
Evaluating the Correctness and Effectiveness of a Middleware QoS
Configuration Process in Distributed Real-time and Embedded Systems∗

Amogh Kavimandan†, Anantha Narayanan, Aniruddha Gokhale and Gabor Karsai
Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN
{a.kavimandan,anantha.narayanan,a.gokhale,gabor.karsai}@vanderbilt.edu

Abstract
Recent advances in software processes and artifacts for

automating middleware configurations in distributed real-
time and embedded (DRE) systems are starting to address
the complexities faced by system developers in dealing with
the flexibility and configurability provided by contemporary
middleware. Despite the benefits of these new processes,
there remain significant challenges in verifying their cor-
rectness, and validating their effectiveness in meeting the
end-to-end quality of service (QoS) requirements of DRE
systems. This paper addresses this problem by describing
how model-checking and structural correspondence can be
used to verify the correctness of a middleware QoS config-
uration process that uses model-based graph transforma-
tions at its core. Next, it provides empirical proof to validate
the effectiveness of our technique to meet the end-to-end
QoS requirements in the context of a representative DRE
system.

1 Introduction
Contemporary component middleware technologies,

such as Enterprise Java Beans (EJB) and CORBA Com-
ponent Model (CCM), have helped to decouple application
logic from the quality of service (QoS) configuration of dis-
tributed real-time and embedded (DRE) systems by mov-
ing the QoS configuration activity to the middleware plat-
forms that host these systems. Middleware provides out-
of-the-box support for traditional concerns affecting QoS in
DRE systems including multi-threading, assigning priori-
ties to tasks, publish/subscribe event-driven communication
mechanisms, security, and multiple scheduling algorithms.

Although this component middleware simplifies appli-
cation logic, the DRE system developers are now faced
with the complexities of choosing the right set of middle-
ware configuration parameters that meet the QoS demands
of their systems. This problem is particularly pronounced in

∗This work was sponsored in part by grant from Lockheed Martin ATL.
†Contact author

general-purpose middleware platforms, such as CCM and
EJB, which are designed to be highly flexible and config-
urable to meet the needs of a large class of distributed sys-
tems.

Prior research on software processes and artifacts for
QoS management in DRE systems have focused on dif-
ferent dimensions of the problem space. For example,
configuration, analysis, optimization and adaptation tech-
niques [9, 17] allow allocation and dynamic QoS adaptation
such that end-to-end application goals are met. Another on-
line approach [18] applies feedback control theory in con-
junction with application monitors for affecting resource al-
location. Several works for schedulability and timing analy-
sis [16, 6], and behavioral analysis and verification [1] exist
in the literature for calculating the exact priority schemes,
time periods, and resolving functional dependencies. These
related approaches often provide either runtime solutions
for QoS management or their outcomes are independent of
any middleware platforms and hence must be mapped onto
middleware configuration options via another technique. It
is only recently that design-time techniques are starting to
address [7, 19, 5] some of the challenges of middleware
configurations, which includes support for configuring low-
level QoS properties of the middleware platform and gener-
ating test suites for benchmarking, among others.

Despite these recent research efforts in addressing the
middleware configuration problem for DRE systems, tech-
niques to evaluate the correctness of these software pro-
cesses and validating their effectiveness in meeting system
QoS objectives remains largely unaddressed to date. This
paper focuses on this unresolved dimension of the problem
space. We demonstrate our ideas on our earlier work on
a design-time process for middleware QoS configuration,
which includes the QUICKER [4] model-driven engineer-
ing (MDE) toolchain and its QoS mapping algorithms [5]
that use graph transformations.

In this paper we verify the correctness of our QoS con-
figuration process and validate its effectiveness in meeting
the QoS requirements of DRE systems. To this end, we

use structural correspondence between source and target
modeling languages in QUICKER to verify the correctness
of their mapping. Further, we show how the Bogor [15]
model-checking tool can be seamlessly extended to employ
real-time CCM (RT-CCM)-specific language constructs to
ascertain that the generated configurations are appropriate.
We subsequently apply our configuration in the context of a
representative DRE system case study and empirically eval-
uate the generated QoS configurations to show how the QoS
requirements are met.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief overview of our configuration process
and the input and output languages used in its QoS map-
ping algorithms; Section 3 verifies the correctness and em-
pirically evaluates our configuration process in the context
of a DRE system case study; Section 4 compares our work
with existing literature on middleware QoS configuration;
and Section 5 presents concluding remarks.

