
QUICKER: A Model-driven QoS Mapping Tool
for QoS-enabled Component Middleware∗

Amogh Kavimandan, Krishnakumar Balasubramanian, Nishanth Shankaran
Aniruddha Gokhale, Douglas C. Schmidt

Dept. of EECS, Vanderbilt University, Nashville
{amoghk,kitty,nshankar,gokhale,schmidt}@dre.vanderbilt.edu

Abstract

This paper provides three contributions to the study of
quality of service (QoS) configuration in component-based
DRE systems. First, we describe the challenges associated
with mapping the platform-independent QoS policies of an
application into platform-dependent values of QoS param-
eters used to configure the behavior of QoS-enabled com-
ponent middleware. Second, we describe a novel approach
that uses model-transformation to map these QoS policies
onto component middleware QoS configuration parameters.
Third, we demonstrate the use of model-checking to verify
the properties of the transformation and automate the syn-
thesis of configuration parameters required to tune the QoS-
enabled component middleware. Our results indicate that
model-transformation and model-checking provide signifi-
cant benefits with respect to automation, reusability, verifia-
bility, and scalability of the QoS mapping process compared
with conventional middleware configuration techniques.

1. Introduction

QoS configuration challenges in component middle-
ware. The success of component middleware technologies
like Enterprise Java Beans (EJB) and CORBA Compo-
nent Model (CCM) has raised the level of abstraction used
to develop software for distributed real-time and embed-
ded (DRE) systems, such as avionics mission-computing
and shipboard computing systems. Although compo-
nent middleware has helped move the configuration
complexity away from the application logic, the mid-
dleware itself has become more complex to develop and
configure properly. To achieve the desired QoS character-
istics for DRE systems, therefore, system developers and
integrators must perform QoS configuration of the middle-
ware.

∗ This work was sponsored in part by the AFRL/IF Pollux project, Lock-
heed Martin ATL, Raytheon, and the DARPA ARMS project.

QoS configuration involves binding application
level QoS policies—which are dictated by domain
requirements—onto QoS mechanisms that tune the un-
derlying middleware. Examples of domain-level QoS
policies include (1) the number of threads necessary to pro-
vide a service, (2) the priorities at which different compo-
nents should run, (3) the alternate protocols that can be used
to request a service, and (4) the granularity at which appli-
cation components share the underlying resources, such as
transport level connections.

QoS configuration bindings can be performed at several
time scales, including statically, e.g., directly hard coded
into the application or middleware, semi-statically, e.g.,
configured at deployment time using metadata descriptors,
or dynamically, e.g., by modifying QoS configurations at
runtime. Regardless of the binding time, however, the fol-
lowing challenges must be addressed:
• The need to translate the domain-specific QoS policies

of the application into QoS configuration options of the
underlying middleware.

• The need to choose valid values for the selected set of
QoS configuration options.

• The need to understand the dependency relation-
ships between the different QoS configuration op-
tions, both at individual component level (local), as
well as at aggregate intermediate levels (such as com-
ponent subsystem assemblies) through the entire
application (global).

Without effective tools to address these challenges, the re-
sult will be misconfigured QoS policies that are hard to an-
alyze and debug. As a result, failures will stem from a new
class of configuration errors rather than traditional design/-
implementation errors or resource failures.
Solution approach → Model-driven QoS mapping: To
address QoS configuration challenges, we developed the
QUality of service pICKER (QUICKER) model-driven en-
gineering (MDE) toolchain. QUICKER extends the
Platform-Independent Component Modeling Language
(PICML) [3], which is a domain-specific modeling lan-
guage (DSML) built using the Generic Modeling Environ-

ment (GME) [1].
QUICKER is designed to bridge the gap between:
• Functional specification and analysis tools, such as

PICML and Cadena [6], that allow specification and
analysis of application structure and behavior,

• Schedulability analysis tools, such as TIMES [2],
AIRES [9], VEST [17], that perform schedulability
and timing analysis to determine the exact priorities
and time periods for application components, and

• Dynamic QoS adaptation frameworks, such as the
Resource Adaptation and Control Engine (RACE) [16]
and QuO [20], that allocate resources to application
components, monitor the QoS of the system continu-
ously and apply corrective control to modify the QoS
configuration of the middleware at runtime.

2. Evaluating QoS Configuration Techniques
for DRE Systems

This section uses NASA’s Magnetospheric Multi-
scale (MMS) space mission (stp.gsfc.nasa.gov/
missions/mms/mms.htm) as an example to moti-
vate the need for MDE tools like QUICKER that help
automate key aspects of QoS configuration in DRE sys-
tems.

