
A Model-driven Middleware Integration Approach
for Performance-Sensitive Distributed Simulations

Travis Brummett
CS, Tennessee Tech Univ

Cookeville, TN, USA
tbrummett@tntech.edu

Kyoungho An
Real-Time Innovations (RTI)

Sunnyvale, CA, USA
kyoungho@rti.com

Aniruddha Gokhale
EECS, Vanderbilt University

Nashville, TN, USA
a.gokhale@vanderbilt.edu

Sanders Mertens
Zoox

Foster City, CA, USA
smertens@zoox.com

Abstract—Complex simulation systems often comprise multiple
distributed simulators that need to interoperate and synchro-
nize states and events. In many cases, the simulation logics
which are developed by different teams with specific expertise,
need to be integrated to build a complete simulation system.
Thus, supporting composability and reusability of simulation
functionalities with minimal integration and performance over-
head is a challenging but required capability. Middleware for
game engines are promising to realize both the modular and
reusable development criteria as well as the high performance
requirements, while data-centric publish/subscribe middleware
can support seamless integration and synchronization of the
distributed artifacts. However, differences in the level of ab-
straction at which these middleware operate and the semantic
differences in their underlying ontologies make it hard and
challenging for simulation application developers and system
integrators to realize a complete, operational system. To that
end this paper presents a model-driven approach to blending
the two middleware, wherein the modeling capabilities provide
intuitive and higher-level abstractions for developers to reason
about the composition and validation of the complete system, and
the generative capabilities address the inherent and accidental
complexities incurred in reconciling the semantic differences
between the gaming and pub/sub middleware. We present a
concrete implementation of our approach and illustrate its use
and performance results using simple use cases.

Index Terms—Composable Simulation, Distributed Simulation,
Model Driven Engineering, Entity Component System, Data
Distribution Service, Automation.

I. INTRODUCTION

Simulation is often the preferred approach when it comes to
studying complex cyber physical systems (CPS) or conducting
training exercises to use them, e.g., in operating an aircraft.
Simulation environments for complex systems often require
multiple simulators to interact with each other. For example, to
evaluate new smart city traffic management solutions, multiple
disparate simulators, such as a vehicular traffic simulator
(e.g., SUMO or Carla), a network simulator (e.g., NS3 or
OMNeT++) and a physics simulator (e.g., Simulink), must
be integrated to realize the complete system simulation. The
simulation code for individual system functionalities within
an integrated solution are often developed independently by
different developers. Consequently, a simulation application
must then be realized somehow as a composition of such
different simulation functionalities. In these situations, the
developer and integrator of the simulation application incur

numerous challenges in composing simulation functionalities
in the correct manner and deploying the integrated application
on distributed resources.

Since the simulation application must be realized through
composition, there is a need for an abstraction that permits
composition yet does not result in noticeable performance and
memory footprint overhead. Further, since several of these
simulations may also be interactive (e.g., a flight simulator)
and involve one or more collaborating human actors, these
abstractions should be responsive and meet the real-time
requirements of interactive computing. Middleware solutions
designed for high performance gaming engines hold signif-
icant promise to meet these needs. Specifically, the Entity
Component System (ECS) architectural pattern [12] enables
developers to organize code in a way that makes game
development to be modular and composable within single
address spaces. These properties of ECS have been exploited
recently to develop interactive and responsive simulations
for military training [6], [13]. Moreover, since ECS favors
composition over inheritance in addition to a strict decoupling
of data and logic, reusability of simulation code is significantly
improved which further helps with independent development
of simulation modules by different parties.

Although an ECS-centric solution can help realize a com-
posable and responsive simulation application, the complex
and integrated nature of the simulation application implies
that the simulation developer must now be responsible for
interactions and synchronization between simulation com-
ponents hosted on their individual simulators that may be
deployed across distributed resources, i.e., across different
address spaces which is not supported by ECS. These commu-
nicating entities rely on events and messages that carry state
information. Data-centric publish/subscribe (pub/sub) middle-
ware holds promise in addressing these challenges since it
not only provides location transparency thereby relieving the
simulation developer from the deployment and configuration
challenges but also serves as the highly performant transport
mechanism for transferring events and states between the
disparate simulators [11].

