can be parallelized instead of being done in sequential order.
A suitable mechanism is the CORBA Asynchronous Method Invocation (AMI) [20, 21]
specification. AMI allows the FaultCorrelationManager as a client to issue all shutdown
requests without having to wait for their response in between, which would significantly
reduce shutdown time, especially in large deployments.

• Collocation of management entities. Some communication paths, especially between
ReplicationManager, FaultCorrelationManager, and ExecutionManager can be optimized
by collocating these entities into the same process space. This optimization greatly re-
duces communication times since the network stack can be avoided and in-process (i.e.,
loopback) communication mechanisms are used instead.

• Real-time CORBA. For the communication paths that need to go through the network,
communication can be made more reliable and deterministic by using Real-time CORBA [22]
features, such as the real-time scheduling service, private connections, pre-allocation of
connections, and end-to-end priority preservation.

• Enhanced redirection agent. CORFU’s existing Redirection Agent reacts only when
system-level exceptions are raised on the client-side. In the case of the head processor
failure, these exceptions are thrown when the TCP connection times out, which is much
later than the actual event of processor failure. The ReplicationManager must therefore
communicate to the Redirection Agent not only the RankList of IORs but also whether a
processor has failed. The Redirection Agent must perform extra steps to close the soon-
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to-be-dead TCP connection and force the client to fail over.
Although there is still potential for performance improvement, the measurements show that

CORFU is suitable for DRE systems, such as our MCS case study described in Section 2, and
offers comparable performance to the distributed object-oriented computing fault-tolerance pro-
vided by FLARe.

5. Related Work

This section compares our work on CORFU with related research in DRE systems along the
following three dimensions:

• Frameworks for fault-tolerance. Since CORFU provides fault-tolerance support to component-
based DRE systems we compare and contrast it with related fault-tolerance frameworks.

• Dependency analysis for fault correlation. Since CORFU provides fault-tolerance for
a group of components treated as a failover unit we compare and contrast it with related
work on fault correlation frameworks.

• Modeling dependability aspects. Since CORFU is geared to integrate with and lever-
age the analysis of model-based frameworks (such as MDDPro [13]) we compare it with
related modeling efforts.

In each dimension we also compare CORFU with our prior work and summarize the novel con-
tributions made by CORFU relative to this earlier work.

5.1. Frameworks for Fault-Tolerance
A framework for fault-tolerance integrates different aspects of dependability, including error

detection, fault diagnosis, fault isolation, error recovery including state consistency, and sys-
tem reconfiguration. Other forms of dependability, such as fault prevention, fault removal, and
fault forecasting, can also benefit from fault-tolerance frameworks. Below we compare CORFU
with prior work that covers a wide range of fault-tolerance mechanisms provided by different
frameworks and different domain scope.

Related work that is most similar to CORFU are AQUA [23, 24] and JAGR [25]. AQUA
uses ACTIVE replication to provide both availability and timeliness capabilities for applications,
and optimizes the response times for applications by dynamically deciding on the number of
replicas executing the request. AQuA objects are contained in replication groups that provide a
variety of replication schemes realized by a message-based group communication mechanism.
AQuA uses CORBA to define and implement objects but maps them to the underlying group
communication mechanism. The mapping layer includes mechanisms for error detection and
failover. The fault model includes process failures that are detected through heartbeat messages
and data value failures. A centralized dependability manager coordinates groups and manages
the fault tolerance infrastructure.

While AQuA supports fault-tolerance at the granularity of objects, component-based systems
often includes additional levels of granularity. For example, components themselves can com-
prise objects and hence dependencies between components can result in their need to failover
together. Component-based frameworks such as CORFU go beyond the general framework ap-
proach provided by mechanisms like Aqua by additionally defining a component life-cycle and
development process. The benefit of such a process is that it allows to formalize other aspects
of dependability, such as fault prevention through offline analysis or methodologies for fault
removal and system validation.
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JAGR [25] builds on a component-based infrastructure for the domain of three tier web ap-
plications with permanent data storage. It focuses on intelligent fail over mechanisms based on
dependency information gained through automatic failure path interference as described earlier.
JAGR’s main components are a modular monitoring structure that allows to plug in different
monitors for different error types. An intelligent recovery manager gathers this information and
applies micro-reboots to restart parts of the system that are affected. Based on the result it can
escalate the reboot scope from single components to the whole system.