2.1. DRE System Case Study

NASA’s MMS mission is a representative DRE system
consisting of several interacting subsystems (both on-board
and ground systems) with a variety of complex QoS re-
quirements. The MMS mission consists of four identical in-
strumented spacecrafts that maintain a specific formation
while orbiting over a region of scientific interest. The pri-
mary function of the spacecraft constellation is to collect
data while in orbit and send it to a ground station for fur-
ther processing when appropriate.

The MMS mission dictates QoS requirements in two sep-
arate dimensions: (1) each spacecraft needs to operate in
multiple modes and (2) each spacecraft collects data using
sensors whose importance varies according to the data be-
ing collected. The MMS mission involves three modes of
operation: slow, fast, and burst survey modes. The slow sur-
vey mode is entered outside the regions of scientific inter-
ests and enables only a minimal set of data acquisition (pri-
marily for health monitoring). The fast survey mode is en-
tered when the spacecrafts are within one or more regions of
interest, which enables data acquisition for all payload sen-
sors at a moderate rate. If interesting events are detected
while in fast survey mode, the spacecraft enters burst mode,
which results in data collection at the highest data rates.

In conjunction with colleagues at Lockheed Martin Ad-
vanced Technology Center (ATC), we have developed a

Support varying

service levels

for clients.

Require support for

request buffering.

Comm Ground

Gizmo 1 Filter 1 Analysis 1

Gizmo 2 Filter 2 Analysis 2
Science

Agent

Gizmo 3 Filter 3 Analysis 3

Require support for

request buffering.
Requires concurrency

support. Requests are

executed at the same priority

as the initiating thread.

Requires concurrency

support in order to handle

all Gizmo requests.

Requests are executed at the

same priority as the initiating

thread.

Require support for

request buffering.

Figure 1: MMS Mission System Components

prototype [18] of the data processing subsystem of this
DRE system using the Component-Integrated ACE ORB
(CIAO) [4] QoS-enabled component middleware frame-
work, the RACE [16] dynamic QoS adaptation framework
and the PICML [3] MDE tool. CIAO extends our previ-
ous work on The ACE ORB (TAO) component-based ab-
stractions using the specification, validation, packaging,
configuration, and deployment techniques defined by the
OMG CCM Deployment & Configuration specifications.
Moreover, CIAO also integrates the CCM capabilities out-
lined above with TAO’s Real-time CORBA features, such
as portable priorities and end-to-end priority enforcement.
RACE is an adaptive resource management framework built
atop CIAO that integrates multiple resource management al-
gorithms for (re-)deploying and managing the QoS of com-
ponents in DRE systems.

Figure 1 shows the instances of—and connections
between—software components within a single MMS
spacecraft. Each spacecraft consists of a science agent
that decomposes mission goals into navigation, con-
trol, data gathering, and data processing applications. Each
science agent communicates with multiple gizmo com-
ponents, which are connected to different payload sen-
sors. Each gizmo component collects data from the sensors,
which have varying data rate, data size, and compres-
sion requirements.

The data collected from the different sensors have vary-
ing importance, depending on the mode and on the mis-
sion. The collected data is passed through filter compo-
nents, which remove noise from the data. The filter compo-
nents pass the data onto analysis components, which com-
pute a quality value indicating the likelihood of a transient
plasma event. This quality value is then communicated to
the other spacecraft and used to determine entry into burst
mode while in fast mode. Finally, the analyzed data from
each analysis component is passed to a comm (communi-
cation) component, which transmits the data to the ground
component at an appropriate time.

stp.gsfc.nasa.gov/missions/mms/mms.htm�
stp.gsfc.nasa.gov/missions/mms/mms.htm�

2.2. QoS Configuration Challenges in the MMS
mission

Although QoS-enabled component middleware like
CIAO/RACE and MDE tools like PICML simplify
many aspects of assembly, packaging, resource manage-
ment, and deployment in DRE systems, the following
key challenges remain with respect to the configura-
tion of QoS for components that comprise the DRE sys-
tems1, such as our MMS mission prototype:
Challenge 1. Inherent complexity in translating QoS
policies to QoS configuration options. Translating QoS
policies into QoS configuration options is hard because se-
mantics from the application domain must be mapped to
semantics of the underlying component middleware. QoS-
enabled component middleware like CIAO provides mecha-
nisms to configure (1) processor resources, such as portable
priorities, end-to-end priority propagation, thread pools,
distributable threads and schedulers, (2) communication re-
sources, such as protocol properties and explicit binding of
connections, and (3) memory resources, such as buffering
of requests. To translate the QoS policies into QoS mecha-
nisms by configuring the QoS options, however, application
developers need a thorough understanding of the underly-
ing middleware platforms.