2 Overview of middleware QoS configura-
tion process

Model
Transformation Analysis Tools

System Developer

System Configuration EvolutionSystem-level
QoS

requirements

Requirements
Metamodel

QoS
Configurations

Metamodel

GReAT

Requirements
Metamodel

Source
Model

in
st

a n
ce

of

QoS Configurations
Metamodel

Target
Model

Graph Rewriting Rules

G G’

G G’

G G’

G G’ G G’ G G’

in
st

an
ce

of

Figure 1: Model-driven QoS configuration process

Figure 1 shows our overall approach (for details please
see [5]). DRE system developers use the Requirements
domain-specific modeling language (DSML)/metamodel to
specify the system QoS requirements. Using our configu-
ration process, a specification of system QoS requirements
acts as the source model of QoS mapping algorithms. As
can be seen in Figure 1, our process uses model transforma-
tions for achieving QoS mapping. Middleware-specific QoS
configuration options are captured as models using the QoS
Configurations DSML which serves as the target model in
the transformation process.

We have used the Generic Modeling Environment
(GME) [8] toolkit for developing these source and target
languages, which provides a graphical user interface that
can be used to define both language semantics and system
models that conform to the languages defined in it. The
model-to-model transformations, on the other hand, have

been developed using the Graph Rewriting And Transfor-
mation (GReAT) [3]. GReAT, which is implemented within
the framework of GME, can be used to define transforma-
tion rules using its visual language, and executing these
transformation rules for generating target models using the
GReAT execution engine (GR-Engine).

In our configuration process developers specify QoS us-
ing the requirements language. Our QoS mapping algo-
rithms are codified as GReAT transformation rules which
use the modeled system structure and platform-specific
heuristics for automatically translating the system require-
ments to detailed QoS configuration models. This trans-
lation is an example of a vertical exogenous transforma-
tion [10] that starts with an abstract type graph as the input
and refines the graph to generate a more detailed type graph
as the output. Finally, the generated configuration models
are used for synthesizing (1) descriptors necessary for con-
figuring functional and QoS properties of DRE system in
preparation for its deployment on target platform, and (2)
input to external model-checking tool for further analysis.

In our configuration process, modeling real-time re-
quirements is simple and involves specifying the following
two component-level Boolean attributes: (1) fixed_pri-
ority_service_execution that indicates whether or
not the component modifies client service invocation prior-
ities, and (2) bursty_client_requests that allows
specification of the profile of service invocations made by
its client components i.e., whether the invocations are bursty
or periodic in nature.

RealTimeConfiguration

-cmd_line_options : string
-service_conf : string

EnvironmentConf
-low_range : long
-high_range : long

BandedConnections

-stacksize : long
-allow_borrowing : bool
-allow_buffering : bool
-max_buffered_requests : long
-max_buffer_size : long

ThreadPool
-static_threads : int
-lane_priority : int
-dynamic_threads : int

Lane

-priority_model : Policy
-default_priority : long

PriorityModelPolicy

+SERVER_DECLARED
+CLIENT_PROPAGATED

«enumeration»
Policy

1

0..*
1

0..1
1

0..1

1

0..*

1

0..1

1..*

-configuredBy 1 1

-honors 1

Figure 2: Simplified UML notation of real-time QoS config-
urations DSML

Figure 2 shows the QoS configurations metamodel
which defines the following elements corresponding to
several RT-CCM configuration mechanisms: (1) Lane,
which is a logical set of threads each one of which
runs at lane_priority priority level. Threads can be
static or dynamic depending on their state with respect
to the application execution lifecycle; (2) ThreadPool,

which controls various settings of Lane elements includ-
ing stacksize of threads, whether borrowing of threads
across two Lane elements is allowed, and resource limits
for buffering requests that cannot be immediately serviced;
(3) PriorityModelPolicy, which controls the policy
model that a particular ThreadPool follows. It can be set
to either CLIENT_PROPAGATED if the invocation priority is
to be preserved end-to-end, or SERVER_DECLARED if the
server component changes the priority of invocation; and
(4) BandedConnections, which defines separate con-
nections for individual service invocations to avoid head-of-
line blocking of high priority packets by low priority pack-
ets.

For a detailed discussion of our QoS mapping transfor-
mation algorithms, we refer the reader to [5]. In the next
section, we evaluate our configuration process by applying
it in the context of a representative DRE system case study.

