
Ensuring Low-Latency and Scalable Data
Dissemination for Smart-City Applications

Shweta Khare∗, Hongyang Sun∗, Kaiwen Zhang†, Julien Gascon-Samson‡ and Aniruddha Gokhale∗
∗Vanderbilt University, Nashville, TN 37235, USA; Email: {shweta.p.khare,hongyang.sun,a.gokhale}@vanderbilt.edu

†’Ecole de technologie supérieure, Montreal, Canada; Email: kaiwen.zhang@etsmtl.ca
‡University of British Columbia, Vancouver, Canada; Email: julien.gascon-samson@ece.ubc.ca

Abstract—Low latency and scalable data dissemination is
a critical requirement for many IoT applications, e.g., smart
city applications, which are often realized by using the pu-
blish/subscribe communication paradigm. Ensuring low latency
requires effective load balancing of the publish/subscribe topics
across the different publishers and subscribers. To that end we
present ongoing work on a data-driven approach to learning a
latency-aware model of IoT broker loads, and in turn using it to
determine broker replication, and balancing topics across them.

Index Terms—topic-based publish/subscribe, IoT, latency, sca-
lability.

I. INTRODUCTION

Applications from IoT domains, such as smart cities, are
large-scale, continuously online and highly latency-sensitive
in nature. They collect large amounts of monitoring data from
a diverse range of sensors/information sources and process it in
a streaming fashion to provide a variety of real-time services,
e.g., real-time alerts of traffic congestion to drivers. At the time
of rush hour, there can be thousands of commuting vehicles
in a medium sized city, which necessitates an efficient, low
latency and scalable method for data dissemination.

The publish/subscribe (pub/sub) [1] communication para-
digm is highly suitable for the data dissemination needs of
smart-city applications as it offers scalable, anonymous and
decoupled interaction between the data producers (publishers)
and data consumers (subscribers). Subscribers simply specify
their interest in the form of subscriptions, which is a topic
name in topic-based pub/sub or predicates over data attribute
values in attribute-based pub/sub. The pub/sub system for-
wards data which matches the subscriber’s interest/subscrip-
tion to the publisher. Such loose coupling allows the system
to scale seamlessly.

Although pub/sub is highly amenable to scalable data dis-
semination, a shared, city-wide pub/sub service that meets the
data dissemination needs of all smart-city applications must be
able to (i) dynamically adapt to changing load while making
efficient use of resources, and (ii) support non-functional QoS
properties, such as bounded latency of data delivery. Very few
pub/sub systems provide these two properties holistically. For
example, IndiQoS [2] ensures bounded latency by reserving
network level resources over a distributed hash table (DHT)-
based peer-to-peer overlay. However, the capability to make
network-level resource reservation is not always available.

Harmony [3] continuously monitors link quality and adapts
routing paths for QoS management over an unstructured peer-
to-peer overlay network. If the underlying transport supports
priority based scheduling, Harmony can make use of it for
QoS-aware scheduling of messages at the brokers. Instead of
using fixed routing paths, DCRD [4] dynamically switches
among next-hop downstream nodes to bypass failures and to
meet QoS requirements. For each subscriber, brokers maintain
a sorted list of next-hop nodes to choose from. The nodes
are sorted on the basis of two metrics- expected delay and
reliability of message delivery-which is computed for each
next-hop node in a distributed manner. FogMq [5] migrates
entire brokers from one fog site to another to ensure bounded
tail latency using a distributed flocking algorithm.

While these solutions do provide QoS guarantees, they
have been designed for peer-to-peer (structured/unstructured),
multi-hop overlay networks and are focused largely on re-
routing paths for message delivery in a network aware fashion.
These solutions are not directly applicable to single-hop, single
broker layer, cloud-based pub/sub systems like MQTT, Kafka,
Redis, ActiveMQ, etc, which are increasingly being used in
real-world IoT deployments, e.g., SmartSantander [6].

Latency is affected by both the processing delay at the
broker and network link characteristics. If we consider net-
work latencies within a city to be fairly predictable, then
managing load at the pub/sub brokers becomes important for
ensuring acceptable end-to-end data dissemination latency. In
topic-based pub/sub systems, load is typically balanced by
replicating a topic on multiple brokers and partitioning its
connected endpoints (i.e., publishers and subscribers) among
these brokers. MultiPub [7] finds optimal placement of topics
across cloud data-centers to ensure per-topic 90th percentile la-
tency of data delivery for geographically distributed endpoints.
However, MultiPub assumes some local load balancing logic
exists at each datacenter site. Kafka supports topic replication
to balance load among brokers, but it has to be done manually.
Dynamoth [8] balances the load dynamically among brokers
by topic partitioning when manually set network thresholds
at a broker are exceeded. Moreover, Dynamoth’s objective is
only to balance load among brokers. Load balancing is not
performed with the objective of ensuring QoS of data delivery.