The ECS and data-centric pub/sub paradigms solve the indi-
vidual challenges of composition and distribution, respectively,
however, only in isolation. None of the paradigms can support
both requirements all at once without significant additional



feature support. Blending the two different paradigms thus
holds the most promise but still incurs multiple challenges.
First, the level of abstraction and the problem addressed
by each of the two paradigms is different: ECS handles
composition of simulation functions and their computations
within a single process while data-centric pub/sub middleware
integrates distributed processes by sharing their data with each
other. Second, there exists a significant semantic gap between
the two paradigms due both to the problem each paradigm tries
to address and also due to the differences in their ontologies.
For instance, the semantics of a component in ECS are vastly
different from that in distributed component-based frameworks
based on data-centric pub/sub. Thus, there is a compelling need
for a systematic approach that can (a) bridge this semantic gap
(b) be easy and intuitive to use for the simulation application
developer, and (c) provide the responsive behavior expected
by distributed simulations.

To address these challenges, we present the Model-driven
Integrated Data Distribution and Entity Component System
(MIDDECS) middleware to bridge the semantic gap between
the two different paradigms: ECS and data-centric pub/sub.
Our solution is influenced by a concept called Model-driven
Middleware [4] that propounds the use of intuitive, higher
level abstractions in the form of domain-specific artifacts to
resolve a number of accidental complexities stemming from
the deployment and configuration of composable systems, e.g.,
modern day microservices applications such as distributed,
composed simulations. In contrast to the original MDM idea,
we extend it to address both the inherent and accidental
complexities outlined above in realizing composable and high
performance distributed simulations.

The research we present in this paper is the result of inves-
tigations into industrial, real-world problems and a focus on
developing solutions that can be easily deployed in practice. To
that end, our solution leverages widely used, open source and
open standards technologies. Simulation applications devel-
oped using MIDDECS can exchange simulation data items via
strongly typed and type-extensible interfaces thereby ensur-
ing interoperability between disparate simulators. MIDDECS
provides a domain-specific modeling language (DSML) [7],
[8] for development, composition, and validation via a Web-
based, generic modeling tool. Specifically, this paper makes
the following contributions:

• We present our DSML that bridges the semantic gap
between the underlying two paradigms while providing
intuitive abstractions to the model developer. Its gener-
ative capabilities then promote automation to overcome
the tedious and error-prone composition and integration
challenges.

• We showcase our solution using concrete technolo-
gies: WebGME (www.webgme.org), which is a Web-
based DSML development environment; Flecs (github.
com/SanderMertens/flecs), which is an ECS frame-
work; and RTI Connext DDS (www.rti.com/products/
connext-dds-professional), which is an implementation
of the OMG Data Distribution Service, a data-centric

pub/sub middleware [10].
• We demonstrate our ideas and the performance of the

integrated solution using simple but representative use
cases that highlight key features of our solution.

The rest of the paper is organized as follows: Section II
provides background on the underlying technologies used in
this work, and compares our work with prior work; Section III
presents challenges and our solution; Section IV presents
validation of our ideas in the context of simple use cases;
and finally Section V presents concluding remarks alluding to
lessons learned and opportunities for future work.

II. PRELIMINARIES AND RELATED WORK

This section describes the scope of our work and assump-
tions we made, background on the underlying technologies
used by MIDDECS, and compares our work with prior efforts.

A. Scope of the Work and Assumptions Made

Simulations are widely used in today’s world whether it
be for training, analysis, or test and evaluation. Often, the
different aspects of these simulations are designed by multiple
individuals who may have little or no knowledge of the other
components designed by others that will be interacting with
their own. Thus, it becomes helpful to have a generalized
framework and tool for designing and deploying such sim-
ulations in distributed environments. Our approach to this
problem is to strip away the complexities of designing these
components and allow users to design and deploy simulations
using a visualization tool based on a domain-specific modeling
language and deploy them on infrastructure comprising two
different paradigms: ECS and DDS, which are explained next.

In this paper we are not concerned with dynamic resource
management or deciding how best to compose and distribute
the functionalities. We are also not concerned with specific
deployment scenarios, such as a cloud data center or at the
edge or a mix of these two and the challenges that stem from
doing so. These form dimensions of future work.

B. Background on Underlying Technologies

In the following we provide relevant background on each
of the three underlying technologies we used in this work.

1) Overview of the Entity-Component-System Paradigm:
ECS is an approach towards organizing code used often in
game development. ECS designs favor composition over inher-
itance, and strict decoupling of data and logic, which improves
the reusability of code. ECS applications are constructed out
of three concepts: entities, components and systems.

