
Dataset Placement and Data Loading Optimizations
for Cloud-Native Deep Learning Workloads

Zhuangwei Kang, Ziran Min, Shuang Zhou, Yogesh D. Barve, Aniruddha Gokhale
Vanderbilt University, Nashville, TN 37212, USA

Email: {zhuangwei.kang; ziran.min; shuang.zhou; yogesh.d.barve; a.gokhale}@vanderbilt.edu

Abstract—The primary challenge facing cloud-based deep
learning systems is the need for efficient orchestration of large-
scale datasets with diverse data formats and provisioning of high-
performance data loading capabilities. To that end, we present
DLCache, a cloud-native dataset management and runtime-aware
data-loading solution for deep learning training jobs. DLCache
supports the low-latency and high-throughput I/O requirements
of DL training jobs using cloud buckets as persistent data storage
and a dedicated computation cluster for training. DLCache com-
prises four layers: a control plane, a metadata plane, an operator
plane, and a multi-tier storage plane, which are seamlessly
integrated with the Kubernetes ecosystem thereby providing ease
of deployment, scalability, and self-healing. For efficient memory
utilization, DLCache is designed with an on-the-fly and best-
effort caching mechanism that can auto-scale the cache according
to runtime configurations, resource constraints, and training
speeds. DLCache considers both frequency and freshness of data
access as well as data preparation costs in making effective
cache eviction decisions that result in reduced completion time
for deep learning workloads. Results of evaluating DLCache on
the Imagenet-ILSVRC and LibriSpeech datasets under various
runtime configurations and simulated GPU computation time
experiments showed up to a 147.49% and 156.67% improvement
in data loading throughput, respectively, compared to the popular
PyTorch framework.

Index Terms—Deep Learning Training, Cache System, Cloud-
native, Data Management, System Software

I. INTRODUCTION

With the rapid development of heterogeneous computa-
tional devices and accelerators (e.g., GPU, FPGA, and TPU),
computation is no longer the primary source of bottleneck
for Deep Learning Training (DLT) tasks. However, these DL
models must be trained using massive datasets, whose storage
requirements can easily far exceed the storage capacity of
individual physical disks. A network-based file system (e.g.,
NFS, HDFS) is a common solution to eliminate the need
for large, centralized disk space and reduce storage costs.
Unfortunately, contemporary distributed file systems are not
designed to handle DL datasets and workloads, thus requiring
users to make their own, ad hoc dataset placement and eviction
decisions based on available resources and resource profiles of
the DL workloads.

Alternatively, a centralized cloud bucket storage (e.g., AWS
S3, Azure Blob, Alibaba Cloud OSS) provides on-demand data
storage and access services. The cost of using cloud bucket
storage is calculated based on the usage of storage space, API
requests, and data transfer volumes. Since training a DL model

needs to traverse the dataset multiple times and as every access
to a data element corresponds to an API request, this cost could
become prohibitively expensive (e.g., $4e−3/1k requests for
AWS S3 *, and $1.9e−3/1k read operations for Azure Blob †)
particularly when the model needs to be trained on millions
of small files and that too for several epochs.

Furthermore, the constraints on the API request rate en-
forced by the cloud providers limit the use of cloud buckets as
direct-access storage facilities for local DLT jobs. For instance,
AWS S3 supports a request rate of 5,500 GET requests per
second per prefix in a bucket, whereas the constraint is 500
requests per second for a blob in Azure Blob. To ensure models
can directly learn from datasets in buckets, data providers are
forced to preprocess data files into a dedicated input format.
It is also time-consuming and expensive to upload a massive
number of small files to a bucket.

More importantly, since DL algorithms must wait for data
to be available in GPU memory before training, the I/O
bottleneck and inherent network latency in network-based file
systems and cloud buckets can easily result in severe data
stalls. As suggested in [1], since I/O takes as much as 85% of
DL training time, ensuring efficient and robust data ingestion
from data sources to DL applications so that the computational
device can always be in a saturation state becomes the funda-
mental challenge. Motivated by the need for low-latency data
access and high I/O throughput in memory, some efforts [2–5]
build distributed cache systems by aggregating memory from
a set of machines. These systems clone data from external
storage and cache the raw or pre-processed data in RAM. Data
elements are retrieved via local or remote cache hits during
training. However, given that the memory space is far smaller
than disk, building a cluster that can accommodate large-scale
datasets purely in memory is rather expensive.

Widely used DL frameworks (e.g., PyTorch) leverage multi-
process (i.e., workers) data-loading and prefetching mecha-
nisms to reduce GPU waiting time. For these frameworks, I/O
performance and concurrency level are the primary factors
affecting training time, which can be improved using in-
memory data storage. To that end, our investigations reveal that
only those batches that the data-loading workers will load into
memory in the near future must be cached. Further, the DLT
task can run smoothly if the cache is refreshed on-the-fly based

* https://aws.amazon.com/s3/pricing/
† https://azure.microsoft.com/en-us/pricing/details/storage/blobs/979-8-3503-3902-4/23/$31.00 ©2023 IEEE

https://aws.amazon.com/s3/pricing/
https://azure.microsoft.com/en-us/pricing/details/storage/blobs/

on data access patterns. However, current DL frameworks
and cache systems require users to decide the number of
data-loading workers prior to training, which might degrade
performance or waste memory under improper settings.

To address the challenges and limitations in current work,
we present DLCache, a dataset management and runtime-
aware data-loading solution that supports low-latency and
high-throughput I/O requirements of DL training jobs in the
setting where users utilize cloud buckets as persistent data
storage and a dedicated computation cluster for training.
DLCache is a cloud-native system that seamlessly integrates
with the Kubernetes (K8s) ecosystem, allowing users and
system maintainers to easily deploy, update, scale, and self-
heal components.