Mechanisms such as JAGR apply predominantly to enterprise systems where persistence of
data is important and for which large storage capacities are available. In DRE systems, however,
persistent data storage and stateless components cannot be applied in all cases due to limited stor-
age and processing resources. The CHESS state management mechanism provided by CORFU
therefore takes into account state replication of individual components and provides fail over
mechanisms as a major means for fault-tolerance instead of micro-reboots provided in Jagr.

There are also other frameworks for fault tolerance. For example, Delta-4/XPA [26] provides
real-time fault-tolerance to distributed systems using semi-active replication. MEAD [27] and its
proactive recovery strategy for distributed CORBA applications can minimize the recovery time
for DRE systems. The Time-triggered Message-triggered Objects (TMO) project [28] considers
replication schemes such as the primary-shadow TMO replication (PSTR) scheme, for which
recovery time bounds can be quantitatively established, and real-time fault tolerance guarantees
can be provided to applications. DARX [29] provides adaptive fault-tolerance for multi-agent
software platforms by dynamically changing replication styles in response to changing resource
availabilities and application performance.

Many mechanisms for providing fault tolerance and assuring timeliness properties in these
related works are orthogonal to the focus of CORFU. It is conceivable to design a different
container mechanism in CORFU that can support active replication as in MEAD, or support the
dynamic changing of replication styles as in DARX.

Our earlier work on the DOORS framework [30, 31] provides warm-passive replication to
CORBA objects. Efforts such as DOORS and Eternal [32] led to the standardization of the Fault-
tolerant CORBA specification [33]. These efforts focus on object-based fault-tolerance, and did
not address real-time requirements of component-based DRE systems.

Our recent work called GRAFT [34] provides a generative approach to deal with group
fail over. Like CORFU, the GRAFT project identifies the lack of first-class support for fault-
tolerance in component middleware. Unlike CORFU (which provides a first-class middleware
support for group fail over), however, GRAFT relies on an aspect-oriented approach to weave in
group-based fault-tolerance.

The GRAFT approach may become a limiting factor when fault management and recovery
yields interactions with complex semantics (e.g., timing and state consistency). In these circum-
stances, first-class support within the middleware is preferable. Moreover GRAFT uses excep-
tions to detect critical errors, whereas CORFU provides a monitoring framework that supports
advanced error detection, such as failure of component server processes, and failure of the nodes
hosting these servers.

5.2. Dependency Analysis for Fault Correlation

A key challenge for effective failure handling is to gain comprehensive knowledge about
which parts of a system are affected by a fault. Faults cannot be detected directly but only
through the resulting errors they cause. Pinpointing the cause of faults allows reasoning about
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system parts that are affected by the original fault. This allows fast reaction to errors before they
can cause subsequent errors in other parts of the system.

Obtaining knowledge of error propagation dependencies between system elements is there-
fore crucial to realize dependable systems. This information can be used to determine which
system parts will eventually be compromised. This enables comprehensive failure handling as
opposed to simple reactive approaches that provide only monitoring for the basic elements of
the system. Fault correlation is particularly important to support group fail over since any single
fault within any of the participant of a failover group must quickly be correlated as a group failure
thereby effecting a rapid group fail over.

Research on detection and expression of failure dependencies between system components
can be categorized into (1) static modeling and (2) observation-based techniques. Static modeling
follows a white box approach that allows system developers to explicitly specify different types
of dependencies and then reasons on fault propagation based on this information. Observation-
based modeling treats systems as a black box and uses fault injection and monitoring to analyse
which errors cause which parts of the systems to fail. This information is then used to build a
system model.

