
Intelligent, Performance Interference-aware Resource
Management for IoT Cloud Backends

Faruk Caglar∗, Shashank Shekhar†, Aniruddha Gokhale† and Xenofon Koutsoukos†
∗Dept of Computer Eng, Meliksah University, Kayseri, TURKEY
†Dept of EECS, Vanderbilt University, Nashville, TN, USA.

Email: fcaglar@meliksah.edu.tr and {shashank.shekhar,a.gokhale,xenofon.koutsoukos}@vanderbilt.edu

Abstract—Emerging Internet of Things (IoT) applications
often demonstrate unpredictable Big Data processing workloads
at the cloud backends making it hard for cloud service providers
(CSPs) to employ existing resource overbooking schemes effec-
tively. Ad hoc approaches to resource overbooking can lead to
performance interference among the virtual machines (VMs)
hosted on the physical resources causing performance unpre-
dictability for VM-hosted performance-sensitive IoT applications.
Balancing these conflicting needs requires an intelligent strategy
for hosting applications such that the performance interference
effects are minimized while still allowing resource overbooking.
Such a strategy must be online because application workloads
may change at run time. To address these challenges, this
paper presents iSensitive, which is an intelligent, performance
interference-aware resource management scheme for IoT cloud
backends. iSensitive first classifies the VMs based on their historic
mean CPU, memory, and network usage features. Subsequently,
it learns the desired VM patterns of collocating the classified
VMs by employing machine learning techniques. These extracted
patterns document the lowest performance interference level on
the specified host machines making them amenable to hosting
performance-sensitive applications while still allowing resource
overbooking. Our approach is validated by emulating a publicly
available usage trace of a large data center owned by Google and
benchmark tools running real-world applications. Experimental
results evaluating iSensitive illustrates its advantages in deploy-
ing VMs to aptly-suited host machine compared to traditional
schemes, such as first-fit bin packing.

Keywords—Performance interference, cloud, resource monitor-
ing, KVM hypervisor

I. INTRODUCTION

Cloud service providers (CSPs) always look to maintaining
high resource utilization of cloud computing resources while
keeping energy costs low and increasing revenues. To that
end they often resort to resource overbooking techniques [1],
[2], [3], [4]. The idea behind resource overbooking is to
commit more resources, such as CPU and memory, than are
actually available on the physical host machines. Statistical
multiplexing is the key intuition behind the overbooking strat-
egy which exploits the fact that users of traditional cloud-
hosted applications often request more resources than what
their applications actually need and and that too almost never
at the same time thereby providing an opportunity to the cloud
provider to overbook. Contemporary hypervisors, such as
Xen [5], KVM [6], and VMware ESX Server [7], provide the
necessary support to make overbooking feasible to implement
in practice.

∗Work conducted by first author while at Vanderbilt University

Performance-sensitive Internet of Things (IoT) applica-
tions, such as the Industrial Internet applications, are now
increasingly hosted in the cloud to perform Big Data analytics
on real-time sensor streams. A key trait of this class of
applications is its unpredictable arrival pattern of streaming
data, which makes it hard to bound the number of requested
resources ahead of time. Consequently, statistical multiplexing
may not be as effective and hence resource overbooking may
adversely impact application performance because multiple
virtual machines (VMs) collocated due to resource overbook-
ing can trigger significant performance interference [8], [9],
[10], [11], [12], [13].

Performance isolation is an important consideration in
this context, however, there is no perfect solution to provide
a virtualized environment where there is no performance
interference between VMs [14], [15]. Although there exists
prior work on performance isolation among VMs collocated
in an overbooked host machine [13], it is still a challeng-
ing task to monitor and consider performance interference
for VM placement and shield the VMs from its neighbors
due to the nature of resource sharing, resource overbooking
practices employed, configuration of the underlying scheduling
mechanisms, other co-hosted neighbor applications, and the
fluctuating workload characteristics in the cloud. Therefore,
an application running in one VM might still impact the
performance of another application running in a separate VM
on the same host machine. Specifically, network- and compute-
intensive applications might be adversely impacted.

Addressing the performance interference challenges that
stem from resource overbooking while satisfying the perfor-
mance and response-time requirements of IoT applications
will require effective trade-offs in the placement of VMs on
host machines by carefully considering the actual workload
characteristics of the VMs. Due to the changing dynamics of
the IoT application workloads on the VMs and also because
VMs often tend to migrate from one physical machine to
another for a variety of reasons, traditional offline heuristics
such as bin packing will not be applicable for interference-
aware VM placement in cloud computing. Consequently, we
have focused on a system architecture that considers monitor-
ing of performance interference variations in addition to the
VM placement strategy by incorporating both the performance
interference effects and the workload characteristics of the
collocated VMs on the target host machine.

Our prior work to date involving VM-based cloud re-
source management has considered power-performance trade-
offs [16], physical server consolidation using VM overbook-

ing [1], and auto tuning of the hypervisor parameters [?] but
none of these works account for dynamic resource manage-
ment that considers performance interference between collo-
cated VMs. This is a critical need for IoT applications hosted
in the cloud backends.

This paper presents a combined online performance inter-
ference monitoring and VM placement technique based on a
machine learning approach, which is codified in a middleware
called iSensitive. Our approach first analyzes the performance
differences in the Base, Non-Overbooked, and Overbooked
environments and compares the impact of resource utilization
on performance interference. Using these insights we then use
machine learning to learn about the desired VM placement
patterns and encode these patterns in the iSensitive middleware
enabling it to make runtime VM placement decisions. Our
recent work [17] described preliminary work in this regard.
For this paper, we made substantial enhancements to our
preliminary work. For instance, we completely redesigned our
machine learning-based model learning approach. Moreover,
we provide extensive empirical validation of our approach.