DLCache was evaluated on the Imagenet-ILSVRC and
LibriSpeech datasets using a hybrid of 3 batch size config-
urations and 6 simulated computation time settings. Empirical
results demonstrate that compared to the PyTorch framework,
DLCache exhibits a substantial improvement in data loading
throughput, reaching up to 147.49% and 49.62% improvement
for Imagenet-ILSVRC when there are 4 and 8 data-loading
workers, respectively, and the presence of data stall. For the
LibriSpeech dataset, DLCache achieved up to 156.67% and
39.70% improvement respectively under similar conditions.
Due to the minor overhead of DLCache, when there is no data
stall, DLCache’s performance was found to be lower than that
of PyTorch, with a maximum deviation of 3.03% and 7.74%
for Imagenet-ILSVRC, and 0.12% and 5.89% for LibriSpeech.

In summary, this paper makes the following contributions:
1) Describe DLCache, a DL dataset orchestration system

that enables efficient deployment and high-performance
data loading for cloud-native DLT jobs. It uses a novel
three-tier storage system and multiple data services,
such as dataset preparation, placement, and a cost-aware
eviction of the least recently/frequently used (CLRFU)
data eviction strategy.

2) Present the design of a K8s Custom Resource Definition
(CRD) controller and operator to streamline the DevOps
process for DLT jobs in the cloud, while hiding the
complexities of the underlying data services from user
applications. This approach enables users to define DLT
jobs in a descriptive language, such as YAML or JSON,
following a pre-defined schema, and execute them in a
special K8s pod we designed called DLTPod.

3) Analyze and identify the causes of PyTorch data stalls
and implement a runtime-aware best-effort caching
mechanism to mitigate the waiting time. Through its
Cache Worker, the DLTPod monitors training processes
and loads data dynamically from NFS into its in-memory
file system, TMPFS.

4) Enhancement to the PyTorch DataLoader to dynamically
determine and adjust the number of DataLoader Work-
ers based on real-time training performance and data
retrieval latency thereby improving memory utilization.

The rest of the paper is organized as follows: Section II
provides background information; Section III describes the

design of DLCache; Section IV provides results of empir-
ically evaluating DLCache; Section V compares DLCache
with related work; and finally Section VI provides concluding
remarks alluding to future work.

II. BACKGROUND

A. Deep Learning Training and Data Loading

In Deep Learning Training (DLT) jobs, a complex neural
network model is trained by iterating through a dataset mul-
tiple time-scaled epochs. The dataset is divided into fix-sized
mini-batches for each iteration, and the model updates its pa-
rameters through stochastic gradient descent [6] to minimize a
loss function. Computation-intensive operations are performed
using GPUs and accelerators, while CPUs handle data loading
and preprocessing. DLT jobs can be categorized into super-
vised and unsupervised learning based on whether the data has
labels or not. In supervised learning, the ⟨sample, label⟩ pairs
are created by retrieving data and labels from an input file or
a manifest file, and sent to the model using a custom loading
function or a DL framework’s utility. This paper focuses on
the widely-used PyTorch DL framework [7], specifically the
DataLoader [8] shown in Figure 1.

Fig. 1: PyTorch DataLoader Working Principle

To use the PyTorch DataLoader, users must create a subclass
of the Dataset class where their dataset is stored. This subclass
must implement the getitem function, which returns a
trainable ⟨sample, label⟩ tuple for a specific index in the
dataset. The DataLoader is then initialized with this Dataset
object. During the initialization process, the data item indexes
are shuffled and divided into batches, and an iterator is created
to iterate over these batch indexes and load the data. The
DataLoader can load the data either sequentially in the main
process or in parallel using multiple sub-processes (workers),
depending on the DataLoader configuration.

The multi-process DataLoader from Figure 1 works as
follows: each worker has its own copy of the Dataset object
and its own index queue. The main process maintains a data
queue where the tensors returned by the workers are stored.
If the pin memory feature, which accelerates data transfer
between RAM and GPU memory, is enabled, then the main
process also spawns a pin memory daemon thread. To retrieve
a batch, the DataLoader selects a worker in a round-robin

Fig. 2: DLCache Architecture (shaded blocks are our novel contributions to the K8s ecosystem)

manner and puts a batch index in the worker’s index queue.
The worker then retrieves the batch index, loads the data,
converts it into a tensor, and places it in the data queue.
If pin memory is enabled, the pin memory daemon thread
copies the tensor from the data queue to pinned memory. If
not, the main process directly pops the tensor from the data
queue and returns it, with the CPU then copying the tensor
from RAM to GPU memory using traditional means.

Enabling pin memory can improve GPU memory utiliza-
tion by allowing more data from different workers to be
pushed into GPU memory quickly. The GPU waiting time
is influenced by the time it takes for the workers to load the
data and place it in the data queue, as well as the number of
mini-batches in the data queue when the main process tries to
retrieve data. The DataLoader includes a prefetch factor
parameter that determines how many mini-batches will be
preloaded into memory before the start of each epoch.

B. Kubernetes (K8s) Operator

In a K8s ecosystem, a custom resource like a DLT job is
managed using a combination of Custom Resource Definition
(CRD) and Operator Controller. A CRD is a custom resource
added to the K8s API allowing users to store a collection of
objects of a specific kind. The Operator Controller is a routine
running within the K8s cluster that watches for events such as
create, update, or delete on the custom resource and updates its
status to the desired state. The Operator Controller is deployed
as a separate pod in the cluster and is responsible for managing
the custom resource. By wrapping a DLT job as a K8s
Operator, users can focus on the application without having
to worry about underlying support functions. For example, the
Operator Controller can make placement decisions for the DLT
job based on cluster resources and automatically add necessary
built-in API objects to the CRD.