• Entity: An entity is a unique identifier, typically of an
integer type, that represents an object being simulated.
Entities can be created and/or deleted while the simula-
tion is running. A simulation may contain hundreds of
thousands of entities.

• Component: A component is a plain data type describing
a single aspect of an entity. Typical examples of compo-
nents are “Position”, “Velocity”, “Rotation” or “Mass”.
Components do not contain any logic (e.g. methods). An



entity may be composed out of zero or more components.
Components may be added and/or removed from entities
while the simulation is running. Complex simulations
may contain up to hundreds of components. Based on this
definition it is obvious that the notion of a component
in ECS is quite different from the well-known notion
of components or microservices, which are units of
functionalities that can be composed.

• System: A system is a function that implements a single
aspect of the simulation logic. Systems are matched
against entities that contain a set of components. For
example, a system that moves entities would request to be
matched with the “Position” and “Velocity” components.
When invoked, the system will iterate over all of the
matched entities and perform the simulation logic.

2) Overview of OMG Data Distribution Service: The
Object Management Group (OMG)’s Data Distribution Ser-
vice (DDS) standard defines a data-centric, topic-based pub-
lish/subscribe (pub/sub) model for distributed communica-
tions [10]. The DDS pub/sub architecture promotes loose
coupling between applications with respect to time (i.e., the
applications need not be present at the same time) and
space (i.e., applications may be located anywhere). DDS
also provides more than 20 configurable Quality of Service
(QoS) policies. QoS is a concept that is used to specify the
behavior of a service (e.g. reliable transmissions and persisting
historical data). With configurable QoS policies, developers
can easily define and update desired behaviors of applica-
tions. It can reduce complexity of application development by
separating functional (i.e., business logic) and non-functional
requirements (i.e. quality of the logic).

3) Overview of WebGME: Our domain specific modeling
language (DSML) is created using the Web-based Generic
Modeling Environment (WebGME). WebGME is a Web-based
modeling tool. It supports multiple features that include (1)
creating meta-models and models, (2) model visualization and
(3) model interpreters known as plugins. In our approach, we
leveraged WebGME’s Unified Modeling Language (UML)-
like syntax and constraint specifications to create our DSML.
Model interpreters can be associated with the meta-models,
which can provide additional semantics to the language that
are not captured in a visual form as well as provide the
generative capabilities needed for automation.

C. Comparison with Related Work

We now compare our work on MIDDECS with prior efforts.
We focus on a sampling of efforts that comprise model-
driven techniques to address different challenges encountered
in realizing large-scale simulations.

The authors of [6], [13] present a semantics-based approach
which facilitates decoupling algorithms provided by high-
level tailored simulation modules or engines from the object
structure of the low-level entities simulated by those engines.
This allows their approach to maintain the benefits of the
object-oriented paradigm. These benefits include encapsulation
and access control. In contrast, our approach leverages the ECS

paradigm with a model driven interface. This allows users to
build their simulations and define their entities with the mod-
eling language thereby achieving the ability to reuse entities
in a different way. Our approach also focuses on distributing
the simulations using the ECS and Pub/Sub paradigm bridging
the gap between the two using a modeling language.

In [9], the authors describe a model-driven integration
platform for simulation of CPS. The authors recognize the
need to execute different heterogeneous simulators since no
single simulation framework can simulate all aspects of a
CPS. This work demonstrates the use of High Level Archi-
tecture (HLA) [3] to serve as the communication substrate
to bridge the different simulators while the different APIs
of the simulators are bridged using the Functional Mock-up
Interface (FMI) [2]. Although this work showcases a nice
example of integrating heterogeneous simulators, there are
two issues that separate our work from theirs. First, our work
requires the integration of two different middleware, i.e., ECS
and pub/sub, that co-exist at different levels of abstraction
whereas the prior work focuses only on the communication
transport between the heterogeneous simulators. Second, their
federated (i.e., distributed) approach poses several technical
problems that can sometimes severely limit the performance of
simulations. HLA was not designed to support low latency data
sharing required for large complex simulations. Specifically,
the HLA Runtime Infrastructure, which is the implementation
of the interface specification of HLA, does not sufficiently
support large simulation federations that require frequent data
exchange. Additionally, HLA does not have a standard wire-
protocol format so interoperability between federated models
is challenging with the increasing complexity of simulation
software. This is because it delegates the responsibility for
serialization/deserialization to the application. Moreover, the
lack of security support leaves these simulation systems vul-
nerable to security attacks. This is the reason why our work
chooses data-centric pub/sub as a way to support low latency
communication between the disparate simulators.