3 Evaluation of QoS configuration process
This section evaluates our configuration process to ver-

ify the correctness of its transformation algorithms and val-
idate its effectiveness in meeting the QoS requirements of
DRE systems. First we present a representative DRE sys-
tem case study we used for the evaluation. Next we discuss
our structural correspondence technique for proving that the
input and output models of transformations used in our pro-
cess are correctly mapped. We then describe how we have
applied Bogor model-checking tool for verification of the
generated configurations. Finally, through empirical evalu-
ation, we validate the generated QoS options.
3.1 DRE System Case Study

The Basic Single Processor (BasicSP) is a scenario from
the Boeing Bold Stroke component avionics computing
product line. BasicSP uses a publish/subscribe service for
event-based communication among its components, and has
been developed using a QoS-enabled component middle-
ware platform. The application is deployed using a single
deployment plan on two physical nodes.

GPS NAV
DISPAIRFRAME

20Hz

GPS NAV
DISPAIRFRAME

timeout data_avail

get_data ()

data_avail

get_data ()

Figure 3: Basic Single Processor

A GPS device sends out periodic position updates to a
GUI display that presents these updates to a pilot. The de-
sired data request and the display frequencies are at 20 Hz.
The scenario shown in Figure 3 begins with the GPS com-
ponent being invoked by the Timer component. On receiv-
ing a pulse event from the Timer, the GPS component gener-
ates its data and issues a data available event. The Airframe

component retrieves the data from the GPS component, up-
dates its state, and issues a data available event. Finally,
the NavDisplay component retrieves the data from the Air-
frame and updates its state and displays it to the pilot. In its
normal mode of operation, the Timer component generates
pulse events at a fixed priority level, although its real-time
configuration can be easily changed such that it can poten-
tially support multiple priority levels.

It is necessary to carefully examine the end-to-end ap-
plication critical path and configure the system components
correctly such that the display refresh rate of 20 Hz may be
satisfied. In particular, the latency between Airframe and
NavDisplay components needs to be minimized to achieve
the desired end goal. To this end, several characteristics of
the BasicSP components are important and must be taken
into account in determining the most appropriate QoS con-
figuration space. For example, the NavDisplay component
receives update events only from the Airframe component
and does not send messages back to the sender i.e., it just
plays the role of a client. The Airframe component on the
other hand communicates with both the GPS and NavDis-
play components thereby playing the role of a client as well
as a server. Various QoS options provided by the target mid-
dleware platform (in case of BasicSP, it is RT-CCM) ensure
that these application level QoS requirements are satisfied.
In the remainder of the paper, we focus on verification and
validation of the QoS options generated using our approach.

3.2 Verifying the correctness of our QoS configu-
ration process

Verifying our model-based configuration process entails
verification of correctness properties across the following
two dimensions: (1) Correctness of QoS mapping algo-
rithms i.e., QoS options generated are equivalent to the
QoS requirements from which these options are mapped.
In our case, this translates to verification of the QoS map-
ping/transformations used. (2) Correctness of the generated
QoS options themselves i.e., whether individual values of
these options are appropriate locally (e.g., for a component)
as well as globally (e.g., for all dependent components).
This section discusses verification of our process across the
above two dimensions.

3.2.1 Assuring the correctness of QoS mapping algo-
rithms

To provide an assurance that the QoS requirements specifi-
cations were correctly mapped into the QoS configuration
model, we have used the transformation verification tech-
nique described in [11]. The source and target portions of
the transformation are treated as typed, attributed graphs,
and the correctness of the transformation is specified as a
relation between these graphs. Such a relation, called a
structural correspondence, is specified by identifying pivot

nodes in the metamodel and specifying what constitutes a
correct transformation for these nodes.

Using structural correspondence, the verification con-
sists of two phases: the specification of the correctness con-
ditions, and the evaluation of the correctness. In the first
phase, we identify important points in the transformation,
and specify the structural correspondence rules for these
points. From these rules, a model traverser is automatically
generated, which will traverse and evaluate the correspon-
dence rules on the instance models. This step needs to be
performed only once. The second phase involves invoking
the model traverser after each execution of the model trans-
formation. In this phase, the model instance being trans-
formed is traversed, and the structural correspondence rules
are evaluated at each relevant node. If any of the rules are
not satisfied, it indicates that the model has not been trans-
formed satisfactorily.