III. DESIGN OF DLCACHE

We now describe the design of DLCache in detail including
its components and workflow. As shown in Figure 2, DLCache

consists of four layers: control plane (in the master node),
metadata plane, operator plane, and storage plane (which is
distributed), all integrated within the K8s ecosystem, and
where a DLT job is deployed as a new K8s CRD pod type
we created called DLTPod. Users are required to provide a
container image for the DL application and a YAML file
with properties defined in the DLTPod specification. The data
sources are assumed to be stored in external cloud storage,
which can be accessed with security tokens and object keys
provided by users. The system workflow is summarized in
Algorithm 1.

Algorithm 1: System Workflow

1 Users send a DLTPod deployment request to the K8s
API server (❶);

2 K8s API server invokes Operator Controller to process
the request (❷);

3 if Dataset size ≤ free + preemptible storage space
then

4 Deploy DLTPod (❸);
5 Client in DLTPod registers to Manager for dataset

preparation (❹);
6 Manager-Workers execute preparation (❺);
7 Client notifies DLJob to start execution when

dataset is cloned. During training, Client
coordinates with the DLJob to transfer data from
NFS to the TMPFS cache, release used data, and
track the life stage of data chunks in NFS (❻);

8 else
9 Reject the deployment request;

10 end

The rest of this section delves in the details of the architec-
ture explaining each component.

A. DLTPod: A Custom Pod Type for DL Jobs
In the K8s object model, Pod is the smallest unit represent-

ing a single instance of a running process in a cluster. DL jobs

require certain operations that are not natively supported by
the traditional K8s Pod type. Consequently, we were required
to define our own custom Pod type called DLTPod to support
DL jobs, which also helps to hide complexities from the end
user and enables them to use the new pod type seamlessly
within the K8s ecosystem. DLTPod inherits the specifications
of K8s native Pod; therefore, all fields for Pod are supported by
DLTPod. We utilize K8s’ Secret to store the user’s credential
information so that they do not need to be hard-coded or
stored in the corresponding DLJob container, which reduces
the risk of exposing confidential data. Containers in DLTPod
are associated with a K8s ConfigMap, NFS Volumes, and
a TMPFS (RAM-backed file system) Volume. The DLTPod
comprises two containers: DLJob with the actual deep learning
training logic, and a side car container called Client used in
job registration and cache management.

In the DLTPod’s YAML/JSON file, users must provide
information about the data source, usually in the form of
prefixes for the data object keys stored in the cloud storage
bucket for training and validation. For supervised learning
tasks where samples and targets are separate files (such as
speech-to-text translation), users must supply a manifest file
that outlines the mappings between the input samples and their
corresponding targets. In other cases, it is optional to use the
manifest field depending on whether it is needed for mapping
⟨sample, label⟩ tuples while loading data.

We designed the DLJobDataset and DLJobDataLoader
primitives on top of PyTorch’s Dataset and DataLoader util-
ities, respectively, for dataset abstraction and data loading.
Users of DLCache must subclass from the DLJobDataset
class and initialize a DLCJobDataLoader object in their DL
application. DLJobDataset integrates the logic of mapping the
user-known file path in the cloud bucket to hashed paths in
our system, as well as handling data missing in cache and
NFS. The DLJobDataLoader interacts with the Client through
ZeroMQ IPC [9] to provide dynamic cache management.

Additionally, DLJobDataLoader does not need users to
specify the number of data-loading workers but can auto-
matically tune the value by comparing the training time
and data-loading latency. Since we identify data blocks by
their location and content hash value (explained later), the
Client will generate a digest file that maps user-known data
object keys in the cloud bucket to local file paths in the
format: /nfs server ip/content hash value. The DLJobDataset
will automatically load this digest file as class attributes as
users might need the information when retrieving data items.

B. DLTPod Operator Controller

We store the DLTPod metadata as structured data in the
etcd key-value store of K8s when the CRD is created, but
it becomes active only when associated with the DLTPod
Operator Controller. This Controller ensures that the current
state of the DLTPod always matches the desired state. The
declarative API for DLTPod exposes fields related to the
DLJob only, while other supporting components are created
automatically by the Controller, which isolates users from the

complexities of the underlying workflows and communication.
Our Controller includes a job scheduler module, which is
responsible for making placement decisions for DLTPods
by analyzing the current dataset distribution and remaining
resources across the cluster. The goal is to deploy an incoming
DLTPod on a node that has (a) available computation resources
(e.g. GPUs), (b) as many data blocks of the associated dataset
as possible, and (c) as much free disk space as possible. This
improves the probability of loading data from the local NFS
server while meeting the computation resource requirements
and reducing the network to disk I/O latency.

A score is computed for each node to represent how well
these conditions are met. Assuming that node i contains k
data blocks of the dataset belonging to job j, K of the D
data blocks in the dataset already exist in the cluster, and
the ratio of the available storage space of node i to the total
available space is α, then we calculate the score of node i for
job j as score(i, j) = I(i, j)+ k+α(D−K)

D , where I(i, j) is a
binary indicator signifying whether the available computation
resources on node i can satisfy job j’s requests. The job gets
deployed on the node with the highest score. A sequence of
nodes with decreasing scores is saved in a ConfigMap, which
can later be used in the dataset placement strategy.

C. DLCache Manager

The DLCache’s Manager is responsible for dataset prepara-
tion and its management. It is deployed as a K8s Deployment
and exposed as a K8s Service with a ClusterIP. Once a
DLTPod is deployed, the Client container is automatically
started in it and connected to the Manager’s gRPC server.
The Client calls the job registration service to forward the
cloud credentials secret, data source information, node scores,
and resource profiles to the Manager. The Manager then saves
these information into MongoDB as the job’s metadata and
notifies the Manager-Workers running on designated nodes to
prepare the datasets. The Manager-Workers communicate with
the Manager via gRPC and are responsible for downloading
and extracting data files. They are deployed as a Pod on every
node within the cluster (K8s Daemonset). Since each Manager-
Worker is only responsible for downloading data on its local
NFS server, there is no redundant data transmission within the
cluster while preparing datasets.