The effort in [5] describes an extension of the UML/BPM-
N/SysML tool called Papyrus to support industrial strength
co-simulations for which the authors rely on FMI. Although
this work also illustrates the need for bringing together het-
erogeneous simulators and uses FMI to bridge their APIs,
this effort is tailored towards making these features available
as part of a model-driven development framework, Papyrus.
In contrast, our work illustrates how model-driven techniques
such as DSMLs can be used to bridge the gap between the
middleware that support the simulations. Our MDM approach
can be thought off as an alternative to using FMI.

III. MIDDECS MODEL-DRIVEN MIDDLEWARE SOLUTION

We now present our MIDDECS solution that addresses the
challenges in bridging disparate middleware to support an ex-
tensible, composable, and distributed simulation environment
for complex, real-world systems.



A. Challenges and Requirements to Realize MIDDECS

Before we present our solution, we highlight the chal-
lenges in realizing composable and distributed simulations.
Addressing each challenge then poses the following solution
requirements that MIDDECS must meet.

Requirement 1: Composable and high performance, re-
sponsive simulations: The use cases we faced in our industrial
research involve hosting simulations in which the simulation
logic for different parts could be developed by different de-
velopers, possibly, collaboratively. Thus, a critical need for us
was to ensure modularity and composability of the simulation
logic to form a complete simulation application. Moreover,
such a composed simulation must be highly performant and
responsive, particularly when humans interact with the system.
Thus, there is a need for a capability that can allow simulation
functionalities to be developed by different developers yet
can be composed and assembled into a simulation that can
execute and even provide real-time performance, particularly
for simulations involving interactive training.

Requirement 2: Interoperable and extensible interfaces:
Adapting individual simulations to integrate with other simu-
lations requires significant software development and mainte-
nance efforts, which can be very costly. To integrate hetero-
geneous and distributed simulators requires an interoperable
connectivity framework that allows simulations to exchange
state data and mutual interactions among each other. Interface
extensibility is also critical to facilitate system evolution by
enabling seamless integration of distributed simulations that
may evolve in terms of interface definition. To support this
need, well-defined standard extensibility rules for interface
definition as well as a wire-protocol format are required.

Requirement 3: Intuitive and higher level of abstraction:
Satisfying requirements 1 and 2 is a necessary but not a
sufficient condition to realize the end goals because in trying to
address these requirements, the responsibilities of the simula-
tion application developer will certainly increase. For instance,
developers must now learn how to encapsulate the simulation
logic to be reused and composed. They must then be able to
compose the logic to build a simulation. Moreover, depending
on the performance demands and availability of resources,
the simulation may have to be distributed across networked
resources, which in turn will require the developer to provide
glue code to interconnect the distributed elements of the
simulation not to mention also taking care of serialization/de-
serialization issues. Furthermore, it is often the case that the
technology used for encapsulating the logic and composing the
independent units has no support for distribution, and hence
its semantics must be reconciled with that of the distribution
technology.

In summary, the simulation application developer faces a
plethora of inherent and accidental complexities. Thus, there
is a critical need to provide the developer with higher levels of
abstraction to reason about the system composition and leave
it to the tooling to decide how best to decompose, distribute
and deploy the functionality across the available resources.

B. Meeting the Requirements: The MIDDECS Approach
The MIDDECS approach illustrated in Figure 1 leverages

three key technologies as follows: in order to build a mod-
ular simulation logic (Requirement 1) we adopt the Entity
Component System (ECS) approach, which allows us to build
simulation entities that flexibly compose simulation logic (i.e.,
systems in ECS) built by other developers. ECS applications
are deployed in a distributed way and use OMG DDS as the
interface for communications (Requirement 2). For raising the
level of abstraction and bridging the semantic gap between
ECS and DDS (Requirement 3), we relied on WebGME
(www.webgme.org). The model we created in WebGME acts
as the abstraction layer to develop an ECS-based distributed
simulation application model. In the rest of this section we
describe how each of the requirements is satisfied by the
technology choices we made.

Fig. 1. Architectural Overview of the MIDDECS Solution

1) Meeting Requirement 1: Use Entity Component Systems
(ECS): Requirement 1 calls for a highly performant solu-
tion that enables composable simulation logic – a property
that is satisfied by the Entity Component System (ECS)
architecture pattern [1], [13]. An efficient ECS implemen-
tation stores component data in one or more arrays. When
systems process entities, they iterate over the component
arrays allocated in contiguous memory. As a result, ECS
applications typically have less cache misses and improved
CPU cache utilization, which improves system performance.
ECS code is therefore often able to process more data (e.g.
simulated objects) than code that adheres strictly to object
orientation. To that end, we have leveraged a specific open-
source implementation of the ECS paradigm called Flecs
(https://github.com/SanderMertens/flecs).