RealTimeConfiguration

-priority_model : Policy
-default_priority : long

PriorityModelPolicy

10..1

StructuralCorrespondence
-bursty_client_requests : bool
-fixed_priority_service_execution : bool

RTRequirements

11 1 1

Figure 4: Structural correspondence using cross-links

Structural correspondence rules are described using
(1) specification of the correspondence condition itself,
and (2) the rule path expressions, which are similar to
XPath queries. Figure 4 shows how we have used
cross-links in GReAT as means of specifying the corre-
spondence condition between input and output language
objects such that their equivalence can later be estab-
lished. RTRequirements is an input language ob-
ject that denotes real-time requirement specification for
a component. It has a correspondence relation with
RealTimeConfiguration output language object, in-
dicated by presence of a cross-link between them in Fig-
ure 4.

Additionally, one of the transformation rules in our QoS
mapping algorithms states that if the Boolean attribute
fixed_priority_service_execution of RTRe-
quirements is set to TRUE in the input model, then
priority_model attribute of PriorityModelPo-
licy object be set to SERVER_DECLARED in the output
model. Otherwise priority_model should be set to
CLIENT_PROPAGATED. Additionally, if priority_mo-
del is set to SERVER_DECLARED for a component, Lane
values at that component and BandedConnection val-
ues at its clients must match. In order to complete the corre-
spondence rule specification, the above is encoded as a rule
path expression as follows:
(RTRequirement.

fixed_priority_service_execution = true ∧

(∀ b ∈ RTConfiguration. BandedConnection
∃ l ∈ RTConfiguration. Lanes :

(b.low_range ≤ l.priority ≤ b.high_range)) ∧
RealTimeConfiguration.PriorityModelPolicy.

priority_model = "SERVER_DECLARED") ∨
(RTRequirement.

fixed_priority_service_execution = false ∧
RealTimeConfiguration.PriorityModelPolicy.

priority_model = "CLIENT_PROPOGATED")

If this expression evaluates to TRUE on an in-
stance model, then it implies that the QoS config-
uration for this particular property has been mapped
correctly. This applies to the RTRequirements
and RealTimeConfiguration classes, and cor-
respondence condition is added as a link between
these classes in the metamodel. Similar to corre-
spondence condition between RTRequirements and
RealTimeConfiguration we described, other condi-
tions for each of the QoS mapping rules have been speci-
fied ensuring that the transformation is verified correct if all
these conditions are satisfied.

3.2.2 Verifying the generated QoS configurations using
model-checking

This section illustrates how the correctness of QoS configu-
ration mappings is verified using the Bogor model-checking
framework, which is a customizable explicit-state model
checker implemented as an Eclipse plugin. Verifying a sys-
tem using Bogor involves defining (1) a model of the sys-
tem using the Bogor Input Representation (BIR) language
and (2) the property (i.e., specification) that the model is
expected to satisfy. Bogor then traverses the system model
and checks whether or not the property holds. To validate
QoS configuration options of an application using Bogor,
we need to specify the application model and its QoS con-
figurations. We use Bogor’s extension features to customize
the model-checker for resolving the QoS configuration chal-
lenges for component-based applications.

It is cumbersome to describe middleware QoS configura-
tion options using the default input specification capabilities
of BIR. This is because such a representation is at a much
lower level of abstraction compared to domain-level con-
cepts, such as components and QoS options, which we want
to model-check. Additionally, specifying middleware QoS
configuration options using BIR’s low-level constructs can
yield an unmanageably large state space since representing
domain-level concepts with a low-level BIR specification
requires additional auxiliary states that may be irrelevant
to the properties being model-checked [15]. Therefore we
have defined composite language constructs that represent
functional sub-systems (such as components) and QoS op-
tions (such as thread pools) as though they were native BIR
constructs.

Listing 1 shows an example of our QoS extensions in Bo-

gor to represent QoS configuration options in middleware,
which define two new data types: Component, which cor-
responds to a CCM component, and QoSOptions, which
captures QoS configuration options, such as lane, band,
and threadpool.

extension QoSOptions for
edu.ksu.cis.bogor.module.QoSOptions.QoSOptionsModule
{
// Defines the new type to be used for
typedef lane;
typedef band;
typedef threadpool;
typedef prioritymodel;
typedef policy;
// Lane constructor.
expdef QoSOptions.lane createLane (
int static, int priority, int dynamic);
// ThreadPool constructor.
expdef QoSOptions.threadpool
createThreadPool (boolean allowreqbuffering,
int maxbufferedrequests, int stacksize, int
maxbuffersize, boolean allowborrowing);
// Set the band(s) for QoS policy.
actiondef registerBands (QoSOptions.policy
policy, QoSOptions.band ...);
// Set the lane(s) for QoS policy.
actiondef registerLanes (QoSOptions.policy
policy, QoSOptions.lane ...);
...