1) Dataset Preparation: The Manager orchestrates
Manager-Workers to perform data preparation according to
node scores computed by the DLTPod Operator Controller.
Before downloading a data file from the cloud bucket, the
Manager will check if it is already available on the NFS
cluster by checking its content hash value in MongoDB. If
the data object’s content hash is provided by the cloud bucket
service, such as the Entity Tag (ETag) attribute for objects
in S3, it will be used. Otherwise it will be generated using
the hex digest of the SHA-256 hash of the first 1MB of the
file’s content. The reason for this constraint is to prevent the
memory from overflowing and prolonging the data preparation
time by directly reading large data files. The path of data
files on the NFS cluster is in the /nfs server ip/ETag

format. Note that the Etag, which represents a single file or
an uncompressed folder, is the smallest unit of manipulation.

NFS servers are selected sequentially following the descend-
ing order of node scores. A new NFS server is chosen if the
current node’s storage is exhausted. This locality-first strategy
ensures that data resides on the same node as the DLJob as
much as possible. If the dataset is (partially) available on the
cluster and no active job is used, we redistribute the dataset
using the node score sequence. If multiple DLJobs share the
same dataset and cannot be deployed on the same machine
due to resource constraints, we do not change the distribution
of the dataset as it may cause disruption to the ongoing jobs.

Since data providers typically compress a dataset into sev-
eral compressed files to reduce the data sharing cost and save
uploading time, the Manager-Worker detects the compression
format automatically, then downloads and extracts them using
the pigz [10] parallel decompression technique. We preserve
the file tree structure if the compressed file is initially a folder.
If a data chunk is available on NFS but does not locate on the
node decided by the Manager based on node scores and has no
associated active job, the Manager will move it to the targeting
node. We measure the total time of downloading and extracting
a data object, called the cost of the data object, which will be
an essential criterion when making the data eviction decision.

2) Cost-aware LRFU Data Eviction: After a job has com-
pleted, its dataset is not immediately deleted as it may still
be needed by other jobs in the near future. Instead, a novel
cost-aware data eviction strategy is used when the cluster runs
out of storage. We first identify if a data block is eligible for
deletion. A data block is considered eligible if it is no longer
being used by any active jobs and has completed its cool-
down period. The DLJobDataLoader uses a daemon process
to initiate the cool-down of used data blocks after each epoch.
This process terminates once a new epoch starts. Once all the
epochs have finished and the cool-down period has expired, a
data block becomes inactive and becomes eligible for deletion.

We designed the Cost-aware LRFU eviction strategy to
address the limitations of traditional cache eviction policies
such as Least Recently Used (LRU), Least Frequently Used
(LFU), and Least Recently/Frequently Used (LRFU) [11]
which only consider the historical references but ignore the
cost of re-downloading and processing deleted data blocks
thereby adversely impacting data preparation time. Traditional
LRFU combines the LRU and LFU policies and considers the
likelihood of a data block (represented by an ETag) being used
in the future based on its combined recency and frequency
(CRF) of past references.

At time tbase, the CRF value of data block b is calculated
as CRFtbase

(b) =
∑k

i=1 F (tbase− tbi), where bi indicates the
ith time reference of the block b before tbase, and F (x) is the
weighting function suggesting the contribution of a reference,
which decreases with time passing. Let x be the difference
between the current time and the time of a reference in the
past, then F (x) =

(
1
p

)step×x

, where p is an attenuation factor
that controls how fast the influence decays with time passing,

and step balances how much LRFU is close to LRU and LFU.
LRFU becomes LFU if step is 0, else LRU when step is 1.

We improve upon the LRFU scheme as follows. In DLCache
we assume all data files in a dataset are accessed at the same
time when the job is registered because the random data-
access nature in the DL training process requires all data to
be available ahead of training. Therefore, for an incoming job,
data chunks belonging to the same dataset have identical tbase.
We further take the cost of each data block C(b) into account
when sorting the CRFtbase

values. Simply put, the Cost-Aware
LRFU policy evicts data blocks based on increasing order of
their CRF values at tbase (first criteria) and data preparation
cost (second criteria).

D. Cache Management

1) Best-effort Caching: From Section II, the PyTorch Dat-
aLoader improves I/O performance by overlapping the training
time and the data-loading time, which attempts to have data
reside in memory when the model needs them. Likewise,
when using cache to improve I/O performance, we need to
ensure the data have been pushed into the TMPFS cache
when DLJobDataLoader workers need to load them. To that
end, the DLJobDataLoader relays the succeeding index of the
batch that will be immediately loaded by workers to the Client
through ZMQ IPC. The Client inserts the received messages
in a separate queue and utilizes a daemon process to load
data into the cache asynchronously. A loader in the daemon
process loads data in the inverse order of samples in the
batch and is interrupted when a new batch index is pushed
into the queue, when it starts processing the next batch. This
ensures that as many samples as possible are forwarded to
the cache and fully utilized. Specifically, we skip the first
prefetch factor × num workers batches in each epoch if
the dataset shuffle is enabled because loading them at once
can prolong the launching time of each epoch. In contrast,
consecutive epochs can be overlapped if the shuffle is disabled,
and only the first prefetch factor×num workers batches
in the first epoch are missed. If a data item in TMPFS is not
available when reading, we implicitly redirect the target file
path to that in NFS by wrapping the getitem function in
the PyTorch Dataset utility.

2) Release Cache: At the beginning of an iteration, the
DLJobDataLoader sends the index of the last-used trained
batch to the Client. Like the loading cache process, the Client
maintains another daemon process to delete data from TMPFS
asynchronously. Since the main process of DLJobDataLoader
inserts a new index into a worker’s index queue only after it
consumes one batch from the data queue, theoretically there
are at most prefetch factor×num workers batches of data
residing in cache during the training time.