Specifically, we make the following research contributions:

• We provide insights into how application performance
and resource utilization are impacted by performance
interference (See Section III-A).

• We present a machine learning-based performance
interference-aware virtual machine placement
technique and performance monitoring middleware
called iSensitive that can be deployed in resource-
overbooked IoT cloud backends (See Section III).

• We show experimental results to validate our claims
that iSensitive can find the aptly suited host machine
that minimizes performance interference while still
allowing overbooking (See Section IV).

The rest of this paper is organized as follows: Section II
describes relevant related work comparing it with iSensitive;
Section III presents the iSensitive approach; Section IV shows
empirical results validating the iSensitive approach, and Sec-
tion V presents concluding remarks alluding to future work.

II. RELATED WORK

This section presents related work on VM placement and
techniques that address performance interference, and com-
pares it with our iSensitive approach.

Novakovic et al. [9] propose DeepDive which transparently
identifies and manages performance interference. DeepDive
comprises three subsystems: (1) warning system, (2) interfer-
ence analyzer, and (3) placement manager. The warning system
conducts interference analysis at a lesser reliability whereas
the interference analyzer is employed and starts measurements
when the warning system suspects a VM is causing perfor-
mance interference. The placement manager migrates the VM
to another physical host by first mimicking the behavior of the
VM being migrated using a synthetic benchmark. This bench-
mark is executed on all target hosts for a short period of time
before the migration takes place to see whether interference
will occur again on the target host. The authors mention this as
a costly process due to cloning the VM on a separate machine

and running it in an isolated environment. The experimental
results show how throughput and latency of the Cassandra
NoSQL database is impacted in the Amazon EC2 environment.
The measured performance of this application on identical
EC2 VMs indicates the performance impacts of collocated
VMs. iSensitive differs from DeepDive in that it first learns
the best collocated VM patterns and conducts the placement
decision based on it without trying to run a mimicked VM on
each machines concurrently. Additionally, modeling the exact
behavior of an application is a challenging task where a variety
of applications are hosted in cloud environment.

In [18], the performance interference effects of background
workloads (i.e. collocated VMs) on the same host machine are
analyzed by evaluating the performance of latency-sensitive
online games and gaming servers. It provides experimental
results of network jitter and throughput fluctuations in the
Amazon EC2 environment. Q-Clouds [10] is a QoS-aware
framework to manage performance interference in the cloud.
Q-Clouds provisions additional resources to alleviate perfor-
mance interference. It applies an online feedback mechanism to
build a model for capturing interference interactions and uses
it for resource management. Moreover, the system employs
a staging server to determine the resource requirements and
leaves a head room, i.e., slack resource, for performance man-
agement. Q-Clouds allows specifying different levels of QoS,
known as Q-states, to increase the resource utilization. Despite
these ideas, the slack resources still lead to under utilization
of the server resources. Frequent resource allocations due to
the feedback mechanism can also cause performance overhead
for the hypervisor.

Zhu et al. [19] proposed an interference model which
predicts application QoS. It considers time-variant inter-
dependence between the different levels of resource contention.
The authors develop a resource usage profile as a vector of
matrices for different performance metrics and then apply
a consolidation algorithm to accommodate applications to
minimize interference and achieve QoS. We believe that this
work focuses on developing simplistic models for complex
resource utilization relationships, whereas iSensitive uses k-
means clustering to group the VMs in different classes to
capture the complex relationships and then apply machine
learning to determine performance interference.

TRACON [20] is a task and resource allocation framework
for data-intensive applications. It develops three interference
prediction models: weighted mean method model, linear model
and non-linear model using statistical machine learning for
reasoning. It then employs an interference-aware scheduler for
reducing performance interference. The focus of this technique
is network I/O-intensive applications whereas our approach
focuses on a variety of application types.

Kambadur et al. [21], studied the methodology and several
complexities behind measuring performance interference in
data centers stemming from resource contention and proposed
a new technique based on finding the performance interference
between base application and co-runners on the same machine.
In this work, the authors have measured the performance in-
terference to identify interference relationships and classes but
have not demonstrated its application. We have leveraged some
of the insights and parameters from this work in iSensitive.

Moreno et al. [22] proposed a method for interference-
aware virtual machine placement by analyzing its impact on
energy efficiency in data centers. The combined interference
score utilized in this work requires the knowledge of maximum
throughput of each workload running on a host machine
when mixed with other workload types. This might require
employing some applications to reside on VMs to populate
this information from the workload which may result in
high overhead when a host runs multiple different types of
workloads. In contrast, iSensitive discovers and extracts the
best VM patterns by employing machine learning algorithms
to learn performance interference levels. iSensitive also differs
from this work based on its VM classification features that
uses network utilization.

Maji et al. [23], propose an approach named IC2, which
handles the performance interference problem from a different
perspective. IC2 mitigates the interference by application (e.g.
web server or database) reconfiguration through a machine
learning-based technique. IC2 handles interference at the ap-
plication level rather than hardware level. IC2 targets the
Apache web server and PHP runtime configuration parameters,
and considers only three key parameters affecting application
performance. IC2 also takes application-level indicators to
detect the interference where hardware-level parameters are
not accessible. IC2 improves the application response time
to a certain degree. Even though application reconfiguration
appears to be an attractive strategy to mitigate the interference,
the complexity of reconfiguration increases as the number of
application types hosted in the cloud increases.

III. DESIGN AND IMPLEMENTATION OF ISENSITIVE

We now present iSensitive providing a rationale for the
design decisions. iSensitive is a cloud backend resource man-
agement solution suited for IoT applications that addresses
performance interference concerns in the cloud while allowing
resource overbooking. The iSensitive solution is premised on
the hypothesis that resource overbooking causes performance
interference and hence degrades application performance.