}
extension Quicker for
edu.ksu.cis.bogor.module.Quicker
{
// Defines the new type.
typedef Component;
// Component Constructor.
expdef Quicker.Component
createComponent (string component);
// Set the QoS policy for the component.
actiondef registerQoSOptions (Quicker.Component
component,QoSOptions.policy policy);

// Make connections between components.
actiondef connectComponents (Quicker.Component
server,Quicker.Component client);

...
}

Listing 1: QUICKER BIR Extension

In addition to defining constructs that represent domain
concepts, such as components and QoS options, we also
need to specify the property that the application should sat-
isfy. In our case, property simply means whether or not
the QoS configurations are verified correct. Thus, since we
need to verify values of various QoS options as means to
check whether application property is satisfied, we define
rules that capture values of these QoS options. BIR primi-
tives are used to express these rules in the input specification
of DRE system. Primitives are also used to capture compo-
nent interconnections in BIR format which are required for
populating the dependency structure for the specified input
application. They are also used later during verification of
options for connected components.

QoS extensions are also helpful in maintaining and re-
solving dependencies between application components. For
example, consider a real-time configuration of BasicSP sce-

nario in which each of the GPS, AirFrame, and NavDisplay
components are configured to have priority bands for
separate service invocation priorities and the Timer compo-
nent is configured to support multiple priority levels during
generation of pulse events. Given such a configuration, we
have that priority band values at GPS (client) com-
ponent must match ThreadPoolLanes at Timer (server)
component i.e., a direct configuration dependency exists be-
tween these two components.

Further, since the pulse events are subsequently reported
to AirFrame and NavDisplay components there is a similar
indirect dependency between band values at these compo-
nents and lanes at Timer component. The dependency
structure of BasicSP scenario is maintained in QoS exten-
sions to track such dependencies between QoS options. Fig-
ure 5 represents the dependency structure generated using
QoS extensions with the given configurations for our Ba-
sicSP scenario. Occurrences of change in configurations of
either of the dependent components are followed by detec-
tion of potential mismatches such that all dependencies are
exposed and resolved during application QoS design itera-
tions.

Depends on

Timer
<SD>

GPS
<CP>

Afrm
<CP>

Nav
<CP>Lt--Bg Bg--Ba Ba--Bn

Lt--Bn

Lt--Ba

Figure 5: Dependency structure of BasicSP. Lc denotes
threadpool lane and Bc denotes priority bands at compo-
nent c. SD and CP indicate the SERVER_DECLARED and
CLIENT_PROPAGATED priority models, respectively.

Applications that need to be model-checked by Bogor
must be represented in BIR format. Writing and maintain-
ing BIR manually can be tedious and error-prone for do-
main experts (e.g., avionics engineers) since configuring ap-
plication QoS policies is typically done iteratively. Depend-
ing on the number of components and available configura-
tion options, manual processes do not scale well.

To automate the process of creating BIR specification of
applications, we therefore used the generative capabilities
in GME to automatically generate BIR specification of an
application from its QoS configurations model. This gener-
ative process is done in GME using a model interpreter that
traverses the QoS configurations model and generates a BIR
file that captures the application structure and its QoS prop-
erties. Our toolchain therefore automates the entire process
of mapping application QoS policies to middleware QoS
options, as well as converting these QoS options into BIR. A
second model interpreter is used to generate the Real-time

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90

L
at

en
cy

 (
us

)

Workload

Latency Variation

(a) End-to-end latency measurements

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90

St
an

da
rd

 D
ev

ia
tio

n

Workload

(b) Statistical dispersion of latency

Figure 6: Evaluating BasicSP QoS configurations against increasing workload at a constant 20Hz invocation rate.

CCM-specific descriptors required to configure functional
and QoS properties of an application and deploy it in its tar-
get environment. In the next section we empirically validate
these generated QoS configurations.

3.3 Empirically evaluating BasicSP QoS configu-
rations

In this section we empirically validate the effectiveness
of the generated QoS configurations for the BasicSP case
study.