Viera et. al. [35] present an approach that automates dependency analysis in component-
based systems. The Component-Based Dependency Model allows incorporating diverse types
of dependencies that are categorized into intra-component dependencies that define execution
and error propagation paths within one component implementation, and inter-component depen-
dencies that define dependencies on external component or hardware and software infrastructure
elements.

This approach is powerful because it integrates different sources of information about the
system, such as deployment information, additional component metadata and metadata about
component connection, all of which help in the correlation. A concrete example is event corre-
lation [36] in the domain of event based systems, where dependencies between different event
sources are used to identify the original fault. This approach is static, however, since it builds
its dependency information based on statically known metadata. It therefore cannot react to
unforeseen or emergent failures, and error propagation paths.

To address the limitations of static dependency information the Automatic Failure-Path Infer-
ence [37] and Active Dependency Discovery [38] approaches rely on system behavior analysis
at runtime. For example, the automatic failure-path inference approach focuses on component-
based web applications implemented in Java and assumes that errors express themselves as ex-
ceptions. Fault dependencies are captured as a directed graph called failure-propagation map.
This graph is populated through direct interaction with the system.

Fault injection and monitoring of resulting component crashes is used to build up an initial
graph for a system. Subsequently, this graph is corrected based on non-intrusive monitoring
of the system under nominal operation. While this approach is very flexible in adopting the
dependency information to the system it is limited in its support of different fault types due to its
focus on exceptions and the Java programming language.

This related work on dependency analysis relates to our research on CORFU since they pro-
vide methodologies to define groups of dependent components. The related work is generally
orthogonal to CORFU, however, since they provide algorithms for dependency analysis, whereas
CORFU provides mechanisms to honor the dependencies. It is conceivable that to improve the
fail over shutdown latencies shown in Section 4.2, CORFU’s component lifecycle mechanisms
may include the pre-determined dependencies to expedite the group shutdown process.

A related approach known as Rx [39] handles deterministic software faults. Rx treats software
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faults as allergies correlating the exact cause of the fault to its operating environment. When Rx
encounters a fault, it rolls back the application to an earlier checkpointed state and reexecutes the
application in a different operating environment. The premise behind this approach is that the
operating environment and parameters are the likely cause for the software fault, so a change in
the conditions may help eliminate the fault.

5.3. Modeling Dependability Aspects

CORFU provides runtime middleware mechanisms for component-based fault-tolerance, par-
ticularly for a group of components treated as a single unit. The deployment and runtime mecha-
nisms in CORFU can benefit from offline analysis tools for dependability. For example, such an
analysis could include decisions on where to deploy the components so that the overall reliability
of the system improves. Below we provide some examples of related work in this area.

Cadena [40] is a model-driven engineering tool that supports modeling of component behav-
ior early in the design process based on property specifications that capture high-level component
information. This information includes inter-dependencies between ports of other components
and intra-dependencies that capture relationships between ports of the same component. The
properties also capture behavioral specifications that allow reasoning of temporal behavior and
control-flows within components.

Based on this information, interface definitions and assembly descriptions of the system
model can be constructed to allow reasoning of various system aspects, such as event rate as-
signment, effective component distribution that minimizes network traffic, and schedulability
analysis. These aspects can consider replicas of system components to support fault-tolerance.
Cadena not only encompasses a runtime framework, but also a domain-specific modeling tool
suite for system modeling and a simulation environment for model checking and verification.