A. Problem Context: Relating Performance Interference to
Application Performance and Resource Usage

To justify our premise, we first provide insights on how
performance interference stems from resource overbooking
resulting in contention for resources, which in turn adversely
impacts the application performance and resource utilization.
Our hypothesis was validated on a cloud platform that hosts
VMs managed by the KVM hypervisor.

The experiments were conducted under three distinct se-
tups named Base, Non-Overbooked, and Overbooked. The
workload in the VMs in these setups are generated through
applications randomly picked from the phoronix test suite
(http://www.phoronix-test-suite.com/. To quote their web site:
“The Phoronix Test Suite is the most comprehensive testing
and benchmarking platform available that provides an exten-
sible framework for which new tests can be easily added. The
software is designed to effectively carry out both qualitative
and quantitative benchmarks in a clean, reproducible, and easy-
to-use manner.” These benchmarking applications were rep-
resentative of various dynamically generated IoT application

loads in the VMs. Virt-top and jMeter tools were utilized
to log various resource usage and performance metrics. The
generated data were also adequate to make decisions.

• Base: In this setup, only one VM having 1 virtual CPU
(vCPU) and 512 MB of RAM running an Apache Web
Server resides on the host machine. Web requests from
50 concurrent users are posted to the web server from
a separate host machine located in the same network
cluster.

• Non-Overbooked: In non-overbooked setup, the re-
quested resources that are available on the host ma-
chine are equal to the available resources. We created
12 VMs each of which comprises 1 vCPU and 512 MB
of memory. Each VM in this setup hosts a benchmark-
ing application randomly picked from the phoronix
test suite except for the one VM that runs the Apache
Web Server. The benchmarking application is run
continuously in the VM. One VM out of 12 handled
the web requests initiated from 50 concurrent users
from a separate host machine in the same network
cluster. This setup is intended to mimic the continuous
stream of IoT sensor information reaching the cloud
for analytics.

• Overbooked: The overbooking ratio used for the CPU
resources is 2 which means that the requested CPU
resource is two times greater than that is available
on the host machine. Thus, we created 24 VMs each
one having 1 vCPU and 512 MB of memory. Again,
as was the case in the non-overbooked scenario, each
VM comprises a benchmarking application which was
randomly selected from the phoronix test suite. One
VM out of the 24 managed the web requests initiated
from 50 concurrent users.

1) Impact of Performance Interference on Application Per-
formance: Figure 1 shows the comparison of web server
throughput in the Base, Non-Overbooked, and Overbooked sce-
narios. As can be seen, the application throughput performance
in the Base, Non-Overbooked, and Overbooked scenarios are
179, 128, and 88, respectively, requests per second handled
successfully. As expected, Base provides the best application
performance since there is no other VM contending for the
resources. The Non-overbooked environment is not as good
as the Base, but better than the Overbooked case because
there are more VMs contending for available resources which
triggers more performance interference between VMs in the
Overbooked scenario.

Figure 2 compares the response time for the web server
in the Base, Non-Overbooked, and Overbooked test setups.
As can be seen, the web server’s response time illustrates a
similar trend for the Base, Non-Overbooked, and Overbooked
environments by providing best, good, and poor performance,
respectively. The performance of the web server in the Over-
booked has significant jitter than Non-Overbooked. The Base
scenario does not show jitter and response time is continuously
steady. These results are also supported by the results in
Figure 1.

Figure 3 shows the comparison of web server response time
percentiles in the Base, Non-Overbooked, and Overbooked

Fig. 1: Comparison of Web Server Throughput in Base, Non-
Overbooked, and Overbooked Scenarios

Fig. 2: Comparison of Web Server Response Time in Base,
Non-Overbooked, and Overbooked Environments

test setups. For all of the percentiles in Figure 3, Base
provides the best, then Non-Overbooked, and then Overbooked.
Additionally, there is no contradiction with the results from
Figures 1 and 2.

Fig. 3: Comparison of Web Server Response Time Percentiles
in Base, Non-Overbooked, and Overbooked Environments

2) Impact of Performance Interference on Resource Uti-
lization Performance: The CPU utilization of the VM hosting

the web server is depicted in Figure 4. The root cause of the
performance degradation between the three different setups
is clearly seen here in that the CPU utilization in Non-
Overbooked and Overbooked environments is not as good as
that of the Base. Even though the physical resources in the
Non-Overbooked environment were not overbooked, there may
still be some instant spikes due to the hypervisor overhead or
resource contention. Moreover, the jitter in the Overbooked
scenario is considerably high. Even though, CPU resources
on the host machine were not 100% utilized in both Non-
Overbooked and Overbooked, the performance interference
was unavoidable.

Fig. 4: Comparison of Web Server CPU Utilization in Base,
Non-Overbooked, and Overbooked Environments

B. Problem Statement

Resource contention and hence performance interference
is unavoidable in virtualized environments due to the nature
of resource sharing. We have validated this hypothesis empiri-
cally where we analyzed how performance interference stems
from resource overbooking and how contention impacts the
application performance running in the VMs.

Consequently, it is imperative that performance interference
be considered as a first class issue particularly for resource-
overbooked environments that aim to host IoT applications,
which is the focus of this work. Moreover, since virtual
machines in the cloud can migrate from one host machine
to another one in a data center and between data centers
because of reasons such as consolidation, load balancing,
thermal effects, and noisy neighbors, VM migration must also
be considered as a key issue.

Therefore, to mitigate the performance interference be-
tween collocated VMs, the resource usage profiles of VMs
hosting applications must be examined and the VM placement
decision in the cloud must incorporate this information in
identifying the collocated VMs. Additionally, VM profiling
should continue at run-time because of the fact that workloads
might change dynamically.