Experiment Configuration. We have used ISISLab
(www.dre.vanderbilt.edu/ISISlab) for evaluat-
ing observed QoS properties of DRE systems based on mid-
dleware QoS configurations generated using our configu-
ration process. Each of the physical nodes used in our
experiments was a 2.8 GHz Intel Xeon dual processor, 1
GB physical memory, 1 GHz network interface, and 40GB
hard disks. Version 0.6 of our RT-CCM middleware CIAO
was used running on Redhat Fedora Core release 4 with
real-time preemption patches. The processes that hosted
BasicSP components were run in the POSIX scheduling
class SCHED_FIFO, enabling first-in-first-out scheduling
semantics based on the priority of the process.

As the first step, we modeled BasicSP QoS requirements
using the requirements DSML described in Section 2. bu-
rsty_client_requestswas set to FALSE for all com-
ponents and fixed_priority_service_executi-
on attribute was set to FALSE for every component except
Timer. Secondly, we applied our model transformation al-
gorithm to the requirements model above for generating de-
tailed application configurations. Table 1 captures some
of the important QoS configurations generated in our pro-
cess. These configurations are represented as an application
model. In the final step, we apply model interpreters for
synthesizing descriptors required to configure the functional
and QoS properties of the application during deployment.

In evaluating effectiveness of our configuration process,
we collected end-to-end latency measurements between
Timer and NavDisplay components. Earlier in Section 3.2.2

Table 1: Generated QoS Configuration for BasicSP
QoS configuration Timer GPS Airframe

PriorityModel SD CP CP

ThreadPool
stacksize 1024 1024 1024

max_buff_reqs. – 20 20
allow_borro. FALSE FALSE FALSE

allow_req_buff FALSE TRUE TRUE

Lane
static_thrds 4 8 8
dyna_thrds 0 0 0

we discussed how correctness of QoS options can be veri-
fied using our process, the first experiment discussed below
empirically evaluates the effectiveness of these options in
meeting 20Hz operational display refresh rate of BasicSP
from low to high workload conditions. Further, operational
conditions of DRE system might change (unfavorably) dur-
ing its execution. In order to evaluate the tolerance of our
generated configurations under such conditions, in the sec-
ond experiment we measure the metrics discussed above
when invocation rate is steadily increased. Each of these
experiments were performed for a constant time period and
after executing 10,000 warmup iterations.
Experiment 1: Increasing System Workload. Figure 6
plots the latency measurements under increasing system
workload. The workload is characterized [13] as a function
performed with every client invocation. The signature of
the function is given as: void work(int units); where units
argument specifies the amount of processor intensive work
performed per call. The experiment was run for workload
values of 10 through 80. End-to-end latency was observed
to be at an average value of ∼1925 as can be seen in Fig-
ure 6a. Further, successive event-driven computations in
the scenario exhibit an almost constant time complexity, in-
dicated by relatively small dispersion in latencies as plotted
in Figure 6b.
Experiment 2: Increasing System Invocation Rate. Per-
formance of the generated configurations for BasicSP is
given in Figure 7. Throughout this experiment the rate of in-
vocation was increased from a normal operational value of

 1000

 1500

 2000

 2500

 3000

 10 100 1000 10000

L
at

en
cy

 (
us

)

Invocation Rate (Hz)

Latency Variation

(a) End-to-end latency measurements

 20

 25

 30

 35

 40

 45

 50

 55

 60

 10 100 1000 10000

St
an

da
rd

 D
ev

ia
tio

n

Invocation Rate (Hz)

(b) Statistical dispersion of latency

Figure 7: Evaluating BasicSP QoS configurations against increasing invocation rate: All the plots use logarithmic X axis
and linear Y axis.

20Hz to a maximum of 40000Hz. Latency results are shown
in Figure 7a which plots maximum, mean and minimum de-
lay measurements for each invocation rate data point. Even
with increasing rate the mean latency did not change signif-
icantly and was observed to be consistently just above 1900
µs for the entire range of invocation rates. Note that this
is a desirable characteristic since even with an unfavorable
change in operational conditions (i.e., change in invocation
rate) the latency was observed to be constant. Jitter in laten-
cies for each invocation rate is plotted in Figure 7b which
shows that the deviation is bound between a high value of
42.44 (at 40Hz) and low value of 26.68 (at 2500Hz). At fre-
quencies 2500Hz and higher the jitter values became quite
stable showing a maximum variation of only 2.11. Overall,
our results indicate that even under increased rate of invo-
cation, the configurations perform effectively in achieving
BasicSP latency requirements.