To overcome the limitations in prior work and to support
a low-latency and scalable pub/sub data dissemination me-
chanism, we present a dynamic data-driven approach to load



0 100 200 300 400 500 600 700 800
#subscribers

0

50

100

150

200

250

300
90

th
 p

er
ce

nt
ile

 la
te

nc
y(

m
s)

10 msg/s
20 msg/s
30 msg/s
40 msg/s
50 msg/s
60 msg/s
70 msg/s
80 msg/s
90 msg/s
100 msg/s

(a) Subscription size and publication rate

0 20 40 60 80 100
Loading topic's publication rate

5

10

15

20

25

30

35

90
th

 p
er

ce
nt

ile
 la

te
nc

y 
(m

s)

2.0

25.1 26.0

32.0 31.0
34.1

(b) Co-located topic’s publication rate

0 25 50 75 100 125 150 175 200
Loading topic's #subscribers

5

10

15

20

25

30

90
th

 p
er

ce
nt

ile
 la

te
nc

y 
(m

s)

2.0

26.0
28.1

31.0 30.0
32.0

(c) Co-located topic’s subscription size

Fig. 1: Sensitivity Analysis for Broker Load Modeling

balancing at the IoT pub/sub broker. Our approach uses ma-
chine learning of a model of the broker load and its impact on
system latency. The learned broker load model then provides
latency-aware thresholds which we use to dynamically balance
load among broker replicas.

II. PROPOSED SOLUTION

In order to learn a load model for the brokers, we performed
some sensitivity analysis experiments to understand the impact
of various pub/sub features on a topic’s 90th percentile latency.
We have conducted these experiments on our pub/sub bro-
ker [9] implemented using ZMQ1 sockets library. Our broker
implementation is similar to Kafka, were topics are hosted on
a flat layer of brokers managed by Zookeeper2 coordination
service. All experiments were conducted on our private cluster
comprising 40 heterogeneous servers running Ubuntu 16.04.
Given the limited scale of our test-bed, we have restricted the
broker to run on one core to create sufficient load.

As shown in Figure 1a, we observe that the tail latency
for a topic increases with increasing number of connected
subscribers at a given rate of publication. Tail latency is also
impacted by other co-located topics at the broker. Figure 1b
shows how the tail latency for a topic is impacted with
increasing rate of publication on another co-located topic.
Similarly, Figure 1c shows how the tail latency is affected
by increasing number of connected subscribers on another co-
located topic. By using input features such as: i) number of
publishers, ii) publication rate, iii) number of subscribers, iv)
number of co-located topics, v) total number of publishers on
all co-located topics, vi) total number of subscribers on all
co-located topics, vii) total publication rate on all co-located
topics, viii) cpu and ix) network utilization of the broker,
we learn a regression model for a topic’s experienced 90th
percentile latency under different broker load configurations.

A periodically executing load balancer then uses this learned
model to identify which topic’s QoS is expected to get violated
and take corrective actions either by replicating that topic and
partitioning its load on another/new broker or by migrating
that topic entirely to another/new broker.

1http://zeromq.org/
2https://zookeeper.apache.org/

III. CONCLUSION

To meet data dissemination needs of smart-city applicati-
ons, we need a dynamically scalable pub/sub system which
ensures QoS of data delivery. To this end, we have presented
our proposed data-driven solution to learn performance-aware
thresholds for balancing the topic load across brokers. We plan
to compare our solution to a load-balancing solution [8] based
on empirically set network utilization based threshold.

ACKNOWLEDGMENTS
This work is supported in part by NSF US Ignite 1531079. Any opinions,

findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of NSF.

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003. [Online]. Available: http://doi.acm.org/10.1145/
857076.857078

[2] N. Carvalho, F. Araujo, and L. Rodrigues, “Scalable qos-based event
routing in publish-subscribe systems,” in Network Computing and Ap-
plications, Fourth IEEE International Symposium on. IEEE, 2005, pp.
101–108.

[3] H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei, “Message-oriented
middleware with qos awareness,” in ICSOC/ServiceWave, 2009.

[4] S. Guo, K. Karenos, M. Kim, H. Lei, and J. Reason, “Delay-cognizant
reliable delivery for publish/subscribe overlay networks,” in 2011 31st
International Conference on Distributed Computing Systems, June 2011,
pp. 403–412.

[5] S. Abdelwahab and B. Hamdaoui, “Fogmq: A message broker system
for enabling distributed, internet-scale iot applications over heterogeneous
cloud platforms,” arXiv preprint arXiv:1610.00620, 2016.

[6] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana,
V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, and
D. Pfisterer, “Smartsantander: Iot experimentation over a smart city
testbed,” Comput. Netw., vol. 61, pp. 217–238, Mar. 2014. [Online].
Available: http://dx.doi.org/10.1016/j.bjp.2013.12.020

[7] J. Gascon-Samson, J. Kienzle, and B. Kemme, “Multipub: Latency and
cost-aware global-scale cloud publish/subscribe,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
June 2017, pp. 2075–2082.

[8] J. Gascon-Samson, F. P. Garcia, B. Kemme, and J. Kienzle, “Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud,” in 2015 IEEE 35th International Conference on Distributed
Computing Systems, June 2015, pp. 486–496.

[9] K. An, S. Khare, A. Gokhale, and A. Hakiri, “An autonomous and
dynamic coordination and discovery service for wide-area peer-to-peer
publish/subscribe: Experience paper,” in Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, ser.
DEBS ’17. New York, NY, USA: ACM, 2017, pp. 239–248. [Online].
Available: http://doi.acm.org/10.1145/3093742.3093910