In our MMS mission prototype, for example, there is a
QoS requirement that the comm component assign prece-
dence to data originating from gizmo components that op-
erate in burst mode. In case of a tie (i.e., if more than one
component is operating in burst mode at the same time), re-
quests are handled based on the importance of the originat-
ing gizmo component.

One way to meet this requirement is to config-
ure gizmo, filter, and analysis components with the
CLIENT_PROPAGATED priority model policy. This Real-
time CORBA policy ensures components execute requests
at the priority determined by the origin of the request, e.g.,
the gizmo component in the MMS mission. Likewise, the
comm component can use the SERVER_DECLARED pri-
ority model with thread pool lanes. A thread pool lane
corresponds to an OS priority level at which incoming re-
quests are handled, and the SERVER_DECLARED prior-
ity model pre-allocates resources and handles requests
at pre-determined priorities to ensure resource availabil-
ity. In contrast, if we choose CLIENT_PROPAGATED policy
for the comm component, unbounded priority inversion [13]
could occur since this component is shared between the dif-
ferent data flows originating at the gizmo components,

1 Although our discussion focuses on the CIAO QoS-enabled compo-
nent middleware, these challenges manifest themselves in any highly
configurable component middleware including EJB and Microsoft
.NET framework.

each with differing importance operating in possibly differ-
ent modes.

While schedulability analysis might determine the right
priority values for each component in the path of each con-
trol flow, the choice of QoS policies used to configure the
middleware has a significant impact on the end result of sat-
isfying QoS requirements. Without tool support, however,
it is tedious and error-prone for domain experts (e.g., MMS
systems engineers or software architects) to translate QoS
policies or analysis results to a subset of the QoS config-
uration options (e.g., priority models, priority-bands, and
thread pools) supported by the middleware that will ulti-
mately impact the level of QoS achieved.
Challenge 2. Ensuring validity of QoS configuration op-
tions. Assuming that a domain expert can translate the QoS
policies into a subset of QoS configuration options, it is also
necessary to understand the pre-conditions, invariants, and
post-conditions of the different QoS configuration options
since they affect middleware behavior. For example, to cre-
ate a thread pool with lanes in the comm component, the
following are a (non-exhaustive) list of pre-/post-conditions
and invariants:
• Pre-conditions. A real-time portable object adapter

created within a real-time ORB is available, and the
range of priorities (for the different lanes) and the type
of priority mapping scheme chosen are compatible,
i.e., within the limits.

• Post-conditions. A thread pool with lanes correspond-
ing to the different priorities, along with the requested
number of static (pre-defined) threads is available for
use.

• Invariants. The real-time ORB will match incom-
ing request priorities to the corresponding lanes, and
will always handle incoming requests for higher prior-
ity lanes before incoming requests for lower priority
lanes.

In our MMS mission prototype, for example, the anal-
ysis components use the priority-banded connection policy
to ensure that end-to-end priority is preserved between the
gizmo components and the comm components. This priori-
tization scheme gives precedence first to operational modes
and then to importance, which yields a design where sepa-
rate priority-bands are defined for each mode. Within each
priority-band, priorities are assigned to analysis compo-
nents based on their relative importance. For the analysis
components to make invocations on the comm component at
the right priority, the comm component must create thread
pools with sufficient number of priority lanes. The comm
components must also communicate the existence and avail-
ability of these lanes. Failure to configure the right set of op-
tions at both the analysis and comm components will han-
dle requests at the wrong priority, potentially causing prior-
ity inversion, or worse, failing at the client side.

In summary, validating the values of the different QoS
configuration options in isolation and together with con-
nected components is critical to the successful deployment
and ultimately the operation of DRE systems. With auto-
mated tool support, however, it is hard to validate these val-
ues.
Challenge 3. Resolving dependencies between QoS con-
figuration options. Even with a thorough understanding of
middleware QoS configuration options, manual configura-
tion of QoS policies does not scale as the number of entities
to configure increases. In DRE systems with many compo-
nents, the effects of changing a QoS configuration option
on a component may affect many other directly connected
components, their connected neighbors and so on. These de-
pendencies can rapidly degenerate into a very large num-
ber of QoS configurations. Depending on the frequency of
changes, empirically validating a change in QoS configura-
tion options becomes time consuming at this scale, which
slows down the design process considerably and permits
subtle and pernicious errors.