4 Related Work
Validation and Analysis Techniques. Model-driven

techniques in [7, 19] rely on a visual interface to help de-
velopers select a wide array of middleware QoS options for
their applications. Such information is later used for gen-
erating test suites for purposes of empirical evaluation. In
contrast, our configuration process does not expose the de-
velopers to all of the configuration space of underlying mid-
dleware and relies on platform-specific heuristics for gener-
ating QoS configurations. Further, using our process, the
correctness of generated configurations is established in the
design time. We argue that since our transformation algo-
rithms codify best practices and patterns in middleware QoS
configuration, QoS design and evolution throughout the sys-
tem lifecycle using our approach is faster.

Analysis tools such as VEST [16], Cadena [1] and
AIRES [6] evaluate whether certain timing, memory, power,
and cost constraints and functional dependencies of real-
time and embedded applications are satisfied. Our config-
uration process can be used as a complementary QoS de-

sign and analysis technique to these efforts since it empha-
sizes on mechanisms to (1) translate design-intent into ac-
tual configuration options of underlying middleware and (2)
verify that both the transformation and subsequent modi-
fications to the configuration options remain semantically
valid.

QoS Design and Specification Techniques. The Adap-
tive Quality Modeling Language (AQML) [12] provides
QoS adaptation policy modeling artifacts. AQML gener-
ators can (1) translate the QoS adaption policies (specified
in AQML) into Matlab Simulink/Stateflow models for sim-
ulations using a control-centric view of QoS adaptation and
(2) generate Contract Definition Language (CDL) specifica-
tions from AQML models to be used in target middleware.
Our work differs with AQML since its middleware model
precisely abstracts the actual real-time CORBA implemen-
tation and does not need a two-level declarative translation
(from AQML to CDL to target middleware) to achieve QoS
configuration.

Ritter et.al. [14] describe CCM extensions for generic
QoS support and discuss a QoS metamodel that supports
domain-specific multi-category QoS contracts. The work in
[2] focuses on capturing QoS properties in terms of interac-
tion patterns among system components that are involved in
executing a particular service and supporting run-time mon-
itoring of QoS properties by distributing them over compo-
nents (which can be monitored) to realize that service.

In contrast to the projects and tools described above, our
work focuses on automating the error-prone activity of map-
ping platform-independent QoS policies to middleware-
specific QoS configuration options. Representing QoS poli-
cies as model elements allows for a unified (with functional
aspects of the application) and flexible QoS specification
mechanism, while automating evolution of the QoS poli-
cies with application evolution; the platform-independent
QoS policies also allow configurable re-targeting of the QoS
mapping to support other types of middleware technologies.

5 Concluding Remarks
In this paper we discussed our approach to evaluating

correctness and effectiveness of a QoS configuration pro-
cess in the context of a representative DRE system. We
showed how structural correspondence between input and
output languages in our model-driven approach can be used
to establish that initial system requirements are correctly
mapped to middleware QoS options. We verified the cor-
rectness of generated QoS options using a model-checker
and empirically showed that they are effective in satisfying
system requirements.

In the future in order to show its scalability we plan to ap-
ply and evaluate our technique to complex and large-scale
DRE systems. Our current approach is one-dimensional i.e.,
both the QoS requirements mapping and configuration val-
idation is done for a single dimension (such as real-time
request-response or publish-subscribe communication di-
mensions). In the future we plan to investigate and de-
velop configuration techniques under simultaneous require-
ments across distinct QoS dimensions. An effort is under-
way in extending our process for other component middle-
ware platforms that exhibit the same level of configurabil-
ity. As part of this effort, we are looking at development
of parameterized model transformations that allow specifi-
cation of templatized QoS mappings and later generation
of platform-specific QoS mapping instances by specializing
these templatized mappings.

QUICKER toolchain is available as open-source from
www.dre.vanderbilt.edu/CoSMIC/.
References

[1] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad. Ca-
dena: An Integrated Development, Analysis, and Verifica-
tion Environment for Component-based Systems. In Pro-
ceedings of the 25th International Conference on Software
Engineering, Portland, OR, May 2003.

[2] Jaswinder Ahluwalia and Ingolf H. Krüger and Walter
Phillips and Michael Meisinger. Model-Based Run-Time
Monitoring of End-to-End Deadlines. In Proceedings of
the Fifth ACM International Conference On Embedded Soft-
ware, Jersey City, NJ, Sept. 2005. ACM.

[3] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the
Use of Graph Transformation in the Formal Specification of
Model Interpreters. Journal of Universal Computer Science,
9(11):1296–1321, 2003. www.jucs.org/jucs_9_11/
on_the_use_of.