E. Adaptive Multiprocess Data Loading

The purpose of employing multiple workers for data loading
in PyTorch’s DataLoader utility is to parallelize the loading
and preprocessing of data so that data can be directly ac-
cessed from RAM or GPU memory (if the pin memory

is enabled). Increasing the number of workers can increase
the memory footprint and CPU utilization of the loading
process. In practice, users need to fine-tune the num workers
parameter manually in search of the optimal trade-off between
data-loading speed and resource utilization. Our DLTJob-
DataLoader incorporates an online approach to identify the
optimal value of num workers automatically based on real-
time measurements as shown in Algorithm 2.

Assuming the request interval between consecutive training
iterations is treq and the fetching time (including the I/O time
and data processing time) for a single batch is tfetch, then
to avoid data stalls, the number of workers ω should satisfy
ω ≥ tfetch

treq
. However, if ω is greater than the number of CPU

cores, the CPU cores will be oversubscribed and the workers
will compete for CPU time. This can lead to context switching,
which can cause a decrease in performance. Therefore, we
adopt the constraint with the theoretically calculated worker
number (line 2). In addition, depending on the batch size, a
high value of ω might overflow the RAM or GPU memory
(pin memory = True). Therefore, the ultimate value of ω
should also be subjected to CPU and memory constraints (lines
3-6). Finally, the updating decision is applied to the data loader
by spawning new workers or pausing active workers, and
synchronous the data pre-fetching index (lines 7-12). Note that
paused worker processes have a grace period to be terminated
because their index queue might have pending batches indexes.
The algorithm tunes the number of workers every B batches
starting from an initial value ω, and stops after N times.

IV. EXPERIMENTAL EVALUATION

This section describes three experiments that evaluate DL-
Cache along several dimensions using multiple datasets. Gen-
erally speaking, they answer the following questions:

• Compared to the baseline that uses the PyTorch frame-
work for data loading, can DLCache improve the data
loading throughput under heterogeneous hardware and
workload configurations?

• Can DLCache automatically find the optimal number of
data loader workers for a given workload and ensure
throughput improvement at the same time?

• Can DLCache’s cost-aware data eviction strategy reduce
the data preparation time when executing a series of DLT
jobs in a resource-constrained environment?

A. Experiment Setup

Hardware and Software: Our testbed comprises four AWS
EC2 instances; each is equipped with 8 2.30GHz vCPUs,
32GB RAM, and a 512GB SSD. They are connected via a 1.0
Gbps LAN. NFSv4 servers are installed on the nodes without
space limitation. We set up a K8s (v1.17.6) cluster across the
nodes and used Flannel for the container network plugin. Since
DLCache is geared to optimizing dataset placement and data
loading and not the actual training process, we simulate the
computation time using a sleep function. This setting allows us
to verify whether DLCache is adaptive to different hardware,
model configurations, and workloads. We employ PyTorch

Algorithm 2: Tune the num workers Knob
Data: the initial value of num workers: ω, current

average data fetching time: t̄fetch, current
average interval between consecutive training
iterations: t̄req , the number of CPU cores on the
machine: num cores, and the memory usage
upper bound memup;

Result: Add or remove active workers;
1 Shut down inactive workers;
2 ω′ = min(⌈ t̄fetch

t̄req
⌉, num cores);

3 Average memory usage per worker
memworker = memtotal

ω ;
4 if memworker × ω′ > memup then
5 ω′ = ⌊ memup

memworker
⌋

6 end
7 ∆ = ω′ − ω;
8 for i = 0; i < |∆|; i = i+ 1 do
9 Spawn a new worker process if ∆ > 0, pause a

worker process (stop putting index into its index
queue) if ∆ < 0;

10 end
11 Put prefetch factor number of batch indexes into

each new workers’ index queue if ∆ > 0;
12 Adjust the dataloader prefetch index to ensure there

are at most ω′ × prefetch factor outstanding
batches in Cache.

v1.12 for implementations of the test applications and the
DLJobDataset and DLJobDataLoader bundle.

Workloads and Datasets: The simulated workloads for the
first two experiments are an image classification model and a
speech recognition model, which are trained on the ImageNet-
ILSVRC [12] (136GB size) and the LibriSpeech [13](105GB
size) datasets, respectively. Recent benchmarking [14] on a va-
riety of modern GPU devices reveal the training throughput of
the ResNet50 [15] model ranges from 500 to 4,000 images/s.
Likewise, [16] reported spending 38 hours (batch size =
256) to train a speech recognition model on LibriSpeech for
100 epochs using 8 Nvidia V100 16GB GPUs. Based on these
practical observations, we simulated a range of training times
(from 0.5s to 3.0s) under different batch sizes (128 to 2048).

Due to storage capacity limitations, a dataset may be (par-
tially) removed if it is not bound to any active job and new jobs
are requesting resources. Consequently, if this dataset is used
again in the future, the DLT job has to wait for the dataset to
be re-downloaded. In the real world, different DLT jobs might
have different preferences or frequencies for reusing a dataset.

We summarize four types of datasets: (1) One-time-use
datasets are used by DLT models that are trained only once
and then deployed, (2) Reuse-oriented datasets usually appear
in use cases, such as fine-tuning pre-trained models, hyper-
parameter tuning, or boosting algorithms, (3) Partially-reused
datasets are common in scenarios where models are trained on
a mixture dataset composed of part of the old dataset and some

(a) (b) (c)

Fig. 3: Compare DLCache and PyTorch performance on improving data loading throughput with num workers = 4 (no auto-tuner) using
the ImageNet-ILSVRC dataset: (a) data loading throughput of DLCache and PyTorch; the green line indicates where the data stall eliminates
when the batch size is 512; (b) average throughput improvement compared to PyTorch under different batch size settings; (c) cache usage
of DLCache.