C. Intuition behind the iSensitive Approach

Recall that IoT application workloads on cloud backends
do not have predictable arrival patterns. Thus, collocating
VMs that perform IoT data analytics with other VMs in an

iSensitive Middleware

Interference Model Execution & Monitoring Modules (Online)

Interference Monitoring

INPUT

Resource
Usage
per Host

&
per VM

Interference Model Learning Modules (Offline)

Workload
Accumulator

Model Learning via Artificial Neural
Network

Virtual Machine Classifier

OUTPUT

CPU

Memory

Network

Scheduler
Metrics

Performance
Counters

(2)
Performance
interference-

aware
VM

placement
decision

(3)
Instant

Performance
interference

model
prediction

error

(1)
Performance
interference

model

Decision Maker

Fig. 5: Conceptual Design of iSensitive illustrating Input, Output, and System of Interest

arbitrary manner focusing only on resource overbooking is not
acceptable since it can lead to performance interferences and
hence degraded performance for the IoT applications. Thus,
we need an approach for predicting the type of incoming
workloads thereby enabling effective VM collocation place-
ment decisions.

To that end, in this paper we present a model predictive ap-
proach to address performance interference issues at runtime.
The intuition behind our approach is as follows: a predictive
approach needs to learn from historical data. Thus, our first
step requires obtaining real-world historical resource usage
data for VMs as well as host machines in the cloud so as
to generate a system performance interference model. High
quality and fine-grained historical data is crucial to gain a sense
of the resource usage patterns and how they change over time.
Based on this analysis, we can then create an accurate model
of the system that can be employed at runtime.

In the second step, which is an online step, the learned
model from the first step is used to make decisions on VM
placement that will minimize the performance interference in
the resulting deployment. Our approach is generic enough and
can be applied by cloud service providers in their data centers
for their expected workloads and hardware platform.

Figure 5 shows the algorithmic design and building blocks
of our framework called iSensitive that adopts the solution
approach described above. As shown, iSensitive comprises
two distinct modules: (1) Interference Model Learning Module
(offline phase), and (2) Interference Model Execution and
Monitoring Module (online phase). The Interference Model
Learning Module in turn comprises three main components:
(1) Virtual Machine Classifier, (2) Model Learning via Artifi-
cial Neural Network, and (3) Workload Accumulator which
presently feeds from a Synthetic Workload Generator. The
Interference Model Execution and Monitoring Module consists

of two primary components: (1) Decision Maker, and (2)
Interference Monitoring.

D. Gist of the Two Phases of iSensitive

Since resource utilization is a key indicator of performance
interference as seen from Figure 4, iSensitive utilizes different
resource usage metrics, such as CPU usage, memory usage,
network I/O usage, internal scheduler metrics, hardware and
kernel-level performance counters for VMs and physical host
as input to the system. These metrics are retrieved with the help
of (1) perf, performance analyzing tool in Linux, (2) mpstat,
Linux command for processor related statistics, and (3) libvirt,
toolkit to interact with the underlying virtualization system.
The virtual machine classifier clusters VMs into similar sets of
objects by employing the k-means algorithm and the silhouette
method. These classes of VMs are then used by the artificial
neural network to extract the “best collocated VM patterns”,
which are those patterns that lead to minimal performance in-
terference on the host machines. In other words, a performance
interference model of a host machine is generated.

After the neural network is trained, the decision maker
is employed to find the aptly suited host machine having
the minimal performance interference by utilizing the trained
model. Interference monitoring is responsible for comparing
the actual performance interference value and its predicted
value. If the difference is greater than a threshold value, then
that collocation pattern is saved for future model refinements.

Note that for our work, we have assumed that the physical
host machines in the cloud data center are homogeneous
and therefore a model generated for one host machine is
applicable to all other physical hosts. If a data center comprises
heterogeneous machine types, then performance interference
models for each different host machine type must be created.

TABLE I: Benchmark Applications Utilized by iSensitive

Test Suite Name Application Name Application Description Resource Intensiveness
Phoronix Test Suite pts/build-apache Timed Apache Compilation Processor
Phoronix Test Suite pts/compress-gzip Gzip Compression Processor
Phoronix Test Suite pts/compress-pbzip2 Parallel BZIP2 Compression Processor
Phoronix Test Suite pts/espeak eSpeak Speech Engine Processor
Phoronix Test Suite pts/n-queens N-Queens Processor
Phoronix Test Suite pts/openssl OpenSSL Processor
Phoronix Test Suite pts/tachyon Tachyon Processor
Phoronix Test Suite pts/tscp TSCP Processor
Phoronix Test Suite pts/stresscpu2 StressCPU2 Stress-Test Processor
Phoronix Test Suite pts/sample-program Sample PI program Processor
Phoronix Test Suite pts/ramspeed RAMspeed SMP Memory
Phoronix Test Suite pts/stream Stream Memory
Netperf TCP STREAM TCP Stream Performance Network
Netperf TCP RR TCP Request Response Network
Netperf UDP STREAM UDP Stream Performance Network
Httperf TCP Web Workload Generator Network
Sysbench OLTP Database Server Performance Disk

E. iSensitive Offline Phase

The details of the offline phase of iSensitive are presented
below.

1) Workload Accumulator: Recall that to produce a pre-
dictive model of our system, our system needs to be trained
using raw data and classification. Thus, our first objective is to
obtain such a raw data. One of the key components supplied
by iSensitive is a workload accumulator to enable collection
and storage of performance data. Presently, it feeds from a
python-based synthetic workload generator that communicates
with a cloud manager to instantiate, deploy, start and destroy
virtual machines. It imitates the lifecycles of real-world VMs.
However, in an actual deployment, the data will be coming
from the hosts comprising the data center.