As an example, consider a Gravity system in ECS. In this
example, an entity’s position component may contain X and
Y coordinates. By attaching that position component to an
entity, we give it those coordinates and therefore a position.
But positions can change over time. To change components or
attach or remove them from entities, the notion of systems are
used. Systems analyze every execution loop of all the entities,
and perform any necessary changes. For example, if we attach
a gravity component to an entity, it will start being pulled along



the y-axis. A position system might check for the existence of
a gravity component on every entity, and if it has one, update
the entity’s Y coordinate value in its position component. In
this way, the entity will “fall” down the y-axis.

2) Meeting Requirement 2: Use OMG Data Distribution
Service (DDS): Requirement 2 calls for a type-safe ap-
proach to distribute the simulation units by providing loca-
tion transparency, disseminating events, and taking care of
(de)serialization issues all while providing responsible behav-
ior – properties supported by the OMG DDS standard. When
ECS data is distributed between applications, component
arrays are exchanged directly between the ECS framework
and DDS middleware. This minimizes protocol overhead of
DDS as data is sent in large batches, while at the same
time avoiding redundant copying of memory between layers.
The DDS synchronization code is implemented as an ECS
system which decouples it from the simulation code. This
allows developers of simulation logic to be unaware of the
distribution mechanism. Furthermore, the decoupling enables
late-binding of simulation data with DDS, such that changing
which components are distributed and which remain local is
straightforward. This further enhances the reusability of ap-
plications and application code. Figure 2 depicts the approach
showing how ECS encapsulated simulation components can
communicate via the DDS bus.

Fig. 2. Integrating ECS with DDS

Additionally, DDS uses typed interfaces. This approach fills
the gap between the typed interfaces (e.g. Protocol Buffers)
and the pub/sub messaging protocols (e.g. MQTT and AMQP).
With typed interfaces, developers can directly use and ma-
nipulate native data types of programming languages. Type
interfaces are safe because data types can be validated at
compile time. They are efficient as they can be serialized
in binary format. DDS also standardizes extensibility of data
types called DDS Extensible Types (DDS XTypes). With
DDS XTypes, the data types used by DDS applications can
gracefully evolve by adding new elements without affecting
other compiled applications.

DDS standardizes its interface definition language, a wire-
protocol format, APIs, QoS policies, and interface extensibil-
ity. Therefore, our DDS-based solution can achieve interop-
erability of distributed simulations in a reliable and flexible
way. For our implementation, we have used RTI Connext
DDS (https://www.rti.com/products/connext-dds-professional)
as the communication middleware to support ECS-based sim-
ulations that are distributed across networked nodes.

3) Meeting Requirement 3: Use Domain-specific Modeling:
Requirement 3 calls for raising the level of abstraction at which
the simulation developer can reason about the complete system
and be able to address both the inherent and accidental com-
plexities incurred in bridging the semantic gap between ECS
and DDS middleware. To that end, we leveraged WebGME
(www.webgme.org) to realize the model-driven middleware
solution, which involves defining the syntax and semantics of
a DSML through meta-modeling (see Figure 3).

Fig. 3. Application Module Model defines modeling elements for a compos-
able and distributed simulation application using ECS and DDS

Figure 3 depicts the meta-model for the Application Mod-
ule. This is the highest level of our DSML where users
can first define an Application and specify its attributes. The
application can contain predefined libraries to configure it. An
application may also encapsulate connectors containing zero
or more input and output ports, which are needed to pass
information across distributed deployments using a pub/sub
approach. An application publishing data must have an output
port or publisher that matches an input port or subscriber of
the receiving application. The application will contain entity
types, which are similar to a class within an object oriented
paradigm. The entities contained within the application are
specific instances of entity types that are defined by the user.
An application within our DMSL will also contain data types
which will be used to create ECS components. A component
can be made up of one or many basic data types and a
component can be composed with other components to build
a simulation entity type. For example, a Position component
has two integers. One corresponding to a value on an x-axis
and another on a y-axis. A Color component has a string



corresponding to a value of color. When a user creates a
simulation entity having both position and color attributes, the
Position and Color components can be composed for a simu-
lation entity type and corresponding simulation functions for
these components are automatically applied to the simulation
entities. Finally, an application can contain functions, which
are ECS systems. They could be things like gravity that are
applied to one or more entities. These functions are able to
act on the components attached to an entity.