In our MMS mission prototype, for example, the priori-
ties associated with the thread-pool lanes of the comm com-
ponent should match the priority-bands defined on the anal-
ysis components. Since the analysis components themselves
get their priority propagated from the gizmo components,
there is a dependency between the comm and gizmo com-
ponents even though they are not directly connected to each
other. Tracking dependencies between options and propa-
gating the changes in one option to all options affected by
that change is critical during the QoS configuration phase.
What is needed, therefore, is automated tool support that
can assure an application’s evolution throughout its entire
lifecycle.

Due to the challenges described above, significant man-
ual effort is typically expended on QoS configurations for
DRE systems like our MMS mission prototype. Even af-
ter much effort, it is common to identify issues like frame
overruns during integration testing, which results in increas-
ing the cost of development of DRE systems. In some cases,
the problems are discovered after the system has been de-
ployed. It is therefore critical that QoS configuration of
component middleware is performed via adequate tool sup-
port. The remainder of this paper shows how our QUICKER
toolchain helps address these challenges in the context of
the CIAO and RACE QoS-enabled component middleware.

3. The Quality of Service Picker (QUICKER)
Toolchain

This section describes the QUICKER toolchain
and shows how QUICKER addresses the QoS map-
ping challenges outlined in Section 2.2 by using (1)
model-to-model transformations of the user QoS poli-

QUICKER

PICML
Model

Transformation
CQML Model Checker Target Platform

Application-specific QoS Policies Application-specific QoS Configuration Options

QoS Mapping of QoS policies to QoS options using GReAT Bogor Input Representation of Application

Figure 2: QUality of service pICKER (QUICKER)

cies into middleware-specific configuration options and (2)
the Bogor [15] model-checking framework to define com-
posite Real-time CCM-specific validation language con-
structs for validating the QoS options generated by trans-
formations.

3.1. Overview of the QUICKER Toolchain

The architecture of QUICKER is shown in Figure 2.
QUICKER enhances the Platform Independent Component
Modeling Language (PICML) [3] with new constructs that
enable developers of DRE systems to specify and ana-
lyze application QoS policies2 at a higher level of ab-
straction than used by third-generation programming lan-
guages (such as Java or C++) or textual declarative nota-
tions (such as XML). We used the Graph Rewriting and
Transformation (GReAT) [8] tool to transform platform-
independent QoS policies captured in PICML (the input)
to platform-specific QoS configuration options captured in
the Component QoS Modeling Language (CQML) (the out-
put). PICML allows specification of application QoS poli-
cies at a high-level of abstraction, i.e., focusing on desired
QoS features/characteristics at the granularity of individual
components and/or assemblies of application components.
For example, models created in PICML represent answers
to the following types of questions:

a. Is the component primarily being used as a service
provider (i.e., a server), a service consumer (i.e., a
client), or both?

b. Would the component simultaneously service requests
from multiple clients? If so, what is the minimum and

2 Unless stated otherwise, our use of PICML in this paper refers to its
QoS policy specification capabilities.

maximum number of clients it is expected to service
simultaneously and would the requests be prioritized?

c. In the server role, would the component require exe-
cution of the requests at a fixed priority or a varying
priority?

d. In the server role, should the component buffer re-
quests when resources (threads) are not immediately
available to honor the requests?

e. In the server role, would the component require sup-
port for varying service levels for different clients?

The output language (i.e., CQML) of the QUICKER
transformation captures CCM-specific QoS configuration
options for component-based applications. For example,
CQML models include Real-time CCM QoS options, such
as (1) Threadpools, which specifies the overall concurrency
level in the ORB, (2) Priority Model Policy, which speci-
fies the priority propagation mechanism used to execute re-
quests at the server component in an end-to-end fashion,
and (3) Priority-Banded Connections, which allow server
components to specify explicit priorities for each connec-
tion and enables client components to choose appropriate
connections for making requests based on their invocation
priorities.

To perform validity checks on the GReAT-generated
CQML model, we used Bogor [15], which is an exten-
sible software model-checking framework whose model-
checking algorithms, visualizations, and user interface sup-
port both general-purpose and domain-specific software
model-checking. Since Bogor’s input language does not di-
rectly support modeling of CCM components and QoS pa-
rameters, we extended its input language to support these
abstractions.

The remainder of this section describes QUICKER’s
model-transformation and model-checking capabilities in
more depth.