We have exploited the VM lifecycle events (e.g., create,
destroy, migrate) and their resource configurations (e.g., num-
ber of virtual CPUs) from a real-world trace made available in
the Google Cluster Trace [24]. To generate a training data set
as realistic as possible to the real-world workload in the cloud
data center, we mimicked the VM event data of five randomly
chosen hosts from the Google Trace with ids 2790227930,
2113205802, 4550520892, 257335557, 317488481. We did not
use more number of hosts for the VM lifecycle events due
to the effort and scale needed in setting up experiments to
generate the training sets.

Since the details of applications and their types running
in the VMs of the Google Trace are not provided by Google,
we could only exploit the lifecycle events and their resource
configurations. To produce the right mix of different types
of application workloads, therefore, we created a test suite
using some of the popular benchmarking tools and real world
applications stressing different aspects of a system as shown
in Table I. For every VM, the tool randomly picks a test from
the uniform distribution of tests in the suite and executes it.
iSensitive’s monitoring tools collect the performance metrics
and generate the training data set.

2) Virtual Machine Classifier: Once the raw training data
is created, the virtual machine classifier component clusters
the VMs based on their CPU, memory, and network usage

by using k-means clustering [25]. k-means is an unsupervised
learning algorithm that is used to classify the VMs in different
classes based on their resource usage profiles. It provides good
results with large datasets such as the one used in our approach.
Note that we do not consider disk intensive applications in this
work. Therefore, these three main resource usage metrics are
utilized for profiling VMs.

To decide the best number of clusters, the Silhouette
method [26] is employed for the cluster data we utilize. The
Silhouette method fits well with the k-means clustered data and
is hence employed in our approach to analyze the VM clusters.
The higher the silhouette value is, the better the classification
is. The best cluster number for our raw data set is found to be
5 with a maximum mean silhouette value of 0.6560 over other
cluster numbers. The resulting cluster center points found by
the virtual machine classifier component is shown in Table II.

TABLE II: Identified Cluster Center Points for each Cluster

Cluster Number CPU
(%)

Memory
(%)

Network IO
(MBps)

Cluster 1 (C1) 12.83 44.60 1.04
Cluster 2 (C2) 199.03 27.54 9.19
Cluster 3 (C3) 76.29 42.75 1.46
Cluster 4 (C4) 128.05 17.07 234.06
Cluster 5 (C5) 104.08 36.68 121.48

3) Model Learning via Artificial Neural Network (offline
phase): iSensitive relies on the historical data to model and
capture the relationships between input and output parameters
to discover the patterns of VM combinations and the resulting
degree of performance interference. To capture the non-linear
relationships between performance interference among the
VMs and the large set of input factors for various classes of
VMs, we have applied the back propagation-based artificial
neural network (ANN) [27]. It is a supervised machine learning
technique used to predict the performance interference, which
is otherwise difficult to estimate in our complex model.

Concretely, the ANN is trained to capture the relationships
on how the different types and numbers of VMs of the

same cluster found by the virtual machine classifier impact
performance interference. The input parameters for the ANN
are as follows:

N1 = Total number of VMs of Class 1

N2 = Total number of VMs of Class 2

N3 = Total number of VMs of Class 3

N4 = Total number of VMs of Class 4

N5 = Total number of VMs of Class 5

C = CPU overbooking ratio

PIL = Performance Interference Level

The reason to choose the number of VMs of each class
is to capture the relationships between the different VM
combinations along with host machine CPU overbooking ratio
and discover the regularities in how these patterns affect the
performance interference level (PIL) on a host machine.

We modeled the performance interference level as the
sum of cache miss ratio, scheduler waiting time, scheduler
io waiting time, and guest cpu usage percentages as follows.

PIL = Cache Miss Ratio + Scheduler Wait Time % +
Scheduler IO Wait Time % + Guest %

The metrics in the performance interference model are
some of the significant metrics capturing the contention at
shared resources that might cause crucial performance degra-
dation.

• Cache Miss Ratio: Represents the ratio of total
system-wide last-level cache (LLC) misses to total
number of retired instructions. It captures the con-
tention occurring at the LLC cache and is a promising
metric to model performance interference of memory
and cache-intensive applications. The value is rep-
resented as per hundred instructions in order not to
dominate the other values.

• Scheduler Wait Time %: Represents the waiting time
incurred at the scheduler’s run queue which means
that a VM is not able to access the physical CPU
even though it is in the runnable state due to the
CPU contention and causes increased latencies. The
scheduler waiting time value may be very high for
resource-overbooked environments. Therefore, this is
also a promising metric capturing interference occur-
ring at the scheduler.

• Scheduler IO Wait Time %: Represents the waiting
time incurred due to the IO operations. The VM is
in the idle mode while the system is waiting for an
outstanding IO operation. This metric helps to capture
the contention for IO-bound applications and allows
the to incorporate IO-level interference into model.

• Guest %: Expressed as the percentage of CPU time
spent by all the VMs on the host machine. This is
also an important metric to capture how busy are the
CPU resources to serve the VMs. Thus, a less busy

host machine with all the guests will ultimately have
less contention at the CPU-level.

For a finer granularity in the performance interference
model, it is better to continue to update the trained model
at run-time. This makes the performance interference model
much more accurate right after an unforeseen workload pattern
is experienced. The online model learning part of this work
needs to be addressed in a future work.

F. iSensitive Online Phase

The details of the online phase of iSensitive are presented
below.