The functions supported by the DSML are one of four types.
This typing dictates when the function is applied to the module
in which it is a part of. The first type applies the function to the
module that it is attached to upon the start of the application.
This function type is called onStart. Similarly, a second type
of function, onStop, is applied when the application concludes.
Functions that are invoked periodically based on settings
supplied by the user are referred to as onPeriod. Finally,
functions can be invoked when external data is acquired. These
are known as onUpdate functions. These different types give
the user more control over defining their ECS systems.

Data types (i.e., ECS components) also have multiple types
and can be used as parameters for functions (i.e., ECS sys-
tems). Currently, our DSML includes primitive data types such
as integer or float but not all the possible data types represented
in a programming language. However, this can be expanded
upon in the future. When used as parameters to a function,
data types can serve as one of three types of parameters. They
can either be read only, write only, or read and write. In our
model these are referred to as InputParam, OutputParam,
and InOutParam, respectively.

Users can use MIDDECS to deploy distributed simulations
using DDS as the communication bus by including a connector
into an application module. Connectors contain ports which
can either be input or output ports representing DDS writers
and readers, as explained above. They serve as the means for
separate applications to communicate with each other to share
states and events of entities.

After the application model is built, a user uses special
plugins, i.e., model interpreters developed within WebGME for
our DSML. Using the plugins, MIDDECS will then traverse
the application model and generate the necessary code to
launch such an application. This means that the users need
not concern themselves with the complexities of ECS or DDS
beyond building their application module because the plugin
will handle most of it for them. In addition, another plugin
was developed to check the validity of the DDS interfaces.
Currently, it does so by looking at two user applications
that are bound by a connection and ensuring that the source
application contains an output interface of the same topic as
an input interface in the destination application. If this is the
case then the connection is valid. Otherwise, the connection is
invalid. In its current state the verifier merely reports on the
validity of connections rather than attempting to correct them.

In summary, our DSML provides the syntax and semantics
to bridge the ECS and DDS paradigms which enables a user
to build a ECS-based simulation application that can use DDS

for data distribution by dragging and dropping predefined
models. Using this approach we can successfully abstract
away the complexities of composition of simulation logic and
integration of distributed simulations. This effectively creates
a layer over the ECS and DDS middleware yielding our vision
of a model-driven middleware (MDM).

C. MIDDECS Usage

The following describe the steps undertaken by a user of
MIDDECS:

1) The Model Developer develops algorithmic functions
with given data types as input or output parameters.

2) The Component Developer develops simulation applica-
tion components that can use algorithmic models shared
via an Algorithmic Model Repository.

3) The Component Developer shares interface specifica-
tions with other Component Developers so that they can
develop a component to be composed via the interface.

4) The Simulation System Developer composes and vali-
dates application components shared via an Application
Component Repository by using a modeling tool.

5) A modeling tool generates deployable artifacts. They
will run via execution environments and communicate
through a DDS-based databus.

6) External analysis tools can collect simulation states and
events via the DDS-based databus.

IV. EVALUATING THE MIDDECS SOLUTION

In this section we evaluate the properties of MIDDECS and
its performance in the context of two simple but representative
simulation examples. Our first example is a shapes example
where different geometrical shapes are modeled and simulated.
This example can be considered as a “Hello World” example
for MIDDECS. Our second example is drawn from a real-
world use case comprising radars that monitor airplanes and
ships in civilian and military situations.

A. Modeling and Deployment using MIDDECS

To demonstrate modularity, composability and type ex-
tensibility of our solution, we developed our applications
with the meta-model described in the previous section and
then generated application code of an ECS framework. The
Radar example application uses the data model, a snippet of
which is shown in Figure 4. DDS data models represent the
data structures of messages exchanged between DDS-based
applications in an Interface Definition Language (IDL). Data
structures in IDL (e.g. Position2D and Radar) correspond to
ECS components. A composition of these data structures is an
interface used by a DDS-based application (e.g. IShip).