3.2. QoS Mapping using Model-Transformations

The QUICKER transformation engine uses GReAT to
convert the application QoS policies in a PICML model into
a CQML model. This automated conversion is an example
of a vertical exogenous transformation [12] that starts with
an abstract type graph as the input and refines the graph by
adding details to generate a more detailed type graph as the
output.

The steps involved in a typical QUICKER model-
transformation are as follows:

a. Navigate the hierarchy of the input model and cre-
ate the component assembly according to the structure
read from the input model. This step is required when
Bogoar checks configuration values for validity.

b. For each type of QoS policy defined on a component,
generate a corresponding element for CQML as fol-
lows: (a) if the component QoS policy specifies sup-
port for multiple clients simultaneously, create server-
side configuration elements that specify the ORB’s
concurrency level, (b) if the execution of requests at
a server component must be a fixed priority set Pri-
ority Model Policy to SERVER_DECLARED, otherwise
set it to CLIENT_PROPAGATED, and (c) if varying ser-
vice levels should be supported at the server, cre-
ate an appropriate number of Priority Lanes for
that component and create Priority-Banded Connec-
tions for the client(s) of that component.

c. Populate the individual attributes of the newly created
elements, if not done in earlier steps, and create appro-
priate associations for each CQML element created in
the two steps above.

Resolving Challenge 1: Translating QoS policies to
QoS configuration options. QUICKER gathers the ap-
plication QoS policies at the domain-level abstraction
and uses model-transformation to automate the te-
dious and error-prone translation of QoS policies to the
appropriate subset of QoS configuration options. For ex-
ample, the PICML model of the MMS mission captures
the following types of information about the applica-
tion:
• The Comm, Gizmo, Filter and Analysis components act

both as a client and a server, and all components simul-
taneously service multiple requests.

• In the server role, Gizmo, Filter and Analysis com-
ponents execute requests at varying priorities, such
that the Comm component may assign precedence to
the data originating at the Gizmo component (as men-
tioned in section 2.2).

• All components except Ground require buffering of
client requests.

QUICKER automatically transforms this high-level de-
scription of QoS policies of MMS mission components
specified in a PICML model and generates the de-
tailed QoS configuration options in the form of a CQML
model.

3.3. Validating QoS Configuration Options using
Model-Checking

After the model-transformation portion of the
QUICKER toolchain generates a CQML model com-
prising the QoS configuration options, the correctness
of these options must be validated before the applica-
tion assembly is deployed. We validate these options using
the Bogor model-checking framework, which is a cus-
tomizable explicit-state model checker implemented as an

Eclipse plugin.
To validate QoS configuration options of an application

using Bogor, we specify the application model and the QoS
configuration options that the application is expected to sat-
isfy. To express this specification in the Bogor Input Repre-
sentation (BIR) language, we leveraged Bogor’s customiza-
tion features to define new types and primitives that allow
manipulation of the newly defined types. The remainder of
this section describes QUICKER’s model-checking capa-
bilities and shows how our BIR extensions help resolve the
challenges described in Section 2.2 related to validation and
option dependency tracking.
• BIR input extensions. Bogor provides the BIR language
to specify input to its model-checker. It is cumbersome and
error-prone, however, to describe middleware QoS configu-
ration options using the default capabilities of BIR [15]. To
specify and model-check properties more closely to the do-
main of component middleware QoS configuration options,
therefore, we used BIR’s input extension feature to define
composite constructs that represent concepts (such as com-
ponents) and QoS options (such as thread pools) as though
they were native BIR constructs.

The BIR extensions we have developed define two
new data types: Component, which corresponds to
a CCM component, and QoSOptions, which cap-
tures QoS configuration options, such as lane, band,
and threadpool. Each Component maintains a sin-
gle QoSOptions instance internally. It may be necessary
to set various individual QoS options, depending on a com-
ponent’s role (i.e., client or server). Since these BIR
extensions can represent middleware QoS options, we re-
fer to them as QoS extensions.
• BIR primitives. In addition to defining constructs that
represent domain concepts, such as components and QoS
options, we also need to specify the property that the ap-
plication should satisfy. Since a property can be denoted by
multiple QoS options, we define rules to capture valid op-
tion values. BIR primitives are used to express these rules in
the input specification of MMS mission prototype, as shown
in Listing 1.