(a) (b) (c)

Fig. 4: Compare DLCache and PyTorch performance on improving data loading throughput with num workers = 4 (w/o auto-tuner) using
the LibriSpeech dataset: (a) data loading throughput of DLCache and PyTorch; the green line indicates where the data stall eliminates when
the batch size is 128; (b) average throughput improvement compared to PyTorch under different batch size settings; (c) cache usage of
DLCache.

emerging new data, such as model drift correction, updating
a classifier for new classes, rebalancing class distribution,
and continuous learning models, and (4) Temporary-shared
datasets are similar to one-time-use datasets but shared by
multiple training jobs simultaneously. They are usually used
in multi-task, multi-view, or ensemble learning scenarios.

In the third experiment, we assume these four types of
datasets map, respectively, to a private traffic mobility dataset
TrafficInrix (96GB size), ImageNet-ILSVRC, a network traf-
fic dataset CSE-CIC-IDS2018 [17] (6.89GB size), and Lib-
riSpeech. We set the reuse times for ImageNet-ILSVRC to 1,
3, and 5, and the number of Jobs sharing LibriSpeech and the
number of reused old data files in CSE-CIC-IDS2018 to 1, 3,
5, and 7. Moreover, we set 10 storage stress levels ranging
from 160GB to 260GB. Therefore, there is a total of 480
combinations of system-level and job-level configurations. For
each configuration, we randomly sample the sequence of the
jobs 50 times, yielding 24,000 workload patterns.

B. Evaluation Results

In experiments 1 and 2, each test loaded 100 mini-batch
data and was repeated three times on three worker nodes in
our cluster. Since the size of both datasets is smaller than
the disk capacity, DLTPod can load the data directly from
the mount point of the local NFS server thereby avoiding
the use of the network. We report the average data loading

throughput (excluding the simulated computation time), the
throughput improvement ratio, and the average number of
samples resident in cache. The cache usage is determined by
dividing the number of samples present in the cache prior to
each cache release operation by the corresponding batch size;
therefore, the maximum value would be prefetch factor ×
num workers + 1, indicating the highest cache utilization
during the test. For experiment 2, we additionally present
how the computed num workers changes over the simulated
compute time under different batch size settings.

Recall that enabling pin memory can speed up GPU
data access and potentially increase training speed, but also
increases GPU memory utilization when there are multiple
data loading workers. In Experiment 1, we assume that the user
has enabled the pin memory feature, and due to limitations
of GPU memory, the maximum num worker is set to 4.
Moreover, we set the prefetch factor to 2, and disabled the
automatic adaptation of num worker feature in DLCache.

As shown in Figures 3a and 4a, the throughput decreases
with the increase in batch size. The primary reasons are: (1)
the disk I/O speed is not fast enough to keep up with the
increasing demand for data; (2) loading and preprocessing the
larger batch sizes increases the CPU overhead causing the
data loading throughput to decrease. In addition, data stalls
gradually diminish with an increase in simulated compute time
as expected because the data loader has sufficient time to

(a) (b) (c) (d)

Fig. 5: Compare DLCache and PyTorch performance on improving data loading throughput with num workers = 8 (w/ auto-tuner) using
the ImageNet-ILSVRC dataset: (a) data loading throughput of DLCache and PyTorch; the solid and dashed green lines indicate where the
data stall eliminates when the batch size is 512 and 1024; (b) average throughput improvement compared to PyTorch under different batch
size settings; (c) cache usage of DLCache; (d) auto-tuned num workers for given workloads.

(a) (b) (c) (d)

Fig. 6: Compare DLCache and PyTorch performance on improving data loading throughput with num workers = 8 (w/ auto-tuner) using
the LibriSpeech dataset: (a) data loading throughput of DLCache and PyTorch; the solid and dashed green lines indicate where the data
stall eliminates when the batch size is 128 and 256; (b) average throughput improvement compared to PyTorch under different batch size
settings; (c) cache usage of DLCache; (d) auto-tuned num workers for given workloads.

prefetch data from disk into memory. Therefore, the upper
bound of data loading throughput ultimately depends on the
data processing time on CPUs. DLCache delivers similar
throughput to PyTorch. On the other hand, if the computation
speed is very fast (e.g., 0.5s), the time for DLCache to transfer
data from disk to cache will be shorter; therefore, relatively
fewer I/O operations can benefit from the cache. In contrast,
DLCache significantly outperforms PyTorch in the use cases
where I/O is the primary bottleneck of data loading.

As depicted in Figures 3b and 4b, when evaluated under the
established batch size configurations, DLCache demonstrates
an average increase in throughput for ImageNet-ILSVRC in
the range of 10.68% to 50.27%, and for LibriSpeech from
14.26% to 57.48%. Figures 3c and 4c demonstrate that
more batches can be transferred into cache with increase
in computing time, but the usage is strictly limited under 9
batches. Also, workloads with large batch sizes transfer fewer
batches into cache because the transfer process of a batch will
get interrupted when a new data loading request arrives. These
observations validate that DLCache uses cache efficiently.

Experiment 2 utilized 8 workers for PyTorch’s
num workers parameter, aligning with the number of
available CPU cores. This implies that both RAM and GPU
memory is sufficient to support the training process regardless
of whether the page-locked memory (pin memory) is
used. The number of data-loading workers was optimized
by DLCache, starting at 8 and concluding after 20 batch
cycles. As indicated in Figures 5a and 6a, the general trend
of throughput is comparable to that of Experiment 1. The
time required for data loading and processing for a given
batch is reduced, and the throughput begins to converge at

an earlier stage. When the computation time fully overlaps
the data loading time (denoted by the green solid and dotted
lines), DLCache’s throughput is slightly lower than PyTorch.
In this scenario, DLCache’s online caching operations
has no opportunity to improve performance and instead
incurs additional overhead (e.g. CPU contention). However,
DLCache constantly delivers higher throughput when the I/O
bottleneck is non-negligible.