Our earlier work on MDDPro [13] focused on modeling dependability QoS requirements.
MDDPro’s domain-specific modeling language provides an orthogonal view to the deployment
structure of a system and allows the annotation of fault-tolerance attributes to components. It
introduces three concepts to explicitly model component replication:

a. Failover units, which define a group of system entities as an atomic unit of failover. Dif-
ferent parameters can be defined on the group that characterize the type of failure recovery
strategy used (e.g., number of replicas, heartbeat frequency, among others).

b. Replication groups, which define what components replicate the same logical object. Repli-
cation groups can be used to configure state synchronization policies, such as synchroniz-
ing the state every N requests, where N is configurable; or defining the levels of consistency
including weak or eventual consistency.

c. Shared risk groups, which can model the probability of a failure propagating from one
processing node to other nodes. This model is realized as a tree where edges represent
neighboring nodes and distances in number of edges serve as a measure for how likely a
failure is to propagate.

The MDDPro modeling framework can be strategized with different placement algorithms
that determine the mapping of replicas to nodes. In particular, MDDPro focuses on algorithms
that automatically place components and their replicas to minimize the chances of simultaneous
failures. It also generates the necessary deployment metadata via model interpreters. CORFU
complements Cadena and MDDPro by providing a runtime middleware infrastructure that can
process and instantiate systems modeled with Cadena or MDDPro.
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6. Concluding Remarks

The state-of-the-art in fault-tolerant DRE systems has not accounted for application devel-
opment effort, application lifecycles, and system evolution simultaneously. Moreover, many
middleware-based solutions provide relatively low-level abstractions, e.g., function-based or
object-oriented. In contrast, component-based middleware can provide sophisticated fault de-
tection and recovery that is suitable for DRE systems, while also improving transparency of
fault-tolerance aspects in the application development process, thereby enhancing DRE system
flexibility, evolvability, and quality. This paper describes how our CORFU middleware addresses
key challenges of component-based fault-tolerance, including the need for efficient synchroniza-
tion of internal component state, failure correlation across groups of components, and configura-
tion of fault-tolerance properties at the component granularity level.

We learned the following lessons from our work on CORFU presented in this paper:

a. Fault-tolerance affects all aspects of a system and introduces a new dimension of complex-
ity. It is therefore hard to capture all fault-tolerance aspects in a comprehensive middleware
framework. Application characteristics differ greatly even within the DRE domain, which
impacts decisions on what protocols are used, architectural concepts applied and technolo-
gies chosen. Each of these choices might require different approaches to fault-tolerance.

b. Component-based middleware allows for greater fault-tolerance transparency. As demon-
strated by CORFU’s fault-tolerant component server, the component-based development
paradigm and lightweight fault-tolerance integrate well, thereby hiding key sources of
complexity in this domain.

c. Layering and separation of concerns foster flexible and extensible architectures. This les-
son became clear in the design of CORFU’s FaultCorrelationManager. By building the
failover units on top of the existing object based approach and separating concerns through
fail over constraints, the FaultCorrelationManager design and implementation could be
kept small and focused on its main task to analyze the system infrastructure and react on
failures using other existing software, namely the deployment and configuration infras-
tructure.

d. Although separation of concerns is needed to foster flexibility, care must be taken to en-
sure that it does not impact performance. For example, the clean separation of the fault-
tolerance capabilities within the container model of LwCCM and the reliance on the D&C
actors for startup and shutdown may impact performance, particularly when a failover unit
must be shutdown in a timely manner. Leveraging the D&C process in a traditional man-
ner leads to sequential invocation of D&C actors to shutdown the necessary components.
As the size and distribution of failover units increase, the shutdown latency will increase
linearly, which impacts client-perceived response times.

e. Performance of fault-tolerance is hard to measure due to the singular nature of failures
and non-determinism in networks, operating system and middleware. Since faults are not
periodic events in systems expecting fail-stop behavior, the setup of experiments is com-
plex. Each measurement can only measure a limited number of faults before the complete
system has to be restarted. The nature of DRE systems also makes it hard to gather reliable
timing information due to network jitter, operating system scheduling and other sources of
non-determinism. Experiments and testing scripts must be automated to allow a sufficient
number of single measurements.

CORFU is available in open-source form as part of the CIAO LwCCM distribution available
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from www.dre.vanderbilt.edu/CIAO .
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