Primitives are the Bogor input language constructs we
defined to access and manipulate data types for Real-time
CCM. For example, instances of QoSOptions can be cre-
ated and manipulated using various primitives defined
in Listing 1. The rule defined in this listing first deter-
mines the Priority Model of a particular component using
the getPriorityModelPolicy primitive. If the Pri-
ority Model policy of a component is SERVER_DECLARED,
the rule calculates the range of connected compo-
nent’s Priority-Band values using getLowerBound and
getUpperBound primitives.

The rule in Figure 1 also checks if the range calculated
above matches the priority associated with comm compo-

// Declaration of the extensions
// Declare data-type variables used in this file
loc loc0: live {} //
do
{

// Instantiate the components with QoSPolicies;
// Register policies with components; Register
// components as per assembly structure in CQML
// model
...

} goto loc1;
loc loc1: live {pm}
when ! Quicker.hasQoSOptions (Comm)
do
{

pm := Quicker.getPriorityModelPolicy (Comm);
} goto loc2;

loc loc2: live {pm}
do
{

when (pm == pmodel.SERVER_DECLARED) do {}
goto loc3;

when !(pm == pmodel.SERVER_DECLARED) do {}
goto loc12;

} goto loc30;
loc loc3: live {lr1}
do
{

lr1 := QosOptions.getLowerBound (Analysis_1);
} goto loc4;
...

loc loc8: live {hr3}
do
{

lr1 := QosOptions.getUpperBound (Analysis_3);
} goto loc9;
...

Listing 1: Application-specific BIR Primitives

nent’s thread pool (not shown in the listing). Primitives are
also used to capture component interconnections in BIR for-
mat. These interconnections are needed to construct the de-
pendency structure for the specified input application, such
as the MMS mission prototype.
Resolving Challenge 2: Ensuring validity of QoS con-
figuration options. A priority-banded connection between
Analysis and Comm components must have matching poli-
cies and values, as discussed in Section 2.2. QUICKER uses
BIR primitives to ensure the validity of QoS configuration
options for MMS mission components. To show how the
primitives (and rules defined using those primitives) can en-
sure valid QoS configuration options, we deliberately mis-
configured the QoS by specifying the concurrency model of
Comm component to use Thread Pool without Lanes in the
CQML model of MMS mission prototype.

One of the rules specified in Listing 1 uses BIR primi-
tives to validate that the banded connection between Comm
and Analysis components have matching priority values.
The change to QoS option (of Comm component) outlined
above therefore causes a misconfiguration, which is de-
tected by the rule in Listing 1. Rules defined using BIR
primitives are thus used in QUICKER to provide automated
tool support that helps ensure the validity of QoS configu-

ration options.
Resolving Challenge 3: Resolving dependencies be-
tween QoS configuration options. There is a depen-
dency between gizmo components and comm component
in the MMS mission prototype, as explained in Sec-
tion 2.2, i.e., the gizmo component invocation priority
values should match the thread pool lane priority val-
ues. The dependency structure of the MMS mission pro-
totype is maintained in QoS extensions to track such
dependencies between QoS options. When a change oc-
curs to either of the dependent QoS options (i.e., the thread
pool lanes of comm component and the invocation prior-
ity of the gizmo component), the QoS extensions detect
mismatches between the priority values.

4. Related Work

This section compares our work on QUICKER with
related work that applies model-driven engineering tech-
niques for QoS configuration and adaptation of DRE sys-
tems.
Functional specification and analysis tools. Cadena [6]
is an integrated environment built using Eclipse for build-
ing and analyzing CCM based systems. Cadena provides a
framework for lightweight dependency analysis of behavior
of components. Cadena also supports an integrated model-
checking infrastructure dedicated to checking global system
properties using event-based inter-component communica-
tion via real-time middleware [5]. QUICKER is similar to
Cadena in terms of usage of Bogor for model-checking. The
difference is that Cadena applies model-checking to verify
functional behavior of components, whereas QUICKER ap-
plies model-checking to verify QoS configuration options of
component middleware.
QoS adaptation modeling tools. The Distributed QoS
modeling environment (DQME) [19] is a DSML that en-
ables the design of QoS adaptive applications in com-
bination with using QoS provisioning frameworks, such
as QuO [20]. DQME uses a hierarchical representa-
tion for modeling QoS adaptation strategies and supports
design of controllers based on state machines. The pri-
mary difference is that DQME focuses on a high-level de-
sign of QoS adaptation strategies, whereas QUICKER’s
emphasis is more fine-grained and focuses on the runtime
configuration options of the underlying middleware. Op-
erating at a high-level of abstraction with respect to QoS
adaptation strategies ultimately requires mapping of the de-
sign adaptation strategies to implementation-specific op-
tions. QUICKER focuses on translating high-level QoS
adaptation design intent into actual QoS configuration op-
tions that exists in tools like DQME.
QoS specification tools. Ritter et.al. [14] describe CCM ex-
tensions for generic QoS support and discusses a QoS meta-