[4] A. Kavimandan, K. Balasubramanian, N. Shankaran,
A. Gokhale, and D. C. Schmidt. Quicker: A model-driven
qos mapping tool for qos-enabled component middleware.
In ISORC ’07: Proceedings of the 10th IEEE Interna-
tional Symposium on Object and Component-Oriented Real-
Time Distributed Computing, pages 62–70, Washington, DC,
USA, 2007. IEEE Computer Society.

[5] A. Kavimandan and A. Gokhale. Automated Middleware
QoS Configuration Techniques using Model Transforma-
tions. In Proceedings of the 14th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS
2008), St. Louis, MO, USA, April 2008.

[6] S. Kodase, S. Wang, Z. Gu, and K. G. Shin. Improving
Scalability of Task Allocation and Scheduling in Large Dis-
tributed Real-time Systems using Shared Buffers. In Pro-

ceedings of the 9th Real-time/Embedded Technology and Ap-
plications Symposium (RTAS 2003), Washington, DC, May
2003. IEEE.

[7] A. S. Krishna, E. Turkay, A. Gokhale, and D. C. Schmidt.
Model-Driven Techniques for Evaluating the QoS of Mid-
dleware Configurations for DRE Systems. In Proceedings of
the 11th Real-time Technology and Application Symposium
(RTAS ’05), pages 180–189, San Francisco, CA, Mar. 2005.
IEEE.

[8] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai. Composing Domain-Specific De-
sign Environments. IEEE Computer, pages 44–51, Novem-
ber 2001.

[9] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and
J. Hansen. A Scalable Solution to the Multi-Resource QoS
Problem. In Proceedings of the IEEE Real-time Systems
Symposium (RTSS 99), pages 315–326, Phoenix, AZ, Dec.
1999.

[10] T. Mens, P. V. Gorp, D. Varro, and G. Karsai. Applying a
Model Transformation Taxonomy to Graph Transformation
Technology. In Lecture Notes in Computer Science: Pro-
ceedings of the International Workshop on Graph and Model
Transformation (GraMoT’05), volume 152, pages 143–159,
Tallinn, Estonia, Sept. 2006. Springer-Verlag.

[11] A. Narayanan and G. Karsai. Verifying Model Transforma-
tions by Structural Correspondence. Technical Report ISIS-
07-809, Institute for Software Integrated Systems, Vanderbilt
University, Nashville, TN, Dec 2007.

[12] S. Neema, T. Bapty, J. Gray, and A. Gokhale. Genera-
tors for Synthesis of QoS Adaptation in Distributed Real-
time Embedded Systems. In Proceedings of the ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming
and Component Engineering (GPCE’02), Pittsburgh, PA,
Oct. 2002.

[13] I. Pyarali, D. C. Schmidt, and R. Cytron. Techniques for En-
hancing Real-time CORBA Quality of Service. IEEE Pro-
ceedings Special Issue on Real-time Systems, 91(7):1070–
1085, July 2003.

[14] T. Ritter, M. Born, T. Unterschütz, and T. Weis. A QoS Meta-
model and its Realization in a CORBA Component Infras-
tructure. In Proceedings of the 36th Hawaii International
Conference on System Sciences (HICSS’03), Honolulu, HI,
Jan. 2003.

[15] Robby, M. Dwyer, and J. Hatcliff. Bogor: An Extensible
and Highly-Modular Model Checking Framework. In Pro-
ceedings of the 4th Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2003),
Helsinki, Finland, September 2003. ACM.

[16] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis. VEST: An Aspect-Based Com-
position Tool for Real-Time Systems. In RTAS ’03: Proceed-
ings of the The 9th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, page 58, Washington, DC,
USA, 2003. IEEE Computer Society.

[17] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos. FC-ORB: A
robust distributed real-time embedded middleware with end-
to-end utilization controlstar, open. Journal of Systems and
Software, 80(7):938–950, 2007.

[18] R. Zhang, C. Lu, T. F. Abdelzaher, and J. A. Stankovic. Con-
trolWare: A Middleware Architecture for Feedback Con-
trol of Software Performance. In Proceedings of the In-
ternational Conference on Distributed Computing Systems
(ICDCS), Vienna, Austria, July 2002.

[19] L. Zhu, N. B. Bui, Y. Liu, and I. Gorton. MDABench: Cus-
tomized benchmark generation using MDA. Journal of Sys-
tems and Software, 80(2):265–282, Feb. 2007.