Figure 5 illustrates how a user can define a model for the
application using our DSML. Due to the complexity of the
Radar example, we show the simpler Shape example in this
figure. Specifically, it displays simulation models (e.g. Square)
encapsulated with ECS components (e.g. Position) and the
simulation models are connected by DDS databus. The DSML



Fig. 4. Data Model for the Radar Application Components and its Interfaces
in IDL

Fig. 5. Modeling using our DSML

is then used to synthesize glue code and other artifacts that
integrates ECS and DDS to host the application.

To demonstrate modularity and composability of simulation
logic, we created entities built with different types of compo-
nents. For example, a Circle entity is composed of Position,
Size, and Velocity components while a Square v1 entity is
composed of Position, Size, Velocity, and Gravity components.
Because the Square v1 entity has the Gravity component, the
movement of the Square v1 entity is affected by a gravity
system (e.g. pulling down the Y coordinate for 2D simulation).
Since simulation logic (e.g. Gravity) is developed as a modular
ECS system, the logic can be easily reused and composed.

Similarly, the Radar application comprises the Plane, Ship
and Radar processes. The Plane and Ship processes are made
up of the Plane and Ship entities, respectively, while the Radar
process is made up of the Radar and Track entities. In turn,
the Plane and Ship entities each are composed of Position,
Rotation, Speed and Angular Speed components; the Radar
entity is composed of Radar Range, Radar Sweep and Radar
components; and the Track entity is composed of Size, Color
and Track Data components. Figure 6 shows a deployment
for the Radar application enabled by the MIDDECS solution.
In this deployment, each application process simulates the
movement of its corresponding entities, e.g., Ship application
simulating the Ship entity while Radar simulates the Radar
and Track entities. Each process is distributed and shares entity
states with each other (e.g. Position and Speed of Ship or Plane
Entities) via DDS-based interfaces over the DDS messaging

bus, which could be shared memory or RTPS, which is a
real-time pub/sub transport over UDP. Such a deployment is
seamlessly made feasible by MIDDECS.

Fig. 6. Deployment of Radar Simulation

This example also demonstrates type extensibility of dis-
tributed simulation applications. As a distributed simulation
evolves, attributes of simulation interfaces may be added or
removed. By leveraging the DDS Type Extensibility, we were
able to support extensibility of interfaces between distributed
simulations that use different data types.

B. Performance Measurements

We measured the throughput of simulations with differ-
ent types of deployments to understand the performance of
the ECS-based framework as well as the overhead of data
distributions by DDS. We developed fully integrated local
simulation as well as distributed simulation for testing. The test
simulations in our experiments create entities and randomly
update the positions of the entities at 60 times per second. We
conducted performance testing on a MacBook Pro (2.9 GHz
Intel Core i5 Dual Core and 16 GB RAM).

Figure 7 illustrates the performance results for the fully in-
tegrated local and distributed with DDS deployment scenarios.
The green line indicates the update frequency and the blue line
is the system load over time. If a testing simulation reaches its
limit, it cannot maintain the configured frequency, 60 frames
per second (FPS), and the CPU usage becomes 100%.

Our primary goal of the testing was to understand
the scalability of the ECS framework and the integration
overhead of data distributions with DDS. As shown in
the performance results, the fully integrated simulation is
highly performant and it can achieve simulating 250K en-
tities at 50 FPS. Detailed comparative performance results
with another ECS framework can be found in this link
(https://github.com/SanderMertens/ecs benchmark).

For DDS-based distributed simulations, we measure perfor-
mance on both reader and writer sides. As shown in the results,
the reader side can simulate 10K entities at 25 FPS while
the writer side can maintain the configured 60 FPS and the
system load was about 10%. This means that the writer side
can potentially handle 10 times more entities. The writer side
incurs much less overhead because a DDS writer directly used
the memory allocated by the ECS framework. We could not
apply this optimization on the reader side because while a DDS
reader receives data, the order of entities is not necessarily
the same as the order in ECS. This requires a lookup per



(a) FPS and System Load of Fully Integrated Local Simulation (250K Entities)

(b) FPS and System Load of DDS-based Distributed Simulation on Writer Side (10K Entities)

(c) FPS and System Load of DDS-based Distributed Simulation on Reader Side (10K Entities)

Fig. 7. Comparing Performance Metrics of Integrated versus Distributed Simulations

entity before insertion, which results in the overhead. In
conclusion, the integration overhead mainly caused by copying
and serialization between the framework is not trivial and
requires further optimizations to reduce the overhead.