model that supports domain-specific multi-category QoS
contracts. The work in [7], on the other hand, focuses on
capturing QoS properties in terms of interaction patterns
amongst system components that are involved in execut-
ing a particular service and supporting run-time monitor-
ing of QoS properties by distributing them over components
(which can be monitored) to realize that service. In con-
trast to the projects and tools described above, QUICKER
focuses on automating the error-prone activity of mapping
platform-independent QoS policies to middleware-specific
QoS configuration options. Representing QoS policies as
model elements allows for a unified (with functional aspects
of the application) and flexible QoS specification mech-
anism; the platform-independent QoS policies also allow
configurable re-targeting of the QoS mapping to support
other types of middleware technologies.
Schedulability analysis tools. Research presented in [11]
maps application models captured in the Embedded Sys-
tems Modeling Language (ESML) to UPPAAL timed au-
tomata [10] using graph transformation to verify properties
like schedulability of a set of real-time tasks with both time-
and event-driven interactions, and absence of deadlocks in
the system. Other related efforts include the Virginia Em-
bedded Systems Toolkit (VEST) [17] and the Automatic
Integration of Reusable Embedded Systems (AIRES) [9],
which are model-driven analysis tools that evaluate whether
certain timing, memory, power, and cost constraints of real-
time and embedded applications are satisfied. QUICKER
focuses on a different level of abstraction (i.e., QoS pol-
icy mapping tools) than [11, 17, 9] (which are QoS analysis
tools). QUICKER is complementary to these efforts since it
emphasizes mechanisms to (1) translate design-intent into
actual configuration options of underlying middleware and
(2) verify that both the transformation and subsequent mod-
ifications to the configuration options remain semantically
valid.

5. Concluding Remarks

With the trend towards implementing key DRE system
infrastructure at the middleware level, achieving the de-
sired QoS is increasingly becoming more of a configu-
ration problem than a development problem. To address
these challenges, we have developed the QUality of ser-
vice pICKER (QUICKER) toolchain, which uses (1) model-
transformation to automate the mapping of application QoS
policies into middleware-specific QoS configuration op-
tions and (2) model-checking to ensure that the QoS config-
uration options are valid at the individual component level
and at the global application level. To demonstrate the use
of QUICKER, we applied it to address configuration chal-
lenges in a prototype of NASA’s MMS space mission and
showed how QUICKER’s QoS mapping capabilities and

validation of QoS options using model-checking enabled
the successful configuration and deployment of the MMS
space mission components.

QUICKER is available as open-source from www.dre.
vanderbilt.edu/CoSMIC/.

References

[1] Ákos Lédeczi, Árpád Bakay, M. Maróti, P. Völgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai. Compos-
ing Domain-Specific Design Environments. Computer,
34(11):44–51, 2001.

[2] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi. TIMES: A Tool for Schedulability Analysis and
Code Generation of Real-Time Systems. In K. G. Larsen
and P. Niebert, editors, Formal Modeling and Analysis of
Timed Systems: First International Workshop, FORMATS
2003, Marseille, France, September 6-7, 2003. Revised Pa-
pers, volume 2791 of Lecture Notes in Computer Science,
pages 60–72. Springer, 2003.

[3] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt. A Platform-Independent
Component Modeling Language for Distributed Real-Time
and Embedded Systems. In RTAS ’05: Proceedings of the
11th IEEE Real Time on Embedded Technology and Appli-
cations Symposium, pages 190–199, Washington, DC, USA,
2005. IEEE Computer Society.

[4] G. Deng, C. Gill, D. C. Schmidt, and N. Wang. QoS-enabled
Component Middleware for Distributed Real-Time and Em-
bedded Systems. In I. Lee, J. Leung, and S. Son, editors,
Handbook of Real-Time and Embedded Systems. CRC Press,
2007.

[5] X. Deng, M. B. Dwyer, J. Hatcliff, G. Jung, Robby, and
G. Singh. Model-Checking Middleware-Based Event-Driven
Real-time Embedded Software. In FMCO, pages 154–181,
2002.