In summary, as shown in Figures 5b and 6b, DLCache
exhibits an average increase in throughput for ImageNet-
ILSVRC in the range of -0.02% to 14.81% and for LibriSpeech
from 0.85% to 10.07% when evaluated under the established
batch size and computation time configurations. Additionally,
Figures 5d and 6d demonstrate that DLCache can adaptively
adjust the number of workers to the optimal range, thereby pro-
viding the best performance and efficient resource utilization
under the given configurations. The real-time cache loading
mechanism of DLCache is capable of adapting to changes
in the number of workers, thereby preventing the loading of
unnecessary samples into the cache, as shown in Figures 5c
and 6c. It is worth noting that a reduction in the number of
workers does not suddenly result in a decrease in cache usage.
This is because the utilization of cache is also contingent upon
the number of samples that can be transferred into the cache
per batch within a specified computation time constraint.

In the third experiment, which aims to assess the efficacy
of DLCache’s cost-aware LRFU strategy on data preparation
time, a range of classical algorithms were considered, in-
cluding Least Recently Used (LRU), Least Frequently Used
(LFU), Least Recently Frequently Used (LRFU), and Random,
as baselines for performance comparison. The data eviction

algorithms used in cache systems have a primary objective
of determining which data should be evicted from the cache
to accommodate new data while disregarding the cost of
data preparation. In contrast, the Greedy algorithm adopts
a unique approach by removing the data chunk with the
lowest cost. DLCache’s Cost-Aware LRFU algorithm takes
into consideration not only the data access frequency and
recency but also the data preparation cost thereby providing a
comprehensive evaluation of our cost-aware LRFU strategy.

To investigate a wide range of workload patterns (24,000
in our case), this experiment was performed in an offline
manner as a simulation. The diversity in the costs associated
with different data chunks presents an opportunity to optimize
data preparation time by making strategic eviction decisions.
As depicted in Figure 7, the cumulative distribution function
(CDF) curve of the Cost-Aware LRFU approach consistently
surpasses those of the baseline algorithms without substantial
variations demonstrating the superiority of Cost-Aware LRFU
in performance.

Fig. 7: CDF curve of the total data preparation time when executing
a series of DLT workloads.

V. RELATED WORK

Many prior efforts exist in the literature that address the
storage management and data access challenges from different
perspectives in DLT systems. We provide a sampling of these
and compare DLCache with them.

Databases and file systems for DL applications: Research
efforts exist that determine the best storage solution for DL ap-
plications including evaluations of existing database software
and custom platforms. Some studies have compared object
storage systems and key-value storage databases. For exam-
ple, Cheng et al. [18] compared MinIO, Ceph, MongoDB,
Redis, and Cassandra and found that the optimal storage
choice depends on the specific workload and configurations.
File-system-based solutions, such as FanStore [19] and Al-
luxio [20], have also been proposed. FanStore is a runtime
shared file system for efficient and scalable DL training, while
Alluxio serves as a middleware between a distributed file sys-
tem and a computation framework. In contrast, our approach
uses a lightweight and mature NFSv4 with cachfilesd and
TMPFS for data sharing and caching, and a global MongoDB
database to manage file metadata. Jobs obtain metadata from
the database, generate a runtime manifest based on their data
access sequence, and save it in RAM.

Caching mechanisms for DL training: Various caching
strategies have been proposed to improve I/O performance
in DL training. DELI [2] uses a disk-based MongoDB
database for caching and a customized pre-fetching approach
to maximize overlap between communication and computa-
tion. Quiver [3] uses cloud storage for input data and local
SSD for caching, offering three options based on how much
the job can benefit from caching. In our case, the dataset
is stored as compressed files in a cloud bucket, so it’s not
suitable to use as the backend storage. DLCache is a three-
level data orchestration system, with added support for batch-
grained in-memory caching compared to Quiver and DELI,
which enhances our ability to optimize I/O performance.

Prior work on data loading and caching for distributed train-
ing has focused on locality-aware techniques and aggregation
of local caches. Yang et.al [21] proposed a shared in-memory
cache pool built from the local caches of all nodes. The dataset
is divided into disjoint subsets and stored in each node’s
cache, and learners on each node receive the same global
mini-batch sequence and make agreements on how to load
samples locally. Wang et.al [22] presented DIESEL, a task-
grained distributed caching system that aggregates small data
files into large data chunks and saves the mappings as metadata
snapshots in memory. The caching process in DIESEL is
integrated with a chunk-wise shuffle method that transforms
random file read requests into chunk-based reads and caches
visited chunks. In comparison to prior works, DLCache adopts
an on-demand and best-effort caching strategy. This is due
to the fact that, in real-world scenarios, the rapid growth
of dataset size makes it costly to establish a distributed
memory pool. DLCache can achieve high cache hit rates
as long as the computation time is greater than the cost of
transferring data from SSD to TMPFS. The cache will contain
at most prefetch factor× batch size items throughout the
training process, which is usually a tiny fraction of the entire
dataset. Additionally, these previous studies do not account
for the actual I/O requirements of a DLT job under specific
runtime configurations (e.g., batch size and num workers)
and resource limitations (e.g., GPU computation speed and
GPU memory size). As our experiments demonstrate, if the
computation time coincides with the data loading time, the
cache system would not be able to enhance performance. In
such cases, maintaining a subset of the dataset in memory
would be unnecessary.