1) Decision Maker: When a VM placement request is
made or if a VM must be migrated, the decision maker
component is responsible to iterate over all the host machines
in the cluster, run the trained ANN, and return the host machine
info which will provide the lowest performance interference
level. The VM can then be placed in the machine despite the
cloud service provider utilizing overbooking strategies.

2) Interference Monitoring: When it is enabled, the in-
terference monitoring module keeps track of the error rate
between actual and predicted performance interference level
at run-time. Recall that iSensitive is trained offline with
the historic data and utilizes the trained model for run-time
predictions. However, there is always a possibility to encounter
different workload patterns that were not known by the trained
model. This will cause the system to incur high prediction
errors. Therefore, the interference monitoring component is
responsible for two tasks: (1) if the prediction error is greater
than a configured threshold value, the actual workload pattern
on the host is logged for re-training, (2) if a VM is way off
from the actual cluster center points, it is also logged for re-
clustering. These logged data are later used for re-training the
performance interference model.

G. iSensitive Distributed System Architecture

The iSensitive distributed system architecture that can be
integrated with cloud infrastructure software, such as Open-
Stack, is depicted in Figure 6. As can be seen in the figure,
iSensitive comprises a Virtual Machine Manager (V-Man) for
each VM residing on a physical host, a Host Manager (H-
Man) for each physical host, and a Cloud Manager (C-Man)
to orchestrate the cluster of host machines in the cloud data
center.

The V-Man is responsible for collecting resource infor-
mation, such as memory utilization, for VMs. The reason to
employ the V-Man inside a VM is because we were unable
to retrieve some of the metrics at the host level. For example,
the actual memory in use by a VM cannot be collected when
the host machine is virtualized by the Xen hypervisor and
accessed through the libvirt API. This is because of concerns
such as reliability and various operating systems run by VMs.
Therefore, the statistics which are only known by the VM’s
kernel must be retrieved by an agent such as V-Man running
inside the VM.

The primary goal of the H-Man is to accumulate statistics
associated with each VM as well as the physical host machine
and post these information to the C-Man. The CPU, memory,

HOST 1

VM1 VM2

HYPERVISOR

H-Man

V-Man V-Man

. . .

HOST 2

VM3 VM4

HYPERVISOR

H-Man

V-Man V-Man

HOST n

VMn

HYPERVISOR

H-Man

V-Man

HOST 0

CLOUD MANAGEMENT
TOOL

C-Man

LEGEND

VM
Virtual Machine

Manager

Host Machine
Manager

Virtual Machine Connection

Cloud Manager

V-Man

H-ManC-Man

Fig. 6: iSensitive System Architecture Diagram

and network utilization of each VM and intrinsic scheduler
parameters such as waiting time, I/O waiting time, and guest
CPU percentage are some of the information being sent to the
C-Man. Another critical information being sent to the C-Man
is the cluster number of the VM. The cluster number of the VM
is found by the minimum Euclidean distance from the actual
resource usage information of a VM (i.e. CPU, memory, and
network utilization) to the center points of clusters found by
the virtual machine classifier component.

Another challenge handled by the H-Man is handling
instant spikes of resource usage. Based on the configuration, if
the instant spikes cause the VM’s cluster number to change for
five consecutive cycles (i.e. 30 secs of interval between each
cycles), then iSensitive changes the actual cluster number with
this new cluster number. The number of consecutive cycles
triggering the change to the cluster number is a configuration
parameter and can be tuned to another setting.

The C-Man is responsible for making decisions to place a
VM on an aptly suited host machine in the cloud. All the host
and VM-level statistics are collected through the collection
of H-Mans and an overall view of the cloud environment is
then defined by the C-Man. Eliminating hot spots, performance
concern of a collocated high priority VM, server consolidation,
and an antagonist, noisy neighbor VM are few of the primary
reasons to migrate VMs. Whenever a VM needs to be migrated
from one host machine to another one, the C-Man employs the

decision maker and finds the target host machine where this
VM should be migrated to.

IV. VALIDATING THE ISENSITIVE APPROACH

This section presents empirical validation of the iSensi-
tive’s performance interference-aware virtual machine place-
ment algorithm in our private data center. We compare the
performance improvements stemming from the use of iSensi-
tive in migrating an Apache web server VM-based application
to one of the common approaches applied by data centers,
e.g., first-fit bin-packing heuristics with preference for least
occupied host [28], in our case, one with minimum CPU over-
booking ratio. The experiments demonstrate that the iSensitive
approach finds the aptly suited host machine with minimum
performance interference level at the host-level and provides
better performance to the applications running in the VM being
migrated.

A. Experimental Setup

The experiments were conducted in our private data center
comprising a cluster of 7 homogeneous host machines. The
host machines were managed by OpenNebula [29] cloud
management software version 4.6.2. Table III provides the
hardware and software configurations while Table IV provides
the virtualization configuration for each host machine in our
private data center.

HOST 5

VM61

VM62

VM63

VM64

VM75

.

.

.

HOST 4

VM46

VM47

VM48

VM49

VM60

.

.

.

HOST 3

VM31

VM32

VM33

VM34

VM45

.

.

.

HOST 2

VM16

VM17

VM18

VM19

VM30

.

.

.

HOST 1

VM1

VM2

VM3

VM4

VM15

.

.

.

Fig. 7: Experimental Setup

TABLE III: Hardware and Software Specification of the Ex-
periment Host

Memory (GB) 32
Hard Disk (GB) 500
Processor Type AMD Opteron 4170 HE
CPU Socket Count 2
Core Count per Socket 6
Base Speed (MHz) 2100
L1 Cache Size (KB) 128
L1 Cache Count 6
L2 Cache Size (KB) 512
L2 Cache Count 6
L2 Cache Speed (MHz) 2100
L3 Cache Size (KB) 6144
Integrated Memory Controller Speed
(MHz)

2200

Operating System Ubuntu 14.04 64-bit

TABLE IV: Virtualization Specification of the Experiment
Host

Hypervisor KVM
Kernel Linux 3.13.0-24
Qemu Virtualizer 2.0.0
Guest Virtualization Mode HVM
Guest Operating System Ubuntu 14.04 64-bit

Figure 7 describes the setup created to validate the ef-
fectiveness of the iSensitive approach. We created 15 VMs
per host each having 2 vCPUs and 512 MB of memory on
5 different host machines. Each VM and host machine in
this setup employs the V-Man and H-Man, respectively, as
explained in Section III. Two more bare-metal host machines
with the same configuration as in Table III were used. One
machine was used to deploy C-Man and the other to send out
client requests generated by the Apache jMeter load generator
tool. jMeter sends out HTTP requests from 50 concurrent users

to the Apache web server residing in the VM being tested.
Virtualizing the server machine hosting the client application
may also have resource contention causing inconsistent test
results. Hence we decided not to use a VM for hosting the
client, thereby providing more robust and consistent results.

Recall from Section III-E2 that we had found 5 as the
ideal number of clusters for the raw data we had generated.
iSensitive attempts to classify the VMs into one of these
clusters. For the initialization of the experiments, randomly
picked workloads from the benchmarking suite described in
Section III-E1 were run on the 15 VMs on each of the five
hosts. The host overbooking ratio for all 5 host machines was
set to 2.5 for fairness between host machines. After the VMs
were up and running, the workload on each VM was classified
into one of the clusters. The resulting number of VMs per
cluster number on each of the host machines was as shown in
Table V.

TABLE V: Number of VMs in Each Cluster for Each Host

Host Name C1 C2 C3 C4 C5
Host 1 7 1 7 0 0
Host 2 9 1 5 0 0
Host 3 6 1 7 1 0
Host 4 15 0 0 0 0
Host 5 7 1 5 0 1

The experiments were conducted by selecting one of the
VMs from Cluster 3 on Host 1 and requesting a migration
decision from iSensitive and comparing it to the migration
decision using first-fit. The performance results were collected
for a period of two minutes before and after migration and
were found to be sufficient for analysis.

B. Application Performance Improvement using iSensitive

We analyzed the performance of the target VM for the three
cases, i.e. performance before the migration and performance

after migration on the hosts decided by iSensitive and the first-
fit heuristic. As mentioned earlier, the target VM was chosen
from Host 1. iSensitive suggested its new location to be Host
4, whereas first-fit heuristic found it to be Host 2. For both the
scenarios, we migrated the VM on these hosts and present the
performance results before and after the migration.

Fig. 8: Comparison of Web Server Throughput on Hosts 1, 2
and 4

Figure 8 presents the throughput for the three different
scenarios. We observe that before the migration (see the bar
for Host 1), the mean throughput of the Apache web server
was 197 requests per seconds with a standard deviation value
of 71, suggesting a sluggish performance. Hence, a decision
to migrate is taken. After the migration to Host 2 (using
first-fit), we see an improvement of 25% in throughput and
the standard deviation value reduced to 47.7. Compared to
first-fit’s improvement, if the VM is migrated to Host 4 as
suggested by iSensitive, we see a performance improvement
of 64% percent in mean throughput and a lower standard
deviation of 36.5 value (see the bar for Host 4). This shows that
for our experimental use-case, the performance improvement
due to iSensitive’s placement decision is 39% better for
mean throughput than the commonly used strategy of first-fit
heuristics.

Fig. 9: Comparison of Web Server Response Time Percentiles
on Actual, Before, and After Migrating to a Host Machine

Figures 9 and 10 depict the response time results for the
same scenarios. In Figure 10, we can observe that the response
time reduces significantly for iSensitive-suggested migration.

Fig. 10: Comparison of Web Server Response Time Over Time
on Actual, Before, and After Migrating to a Host Machine

Figure 9 confirms the same where we see performance im-
provements of 14.8, 21.6, 27.8, 31.9 % for mean, 90th per-
centile, 95th percentile and 99th percentile, respectively, for
the iSensitive approach over the first-fit heuristics approach.
These two different performance indicators of throughput
and response time improvements confirm the efficacy of the
iSensitive solution.

We also measured the CPU overhead of using iSensitive in
the runtime phase. It was found to be less than 1% for V-Man
and C-Man and ˜5% for H-Man. These values are for the 2.5
overbooking ratio where 15 V-Mans are connected to 1 H-Man
with a 1 seconds heartbeat interval, and 5 H-Mans connected to
1 C-Man with a 15 seconds heartbeat interval. This shows that
iSensitive has low overhead, however, in future we would like
to perform more scalability experiments on a larger cluster.

V. CONCLUSION

This paper presented iSensitive, which is a performance
interference-aware virtual machine placement middleware to
support performance-sensitive cloud-hosted applications, such
as Big Data processing of IoT sensory data. The approach
comprises two steps. In the first step, which is an offline step,
raw usage data of a data center is used to glean away VM
workload patterns for clustering decisions and key insights
into performance interference caused due to VM collocation.
To that end, a clustering-based VM placement approach was
designed by utilizing back propagation artificial neural net-
work. These insights are used in the second step, which is an
online step, in finding an aptly suited host machine for VMs
to minimize the performance interference effects and reduce
the performance degradation in cloud-hosted IoT applications.

In this work, we have not yet considered disk-intensive
applications but this will form a dimension of our future work.
Disk utilization needs to be considered by the virtual machine
classifier component in the future releases of iSensitive. Addi-
tionally, analyzing iSensitive’s energy efficiency properties is
left as future work.

The presented work and the algorithmic structure of iSen-
sitive is generic enough to be used by cloud service providers
for their platforms. They will need to learn the models based
on historical data observed in their environment. Moreover, the

building blocks of the iSensitive distributed system architecture
can seamlessly integrate with the cloud infrastructure software.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation CAREER CNS 0845789 and AFOSR DDDAS
FA9550-13-1-0227. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of NSF
and AFOSR.

REFERENCES

[1] F. Caglar and A. Gokhale, “iOverbook: Managing Cloud-based Soft
Real-time Applications in a Resource-Overbooked Data Center,” in The
7th IEEE International Conference on Cloud Computing (CLOUD’ 14).
Anchorage, AL, USA: IEEE, Jun. 2014, pp. 538–545.

[2] L. Tomas and J. Tordsson, “An autonomic approach to risk-aware data
center overbooking,” Cloud Computing, IEEE Transactions on, vol. 2,
no. 3, pp. 292–305, July 2014.

[3] I. S. Moreno and J. Xu, “Neural network-based overallocation
for improved energy-efficiency in real-time cloud environments,” in
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2012 IEEE 15th International Symposium on. IEEE, 2012,
pp. 119–126.

[4] S. A. Baset, L. Wang, and C. Tang, “Towards an understanding of over-
subscription in cloud,” in Proceedings of the 2nd USENIX conference on
Hot Topics in Management of Internet, Cloud, and Enterprise Networks
and Services. USENIX Association, 2012, pp. 7–7.

[5] T. Abels, P. Dhawan, and B. Chandrasekaran, “An overview of xen
virtualization,” Dell Power Solutions, vol. 8, pp. 109–111, 2005.

[6] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the Linux virtual machine monitor,” in Proceedings of the Linux
Symposium, vol. 1, 2007, pp. 225–230.

[7] A. Muller and S. Wilson, “Virtualization with vmware esx server,” 2005.

[8] N. Rameshan, L. Navarro, E. Monte, and V. Vlassov, “Stay-away,
protecting sensitive applications from performance interference,” in
Proceedings of the 15th International Middleware Conference. ACM,
2014, pp. 301–312.

[9] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini,
“Deepdive: Transparently identifying and managing performance
interference in virtualized environments,” in Proceedings of the
2013 USENIX Conference on Annual Technical Conference, ser.
USENIX ATC’13. Berkeley, CA, USA: USENIX Association, 2013,
pp. 219–230. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2535461.2535489

[10] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing
performance interference effects for qos-aware clouds,” in Proceedings
of the 5th European conference on Computer systems. ACM, 2010,
pp. 237–250.

[11] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual
machine performance: challenges and approaches,” ACM SIGMETRICS
Performance Evaluation Review, vol. 37, no. 3, pp. 55–60, 2010.

[12] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
performance interference of i/o workload in virtualized cloud environ-
ments,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on. IEEE, 2010, pp. 51–58.

[13] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“Cpi2: Cpu performance isolation for shared compute clusters,” in Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
ser. EuroSys ’13. New York, NY, USA: ACM, 2013, pp. 379–391.

[14] J. Hwang, S. Zeng, F. Wu, and T. Wood, “A component-based
performance comparison of four hypervisors,” in Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium on.
IEEE, 2013, pp. 269–276.

[15] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments,”
in Performance Analysis of Systems & Software, 2007. ISPASS 2007.
IEEE International Symposium on. IEEE, 2007, pp. 200–209.

[16] F. Caglar, S. Shekhar, and A. Gokhale, “iPlace: An Intelligent and
Tunable Power- and Performance-Aware Virtual Machine Placement
Technique for Cloud-based Real-time Applications,” in 17th IEEE
Computer Society Symposium on Object/component/service-oriented
real-time distributed Computing Technology (ISORC ’14). Reno, NV,
USA: IEEE, Jun. 2014, pp. 48–55.

[17] ——, “Performance Interference-aware Virtual Machine Placement
Strategy for Supporting Soft Real-time Applications in the Cloud,” in
3rd International Workshop on Real-time and Distributed Computing in
Emerging Applications (REACTION), IEEE RTSS 2014. Rome, Italy:
IEEE, Dec. 2014, p. 6.

[18] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the first annual
ACM SIGMM conference on Multimedia systems. ACM, 2010, pp. 35–
46.

[19] Q. Zhu and T. Tung, “A performance interference model for managing
consolidated workloads in qos-aware clouds,” in Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on. IEEE, 2012,
pp. 170–179.

[20] R. C. Chiang and H. H. Huang, “Tracon: Interference-aware schedul-
ing for data-intensive applications in virtualized environments,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011, p. 47.

[21] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, “Measuring
interference between live datacenter applications,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 51.

[22] I. S. Moreno, R. Yang, J. Xu, and T. Wo, “Improved energy-efficiency in
cloud datacenters with interference-aware virtual machine placement,”
in Autonomous Decentralized Systems (ISADS), 2013 IEEE Eleventh
International Symposium on. IEEE, 2013, pp. 1–8.

[23] A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigat-
ing interference in cloud services by middleware reconfiguration,” in
Proceedings of the 15th International Middleware Conference. ACM,
2014, pp. 277–288.

[24] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, 2011.

[25] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[26] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[27] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural Networks, 1989. IJCNN., International Joint Conference on.
IEEE, 1989, pp. 593–605.

[28] R. S. Camati, A. Calsavara, and L. Lima Jr, “Solving the virtual machine
placement problem as a multiple multidimensional knapsack problem,”
ICN 2014, p. 264, 2014.

[29] D. Milojičić, I. M. Llorente, and R. S. Montero, “Opennebula: A cloud
management tool,” IEEE Internet Computing, vol. 15, no. 2, pp. 0011–
14, 2011.