V. CONCLUSIONS

In this paper we presented a model-driven middleware ap-
proach to compose and integrate distributed simulation appli-
cations built using ECS and DDS middleware. To ensure ease
of use and abstract away inherent and accidental complexities
in blending these two middleware, we defined a DSML, which
provides users with modular components so that they can build
their own simulations by composing them and integrating the
simulations via DDS. We validated our approach in the context
of representative simulation use cases.

The MIDDECS approach offers several benefits as follows:
• Modularity: Components can be independently updated

or replaced without affecting the rest of a system.
• Reusability: Software is reusable at the component level.
• Interoperability: Well-defined ports and standardization

ensure interoperability between distributed applications.
• Extensibility: A component-based architecture is inher-

ently loosely-coupled, supporting easier extensibility of
component and system functionality.

• Reduced complexity: Encapsulation, modularity and
separation of concerns help to reduce design-time and
run-time system complexity.

In the future we would like to extend our DSML to be more
inclusive of various data types. Currently we only support four
of them. A second improvement would be to the verification
process. Currently, our approach verifies based on the pub/sub
topic only. The approach could be expanded to include data
types, time management policies, among others.

In addition, to simply making the model more mature, there
are multiple other avenues to explore. Dynamic changes to the
model deployment could be explored. This would be useful in
circumventing any problems due to node failure. We could
also explore deployment of simulations on the edge using
our approach and performing dynamic resource management
decisions. Finally, performance can potentially be optimized
for the reader side just like we did for the writer side.

ACKNOWLEDGMENTS

This work was supported in part by a US DoD project.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the sponsor.



REFERENCES

[1] T. Alatalo, “An Entity-Component Model for Extensible Virtual Worlds,”
IEEE Internet Computing, vol. 15, no. 5, pp. 30–37, 2011.

[2] T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauss, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel et al., “Functional
Mockup Interface 2.0: The Standard for Tool Independent Exchange
of Simulation Models,” in Proceedings of the 9th International MOD-
ELICA Conference; September 3-5; 2012; Munich; Germany, no. 076.
Linköping University Electronic Press, 2012, pp. 173–184.

[3] J. S. Dahmann, R. M. Fujimoto, R. M. Weatherly et al., “The Department
of Defense High Level Architecture,” in Winter Simulation Conference.
Citeseer, 1997, pp. 142–149.

[4] A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray, and N. Wang, “Model
Driven Middleware,” in Middleware for Communications, Q. Mahmoud,
Ed. New York: Wiley and Sons, 2004, pp. 163–187.

[5] S. Gorecki, Y. Bouanan, J. Ribault, G. Zacharewicz, and N. Perry, “In-
cluding Co-simulation in Modeling and Simulation Tool for Supporting
Risk Management in Industrial Context,” 2018.

[6] D. D. Hodson and J. Millar, “Application of ECS Game Patterns in
Military Simulators,” in Proceedings of the International Conference on
Scientific Computing (CSC). The Steering Committee of The World
Congress in Computer Science, Computer, 2018, pp. 14–17.

[7] S. Kelly and J.-P. Tolvanen, Domain-specific Modeling: Enabling Full
Code Generation. John Wiley & Sons, 2008.

[8] M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop
Domain-specific Languages,” ACM Computing Surveys, vol. 37, no. 4,
pp. 316–344, 2005.

[9] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,
T. Bapty, J. Batteh, H. Tummescheit, and C. Sureshkumar, “Model-
based Integration Platform for FMI Co-simulation and Heterogeneous
Simulations of Cyber-Physical Systems,” in Proceedings of the 10 th
International Modelica Conference; March 10-12; 2014; Lund; Sweden,
no. 096. Linköping University Electronic Press, 2014, pp. 235–245.

[10] Data Distribution Service for Real-time Systems Specification, 1.2 ed.,
Object Management Group, Jan. 2007.

[11] G. Pardo-Castellote, “OMG Data-Distribution Service: Architectural
Overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings. IEEE, 2003, pp. 200–206.

[12] T. Raffaillac and S. Huot, “Polyphony: Programming Interfaces and
Interactions with the Entity-Component-System Model,” Proceedings of
the ACM on Human-Computer Interaction, vol. 3, no. EICS, p. 8, 2019.

[13] D. Wiebusch and M. E. Latoschik, “Decoupling the Entity-Component-
System Pattern using Semantic Traits for Reusable Realtime Interactive
Systems,” in 2015 IEEE 8th Workshop on Software Engineering and
Architectures for Realtime Interactive Systems (SEARIS). IEEE, 2015,
pp. 25–32.