VI. CONCLUSION

This paper describes DLCache, which provides comprehen-
sive system optimizations for deep learning dataset placement
and data loading in cloud-native deep learning training jobs.
DLCache leverages a three-tier storage and implements mul-
tiple data services, including dataset preparation, placement,
and cost-aware least recently/frequently used (CLRFU) data
eviction strategy. A Kubernetes CRD controller and operator
including a new Pod type were developed to simplify the
DevOps process for DLT jobs. The system implements a
runtime-aware best-effort caching mechanism that reduces the

waiting time caused by data stalls in the PyTorch framework.
Additionally, DLCache enhances the PyTorch DataLoader
to automatically decide the number of DataLoader workers
based on real-time training performance and data retrieval
latency. The performance of DLCache was evaluated through a
systematic set of experiments under a wide range of runtime
settings. The results demonstrate that DLCache can signifi-
cantly improve DLT data loading throughput even when there
is an I/O bottleneck and achieve comparable performance with
the PyTorch framework when there is no data stall. The cost-
aware LRFU data eviction policy was found to outperform a
variety of commonly used policies.

In the future, we plan to (1) optimize the system and reduce
operation overheads; (2) evaluate other types of network-based
and parallel file systems (e.g., GPFS [23], Lustre [24], etc.);
(3) port DLCache to GPU clusters; and (4) add more features
to support distributed learning and federated learning in cloud.

REFERENCES

[1] N. Dryden, R. Böhringer, T. Ben-Nun, and T. Hoefler,
“Clairvoyant prefetching for distributed machine learning
i/o,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–15.

[2] N. Krichevsky, R. St Louis, and T. Guo, “Quantifying and
improving performance of distributed deep learning with
cloud storage,” in 2021 IEEE International Conference
on Cloud Engineering (IC2E). IEEE, 2021, pp. 99–109.

[3] A. V. Kumar and M. Sivathanu, “Quiver: An informed
storage cache for deep learning,” in 18th USENIX Con-
ference on File and Storage Technologies (FAST 20),
2020, pp. 283–296.

[4] R. Gu, K. Zhang, Z. Xu, Y. Che, B. Fan, H. Hou,
H. Dai, L. Yi, Y. Ding, G. Chen et al., “Fluid: dataset
abstraction and elastic acceleration for cloud-native deep
learning training jobs,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 2022,
pp. 2182–2195.

[5] D. Graur, D. Aymon, D. Kluser, T. Albrici, C. A.
Thekkath, and A. Klimovic, “Cachew: Machine learning
input data processing as a service,” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22), 2022,
pp. 689–706.

[6] H. Robbins and S. Monro, “A stochastic approximation
method,” The annals of mathematical statistics, pp. 400–
407, 1951.

[7] G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran,
Á. López Garcı́a, I. Heredia, P. Malı́k, and L. Hluchỳ,
“Machine learning and deep learning frameworks and
libraries for large-scale data mining: a survey,” Artificial
Intelligence Review, vol. 52, no. 1, pp. 77–124, 2019.

[8] “torch.utils.data — pytorch 1.13 documentation,” https:
//pytorch.org/docs/stable/data.html.

[9] “zmq ipc(7) - 0mq api,” http://api.zeromq.org/master:
zmq-ipc.

[10] M. Adler, “pigz: A parallel implementation of gzip
for modern multi-processor, multi-core machines,” Jet
Propulsion Laboratory, 2015.

[11] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim, “Lrfu: A spectrum of policies
that subsumes the least recently used and least frequently
used policies,” IEEE transactions on Computers, vol. 50,
no. 12, pp. 1352–1361, 2001.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 2009, pp. 248–255.

[13] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur,
“Librispeech: an asr corpus based on public domain
audio books,” in 2015 IEEE international conference
on acoustics, speech and signal processing (ICASSP).
IEEE, 2015, pp. 5206–5210.

[14] “Gpu benchmarks for deep learning — lambda,” https:
//lambdalabs.com/gpu-benchmarks.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[16] K. Zhao, H. D. Nguyen, A. Jain, N. Susanj,
A. Mouchtaris, L. Gupta, and M. Zhao, “Knowledge
distillation via module replacing for automatic speech
recognition with recurrent neural network transducer,”
2022.

[17] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani,
“Toward generating a new intrusion detection dataset
and intrusion traffic characterization.” ICISSp, vol. 1, pp.
108–116, 2018.

[18] P. Cheng and H. S. Gunawi, “Storage benchmarking with
deep learning workloads.”

[19] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Mi-
choski, J. Cazes, and N. Gaffney, “Fanstore: Enabling
efficient and scalable i/o for distributed deep learning,”
arXiv preprint arXiv:1809.10799, 2018.

[20] H. Li, Alluxio: A virtual distributed file system. Univer-
sity of California, Berkeley, 2018.

[21] C.-C. Yang and G. Cong, “Accelerating data loading in
deep neural network training,” in 2019 IEEE 26th Inter-
national Conference on High Performance Computing,
Data, and Analytics (HiPC). IEEE, 2019, pp. 235–245.

[22] L. Wang, S. Ye, B. Yang, Y. Lu, H. Zhang, S. Yan, and
Q. Luo, “Diesel: A dataset-based distributed storage and
caching system for large-scale deep learning training,”
in 49th International Conference on Parallel Processing-
ICPP, 2020, pp. 1–11.

[23] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk
file system for large computing clusters.” in FAST, vol. 2,
no. 19, 2002.

[24] P. Schwan et al., “Lustre: Building a file system for
1000-node clusters,” in Proceedings of the 2003 Linux
symposium, vol. 2003, 2003, pp. 380–386.

https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html
http://api.zeromq.org/master:zmq-ipc
http://api.zeromq.org/master:zmq-ipc
https://lambdalabs.com/gpu-benchmarks
https://lambdalabs.com/gpu-benchmarks

	Introduction
	Background
	Deep Learning Training and Data Loading
	Kubernetes (K8s) Operator

	Design of DLCache
	DLTPod: A Custom Pod Type for DL Jobs
	DLTPod Operator Controller
	DLCache Manager
	Dataset Preparation
	Cost-aware LRFU Data Eviction

	Cache Management
	Best-effort Caching
	Release Cache

	Adaptive Multiprocess Data Loading

	Experimental Evaluation
	Experiment Setup
	Evaluation Results

	Related Work
	Conclusion