[6] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad. Ca-
dena: An Integrated Development, Analysis, and Verification
Environment for Component-based Systems. In Proceedings
of the 25th International Conference on Software Engineer-
ing, pages 160–172, Portland, OR, May 2003.

[7] Jaswinder Ahluwalia and Ingolf H. KrÃijger and Walter
Phillips and Michael Meisinger. Model-Based Run-Time
Monitoring of End-to-End Deadlines. In Proceedings of
the Fifth ACM International Conference On Embedded Soft-
ware, pages 100–109, Jersey City, NJ, Sept. 2005. ACM.

[8] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the
Use of Graph Transformation in the Formal Specification of
Model Interpreters. Journal of Universal Computer Science,
9(11):1296–1321, 2003. www.jucs.org/jucs_9_11/
on_the_use_of.

[9] S. Kodase, S. Wang, Z. Gu, and K. G. Shin. Improving
Scalability of Task Allocation and Scheduling in Large Dis-
tributed Real-time Systems using Shared Buffers. In Pro-
ceedings of the 9th Real-time/Embedded Technology and Ap-
plications Symposium (RTAS 2003), Washington, DC, May
2003. IEEE.

[10] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nut-
shell. Int. Journal on Software Tools for Technology Trans-
fer, 1(1–2):134–152, Oct. 1997.

[11] G. Madl, S. Abdelwahed, and G. Karsai. Automatic Verifica-
tion of Component-Based Real-time CORBA Applications.
In The 25th IEEE Real-time Systems Symposium (RTSS’04),
Lisbon, Portugal, Dec. 2004.

[12] T. Mens, P. V. Gorp, D. Varro, and G. Karsai. Applying a
Model Transformation Taxonomy to Graph Transformation
Technology. In Lecture Notes in Computer Science: Pro-
ceedings of the International Workshop on Graph and Model
Transformation (GraMoT’05), volume 152, pages 143–159,
Tallinn, Estonia, Sept. 2006. Springer-Verlag.

[13] I. Pyarali, D. Schmidt, and R. Cytron. Techniques for en-
hancing real-time corba quality of service. Proceedings of
the IEEE, 91(7):1070–1085, July 2003.

[14] T. Ritter, M. Born, T. Unterschütz, and T. Weis. A QoS Meta-
model and its Realization in a CORBA Component Infras-
tructure. In Proceedings of the 36th Hawaii International
Conference on System Sciences (HICSS’03), page 318, Hon-
olulu, HI, Jan. 2003.

[15] Robby, M. Dwyer, and J. Hatcliff. Bogor: An Extensible
and Highly-Modular Model Checking Framework. In Pro-
ceedings of the 4th Joint Meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2003),
Helsinki, Finland, September 2003. ACM.

[16] N. Shankaran, D. C. Schmidt, Y. Chen, X. Koutsoukous, and
C. Lu. The Design and Performance of Configurable Compo-
nent Middleware for End-to-End Adaptation of Distributed
Real-time Embedded Systems. In Proc. of the 10th IEEE
International Symposium on Object/Component/Service-
oriented Real-time Distributed Computing (ISORC 2007),
Santorini Island, Greece, May 2007.

[17] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu,
M. Humphrey, and B. Ellis. VEST: An Aspect-Based Com-
position Tool for Real-Time Systems. In RTAS ’03: Proceed-
ings of the The 9th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, page 58, Washington, DC,
USA, 2003. IEEE Computer Society.

[18] D. Suri, A. Howell, N. Shankaran, J. Kinnebrew, W. Otte,
D. C. Schmidt, and G. Biswas. Onboard Processing using
the Adaptive Network Architecture. In Proceedings of the
Sixth Annual NASA Earth Science Technology Conference,
College Park, MD, June 2006.

[19] J. Ye, J. Loyall, R. Shapiro, R. Schantz, S. Neema, S. Abdel-
wahed, N. Mahadevan, M. Koets, and D. Varner. A Model-
Based Approach to Designing QoS Adaptive Applications.
In Proceedings of the 25th IEEE International Real-Time
Systems Symposium, pages 221–230, Washington, DC, USA,
2004. IEEE Computer Society.

[20] J. A. Zinky, D. E. Bakken, and R. Schantz. Architectural
Support for Quality of Service for CORBA Objects. The-
ory and Practice of Object Systems, 3(1):1–20, 1997.

www.dre.vanderbilt.edu/CoSMIC/�
www.dre.vanderbilt.edu/CoSMIC/�
www.jucs.org/jucs_9_11/on_the_use_of�
www.jucs.org/jucs_9_11/on_the_use_of�

