
Evaluating Real-time Publish/Subscribe Service Integration Approaches in
QoS-enabled Component Middleware∗

Gan Deng, Ming Xiong and Aniruddha Gokhale
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN 37235, USA

{dengg,mxiong,gokhale}@dre.vanderbilt.edu

George Edwards†

Department of Computer Science
University of Southern California

Los Angeles, CA 37235
gedwards@usc.edu

Abstract

As quality of service (QoS)-enabled component middleware technologies gain widespread acceptance to build distributed
real-time and embedded (DRE) systems, it becomes necessary for these technologies to support real-time publish/subscribe
services, which is a key requirement of a large class of DRE systems. To date there have been very limited systematic studies
evaluating different approaches to integrating real-time publish/subscribe services in QoS-enabled component middleware.
This paper makes three contributions in addressing these key research questions. First, we evaluate the pros and cons of three
different design alternatives for integrating publish/subscribe services within QoS-enabled component middleware. Second,
we describe how we applied pattern-driven and meta-programming approaches in realizing the most promising choice based
on the container programming model. Third, we empirically evaluate the performance of our design and compare it with
mature object-oriented real-time publish/subscribe implementations. Our studies reveal that both the performance and scal-
ability of our design and implementation are comparable to its object-oriented counterpart, which provides a key guidance
to the suitability of component technologies for DRE systems.
Keywords: Real-time Publish/Subscribe services, Component Middleware, Patterns, Meta-programming.

1 Introduction

An increasing number of distributed real-time and embedded (DRE) systems require middleware support for real-time

transfer of control and data among large number of heterogeneous entities that coordinate with each other in a loosely

coupled fashion. Examples of such systems include military systems like the Joint Battlespace Infosphere (JBI), telecommu-

nications systems involving large scale network monitoring and management, environmental emergency response systems

requiring real-time coordination between various civilian emergency response units, and supervisory control and data acqui-

sition (SCADA) systems requiring real-time robust control and data communication.

Perhaps the most critical middleware service for the types of DRE systems outlined above are asynchronous, event-based

publish/subscribe services [1]. The publish/subscribe architecture is a powerful paradigm for event-based communication

because it provides anonymity, by decoupling the interfaces between event publishers and subscribers; and asynchronism, by

automatically notifying subscribers when a specified event is generated. These design principles reduce software dependen-

cies and support the loose coupling requirements of these DRE systems.
∗This work was sponsored in part by grants from NSF ITR CCR-0312859, Siemens, and DARPA/AFRL contract #F33615-03-C-4112
†Work done by the author while at Vanderbilt University

1



Some widely used real-time publish/subscribe services for DRE systems based on object-oriented middleware include

CORBA Real-time Event Service (RTES) [2], CORBA Real-time Notification Service (RTNS) [3] and OMG’s Data Distri-

bution Service (DDS) [4]. For example, the CORBA RTES is based on OMG’s Real-time CORBA [5] and provides low-

latency/jitter event dispatching, support for periodic processing, dynamic client connection management, centralized event

filtering, and efficient use of network and computational resources, which are well suited for DRE systems with stringent

QoS requirements.

Recent trends [6, 7] indicate that QoS-enabled component middleware, such as CIAO [8], PRiSM [9], and Qedo [10],

are increasingly used to develop and deploy next-generation DRE systems. QoS-enabled component middleware inherits

the benefits of conventional component middleware (e.g., J2EE, .NET, and CCM) such as (1) standards-based interfaces

for component interaction, (2) clear separation of application lifecycle stages, and (3) declarative composition capabilities,

while additionally providing separation of QoS provisioning aspects of DRE systems from their functionality aspects, thereby

yielding DRE systems that are less brittle and costly to develop, maintain, and evolve [8, 11].

The increasing use of QoS-enabled component middleware in DRE systems compounded by the need for real-time

publish/subscribe services to support a large class of DRE systems requires the integration of the real-time publish/subscribe

paradigm within QoS-enabled component middleware. Unfortunately standards-based component middleware do not yet

specify how publish/subscribe services can be robustly supported within component middleware. Moreover, to date there is

a general lack of systematic studies that address these concerns.

This paper systematically evaluates the pros and cons of different design alternatives for integrating real-time publish/-

subscribe services within QoS-enabled component middleware architectures. We describe how we applied pattern-driven

design and meta-programming techniques in realizing the most promising choice among of these alternatives, which is based

on the container programming model. Our study shows that the container-managed real-time publish/subscribe services

provide predictable and comparable performance when compared to their object-oriented counterparts, which provides key

guidance in the suitability of real-time publish/subscribe services in component technologies for DRE systems.

Paper organization. The remainder of this paper is organized as follows: Section 2 evaluates different architectural choices

for integrating real-time publish/subscribe services within QoS-enabled component middleware and analyzes the pros and

cons of each approach; Section 3 describes the design challenges we faced to realize the most promising approach, and our

solution which combines pattern-driven and meta-programming techniques to address them; Section 4 provides the results of

our empirical studies that establish the feasibility of our solution approach, and validates its performance; Section 5 compares

our work with related research; and Section 6 presents concluding remarks.

2 Architectural Design Choices for Integrating Real-time Publish/Subscribe Services

In this section we describe three different design choices for integrating real-time publish/subscribe services within QoS-

enabled component middleware. To make our discussions concrete, we describe these choices in the context of OMG’s

2



Lightweight CORBA Component Model (LwCCM) [12], which is an emerging component middleware standard for DRE

systems and implemented by our CIAO QoS-enabled component middleware. It is worth noting that many of our discussions

here are also applicable to other component models as well.

2.1 Overview of Lightweight CORBA Component Model

The OMG Lightweight CCM (LwCCM) specification provides a subset of features of normal CORBA Component Model

(CCM) standard [13]. By standardizing only a subset of features, LwCCM is intended to be used for DRE systems with

more stringent QoS requirements. Similar to CCM, LwCCM standardizes the development, packaging, configuration, and

deployment of component-based DRE systems. As illustrated in Figure 1, LwCCM uses the CORBA distributed object

computing (DOC) model as its underlying architecture so applications are not tied to any particular language or platform for

their implementations. Throughout this paper we use both the “LwCCM” and “CCM” terms interchangeably without loosing

the context.

Figure 1. Layered LwCCM Architecture

Components. Components in LwCCM are the implementation

entities that export a set of interfaces usable by conventional

CORBA clients as well as other components. Components can

also express their intent to collaborate with other components

by defining ports, including (1) facets, which define an inter-

face that accepts point-to-point method invocations from other

components, (2) receptacles, which indicate a dependency on

point-to-point method interface provided by another compo-

nent, and (3) event sources/sinks, which indicate a willingness

to exchange typed events with one or more components.

Container. A container in LwCCM provides a runtime en-

vironment for one or more components, and manages various

pre-defined hooks and strategies, such as persistence, notification, transaction, and security that are used by the compo-

nents. Each container is responsible for (1) initializing instances of the component types it manages, (2) providing a runtime

execution environment called context to the components, and (3) managing the policies and lifecycle of the components.

Configuration expressed as XML descriptors can be used by component deployment mechanisms to control the lifetime of

these containers and the components they manage.

Component server. A component server is an abstraction that is responsible for aggregating physical entities (i.e., imple-

mentations of component instances) into logical entities (i.e., distributed application services and subsystems). A component

server plays the role of a factory to create containers and standardizes the role of a server process in the CORBA object

model.

Component assembly. Assemblies of components in LwCCM are deployed and configured via the OMG Deployment and

3



Configuration (D&C) [14] specification, which manages the deployment of DRE systems onto different nodes in a target

environment. A standards-based deployment framework parses the deployment metadata expressed as XML descriptors,

extracts information on the binding of components to target nodes, and deploys the system by instantiating component

servers, installing containers and components, and setting up the object-level connections.

Component implementation and packaging. In addition to the runtime building blocks mentioned above, LwCCM also

standardizes component implementation and packaging. The Component Implementation Framework (CIF) helps generate

the component implementation skeletons automatically using the Component Implementation Definition Language (CIDL)

compiler. The CIF consists of patterns, languages and tools that simplify and automate the development of component

implementations which are called executors. Packaging involves grouping the implementation of component functionality

– typically stored in a dynamic link library (DLL) – together with other metadata that describes properties of this particular

implementation.

2.2 Evaluating Publish/Subscribe Service Integration Design Choices

Before we delve into describing the design choices, we first provide an intuitive description of how CCM components

in a QoS-enabled component middleware use the publish/subscribe paradigm for event communication. Figure 2 illustrates

how CCM components can publish and subscribe events through real-time event channels. As illustrated in the figure, QoS

configurations for the event dispatching are available at three different scopes, i.e., channel scope, port scope, and event

scope, which should ideally be configured and integrated into the component middleware architecture in an intuitive manner.

The goal of this paper is to evaluate different design choices of integrating real-time publish/subscribe mechanisms within

QoS-enabled component middleware.

Figure 2. Using Publish/Subscribe Services in
QoS-enabled Component Middleware Figure 3. Architectural Choices for Integrat-

ing Publish/Subscribe Services in CCM

Figure 3 illustrates how these architectural choices vary based on where within the component middleware architecture

4



does a publish/subscribe service gets integrated. The three architectural choices include (1) component-managed – where the

event channel can be represented as an application-level component, (2) container-managed – where the event channel can

be encapsulated within the container, and (3) component server-managed – where the publish/subscribe can reside within the

component server. This section describes each architecture choice in detail and analyzes the advantages and disadvantages

of each approach.

2.2.1 Component-Managed Publish/Subscribe Services

Design: The first architecture choice for providing real-time publish/subscribe services in component middleware is to

instantiate them as application-level CCM components as illustrated in Figure 4. In this architecture, the interfaces provided

by the publish/subscribe services are exposed as component facet ports. These ports contain methods to connect component

event sources/sinks to the event channel, configure event service real-time properties, and push events.

Figure 4. Publish/Subscribe Service as

CCM Component

Analysis: The primary advantage of this approach is its simplic-

ity. The complexity needed to implement a publish/subscribe ser-

vice component is rudimentary since the encapsulated service already

implements the publish/subscribe service functionalities, making the

full set of service features readily available to other components. In-

stantiating and deploying multiple publish/subscribe service compo-

nents follows the same rules that apply to standard components.

However, there are a number of disadvantages of using

component-managed publish/subscribe mechanisms. Generally

speaking, the shortcomings of the object-oriented model still mani-

fest in this architecture. First, the component glue-code, or servant, must manipulate publish/subscribe interfaces directly,

which exposes low-level CORBA programmatic details thereby defeating the declarative approaches used by component

middleware. Second, the component servant logic must encapsulate QoS and real-time properties, which inhibits the flexibil-

ity and reusability of components across different operating contexts and environments. Third, it is impossible to substitute

or interchange different real-time publish/subscribe services without recompilation of components because the servant im-

plementation within a component is tightly coupled with a specific type of publish/subscribe service. Finally, application

level components must now be responsible for managing the publish/subscribe lifecycles.

In conclusion, this architecture tightly couples the service provisioning behaviors into the component implementation

thereby hampering the reusability and evolution of DRE systems. Additionally, the component-based publish/subscribe ar-

chitecture conflicts with the standard CCM container programming model, which makes the container a mediator between

application-level components and common middleware services. Ironically, in this case the publish/subscribe service itself

is encapsulated within the component. Finally, this architecture results in a remote call to transmit an event to the publish/-

5



subscribe service component, which must be handled by the ORB and hence requires additional processing and levels of

indirection. Given the number of unfavorable consequences of utilizing this architecture, it is not appropriate for the ma-

jority of component-based DRE systems, especially large-scale systems that require highly flexible and customizable QoS

guarantees at a low cost.

2.2.2 Container-Managed Publish/Subscribe Services

Figure 5. Publish/Subscribe Services

Within Container

Design: Figure 5 depicts a second architecture for providing real-

time publish/subscribe services in component middleware where

a publish/subscribe service is encapsulated within the CCM con-

tainer. In this architecture, the container is responsible for manag-

ing publish/subscribe service lifecycles and their clients, initializing

channels and gateways, connecting publishers and subscribers, con-

figuring QoS and real-time properties, managing publisher and sub-

scriber component servants, and setting up the federation among mul-

tiple event channels across different containers. In this design, the

container exposes two distinct interfaces. One interface provides configuration methods and is invoked by the component

deployment framework based on the properties specified in XML-based metadata descriptors that describe configuration

decisions. The second interface provides a push method and is invoked by application-level components.

Analysis: There are many advantages in this architecture. First, since the publish/subscribe services are managed by the

container, the business logic of application components are decoupled from the publish/subscribe service configuration. This

decoupling enables real-time publish/subscribe service configurations and specifications to be validated and synthesized

via high-level model driven engineering (MDE) tools [15] prior to system deployment time, which increases the level of

abstraction and automation of the DRE system development process. This separation of concerns maximizes the flexibility

and reusability of components by allowing them to be reconfigured with different QoS properties and/or services as required

by new and changing operating contexts without making any changes to the application component logic or glue-code thereby

obviating the need for recompilation.

Second, this design reduces the memory footprint of individual components and preserves their lightweight nature. Al-

though the component deployment framework is exposed to the implementation details of the real-time publish/subscribe

services (since the deployment framework must instantiate and configure the channels) rather than component servant glue

code, it is not important for the deployment framework to be as lightweight as the CCM components because the deployment

framework is not part of the runtime system and does not consume resources after a DRE system is deployed.

Third, this architecture aligns with the CCM container programming model and defers publish/subscribe configuration-

related decisions until deployment time, which allows additional optimizations to be incorporated depending on knowledge

6



of the deployment context. For example, it may not be known until deployment time which network links have high la-

tency or low reliability, yet this information is critical to determining the best possible real-time publish/subscribe service

configuration.

The disadvantage to the container-managed event channel architecture is the difficulty encountered in actually implement-

ing it effectively and efficiently due to the complexity of CCM container architecture and its programming model. There are

a number of design challenges that arise when pursuing this design choice. We discuss in Section 3 how we resolve these

design challenges based on our patterns-driven solutions.

2.2.3 Component Server-Managed Publish/Subscribe Services

Design: The third alternative architecture for providing real-time publish/subscribe services in component middleware is

to host them within the component server, which is similar to existing approaches of supporting services in object-oriented

middleware. In this architecture, publish/subscribe services are still accessed and manipulated via the container. However,

the component server-managed architecture is fundamentally different from the container-managed architecture in that the

component server is a lower-level entity which hosts all the components, which in turn end up sharing the same publish/-

subscribe service.

Figure 6. Publish/Subscribe Services

Within Component Server

Analysis: The advantages present in the container-managed archi-

tecture are also applicable to the component server-managed archi-

tecture: components are still isolated from publish/subscribe services

in such a way that they remain configurable after compilation, and

push operations result in only local method invocations. However,

the component server-managed architecture is more coarse-grained

i.e., a large number of components may be required to share a single

service thereby affecting differentiated treatment to application com-

ponents depending on their real-time needs.

For applications that require either multiple publish/subscribe ser-

vices on a single host or those who wish to maximize component flex-

ibility to allow for future enhancements or modifications, the compo-

nent server-managed architecture may be too restrictive. On the other

hand, for applications that do not require these capabilities, the component server-managed architecture results in a simpler

configuration and deployment process, which reduces development effort. In the case of very large-scale DRE systems, the

savings may be substantial if sharing is desired, however, for DRE systems that require partitioning and configuring the

system capabilities based on priorities, load balancing and reliability, this coarse-grained approach is not suitable.

7



Summary: Based on our analysis of the pros and cons of each design choice, we have selected the container-managed

architecture as our design choice to obtain additional guidance on its applicability and performance.

Due to the complexity of CCM container architecture, component programming model, and the associated D&C model,

there are a number of challenges in the context of this design architecture. In Section 3, we show how this architecture can

be implemented in a way that is very efficient, lightweight, and flexible enough to accommodate new services to be plugged

in with little modification.

3 Container-based Integration of Real-time Publish/Subscribe Paradigm

This section describes the design and implementation of container-based integration of real-time publish/subscribe services

in CIAO, which draws on the combined strength of pattern-driven design [16] and meta-programming techniques [17]. We

divide this section into two parts. First, we discuss the integration design goals and our implementation strategies. We follow

this by the deployment and configuration issues, which arise due to the declarative as opposed to imperative approaches used

for deployment in component middleware.

3.1 Pattern-Driven Integration Strategies

Figure 7 gives an overview of the design of the container-managed real-time publisher/subscribe service architecture

as outlined in Section 2. The fundamental goal driven by this design is to increase the efficiency and flexibility of large-

scale DRE systems, while preserving the lightweight nature of CCM components and CIAO middleware framework. The

numbered bullets in this diagram depicts the flow of control among different entities in CIAO QoS-enabled component

middleware architecture [8].

Figure 7. CIAO Publish/Subscribe Architec-
ture

Figure 8. Pattern Interactions in the CIAO
Publish/Subscribe Service Framework

For each design goal mandated by the CCM container programming model, our pattern-oriented solution to integrating the

real-time publish/subscribe services within the QoS-enabled component middleware is implemented as illustrated in Table 1.

8



Figure 8 illustrates a pattern language [18] demonstrating the interactions between 5 different patterns in the publish/subscribe

service framework we integrated within the CIAO container.

Design Goal 1, which calls for pro-
viding a service-independent representa-
tion of real-time properties since different
publish/subscribe services depend on differ-
ent representations of real-time properties.

Solution approach → Adapter pattern: We apply the adapter
pattern that converts service-specific representations of real-time
properties into service-independent representations. The benefits of
this design are twofold: (1) component developers need not concern
themselves with peculiar configuration interfaces and (2) no matter
what changes occur to the underlying publish/subscribe services, the
interface exposed to components does not change.

Design Goal 2, which requires enhanc-
ing reuse and extensibility by allowing
new publish/subscribe services to be easily
plugged-in.

Solution approach → Strategy pattern: This design goal is sat-
isfied using the strategy pattern, which results in service implemen-
tations that are interchangeable from the container perspective. After
object creation, the container has no knowledge of the actual algo-
rithm being used, which enables fast operation delegations and sim-
plifies container design.

Design Goal 3, which emphasizes re-
duction in the memory footprint of the
container by decoupling the creation of
publish/subscribe service instances from
their representation.

Solution approach→ Builder pattern: The creation of most real-
time publisher/subscribe service instances is complex since a lot of
objects must be instantiated and configured properly. CIAO con-
tainer defines a builder class that encapsulates the complexity, which
results in finer control of the construction process, isolation of con-
struction code, and the ability to vary the service configurations.

Design Goal 4, which requires ensuring
that the components incur only the cost
of services that are required by deferring
publish/subscribe service selection and con-
figuration decisions until run time instead of
design time.

Solution approach → Component Configurator pattern: In
CIAO, a component configurator enables publish/subscribe service
libraries to be loaded dynamically on-demand to avoid encumber-
ing the application with unused services, while still allowing com-
ponents to wait until deployment time to select a particular service.
This mechanism provides the flexibility to initiate, suspend, resume,
and terminate services.

Design Goal 5, which requires a com-
ponent be able to access the full set
of QoS features available in real-time
publish/subscribe services by encapsulat-
ing service-specific QoS specification oper-
ations within a high-level interface.

Solution approach → Wrapper Facade pattern: The CIAO con-
tainer framework implements a high-level configuration interface
based on wrapper facades that forwards invocations to the corre-
sponding service-specific operations for each publish/subscribe ser-
vice. This design results in a concise and robust common program-
ming interface capable of configuring the QoS features in multiple
dissimilar publish/subscribe services.

Table 1. Container-based Integration Design Goals and Solutions

3.2 Deployment and Configuration Design Goals and Implementation Strategies

Component-based DRE systems require real-time publish/subscribe services to be deployed and configured (D&C) onto

the target execution environment. Common D&C concerns include (1) choices of publish/subscribe services and their bind-

ings to the CCM components (2) process-collocation strategies between CCM components and publish/subscribe services,

(3) host-collocation strategy between CCM components and these services, (4) real-time properties on event channels, event

ports, and individual events, (5) choices of event channel federation strategies, such as using IIOP based CORBA gateways

9



or UDP based unicast or multicast. To further simply the DRE system D&C tasks, the real-time publish/subscribe service

should ideally be automatically deployed and configured within the container and bound to components as an integral part of

the standardized D&C process as defined by the OMG Deployment and Configuration (D&C) [19], and even using the same

set of D&C tools based on the above standard.

Although the container-based publish/subscribe service integration approach decouples the functional aspect of CCM

components from their publish/subscribe QoS requirements, there is a lack of a mechanism to automate and orchestrate the

deployment and configuration process of publish/subscribe services. This section describes how we have employed meta-

programming techniques to automate the D&C process of real-time publish/subscribe services for DRE systems. Our solution

is based on the OMG Deployment and Configuration (D&C) specification and consists of two complementary abstraction

models, one called the data model based on XML representation and one called the runtime model based CORBA 2.x IDL.

Data Model. The data model uses XML descriptors to describe the real-time publish/subscribe service configurations. In

order to make our data model compatible with the OMG standard D&C model, we decouple DRE system publish/subscribe

service configuration concerns from standards-based component assembly and packaging these concerns into a different set

of XML descriptors. These descriptors are based on our proprietary XML schema called CIAO Events Descriptors, which

defines a rich set of elements called policies that capture different D&C concerns of dissimilar real-time publish/subscribe

services. Figure 9 shows the policies available for CORBA Real-time Event Service (RTES) that can be specified based on

this data model.

Figure 9. RTES QoS Configuration Dimensions in

Data Model

On the other hand, system functional aspects are cap-

tured through a set of standards-based Component De-

ployment Plan Descriptors, which describe the interac-

tion among a set of CCM components. The Compo-

nent Deployment Plan Descriptors can refer to any CIAO

Events Descriptors and any elements defined in them

through two generic, standards-based XML elements

called deployRequirement and InfoProperty.

The InfoProperty element specifies which CIAO

Events Descriptor files to use within this deployment

plan, and the deployRequirement elements can

specify which policies to be associated with which entities in the deployment plan, including components, connections and

ports. Figure 10 shows an example where we associate a CCM event sink port with a particular event filter, which is defined

in a separate XML file.

This declarative approach offers a much more powerful and flexible reconfiguration mechanism than traditional object-

oriented approaches. For example, when some deployment and configuration concerns of publish/subscribe services in an

10



existing DRE system needs to be modified to accommodate a different set of system deployment and configuration require-

ments, e.g., due to the changes of target infrastructure resources, operating conditions or mission goals, a system deployer

can easily modify the Component Deployment Plan Descriptors by referring to another set of publish/subscribe configuration

policy elements because all the XML-based configuration elements in CIAO Events Descriptors can be predefined and reused

through the lazy instantiation idiom.

<connection>
...
<deployRequirement>

<resourceType>EventFilter</resourceType>
<name>source_filter_id_01</name>
<property>
<name>EventFilter</name>
<value>

<type>
<kind>tk_string</kind>

</type>
<value>
<string>source_filter_id_01</string>

</value>
</value>

</property>
</deployRequirement>
...

</connection>

Figure 10. Example QoS Configuration for
a CCM Connection

/// Create one CIAOEventService object in
/// the container, which will be used to mediate
/// the communication of CCM events
module Deployment
{
/// Extension interface pattern
interface CIAOContainer : Container
{
...
readonly attribute
::Deployment::Properties properties;

// installs event service
CIAO::CIAOEventService install_es (

in CIAO::EventServiceDeploymentDescription
es_info)

raises (InstallationFailure);
...

}
};

Figure 11. IDL for CIAO Pub/Sub Service
Deployment and Configuration

Runtime Model. To deploy the data model as described above into the target environment, we extend the standards-based

runtime model of the OMG D&C Specification as a set of CORBA 2.x IDL interfaces to compose real-time publish/subscribe

QoS concerns into the system functional concerns. Our extended runtime model

Figure 12. DAnCE: Deployment And Configuration Engine for

Pub/Sub Services

applies the Extension Interface pattern [20]

to make our implementation capable of han-

dling various publish/subscribe service QoS

management yet are strictly compatible to

the standardized interfaces. Figure 11 shows

part of the CORBA 2.x IDL interfaces of the

runtime model.

The D&C framework and tools we devel-

oped based on this runtime model are inte-

grated as a part of the Deployment And Con-

figuration Engine (DAnCE) [21], which is

our implementation of OMG D&C specifi-

cation. As shown in Figure 12, our solution

consists of a set of daemon processes plus a utility program called plan launcher. The daemon processes include a global-level

11



daemon process called the ExecutionManager, which acts as the central portal for the the deployment and configuration

of different DRE systems within a particular domain. Also, there is another type of daemon process called NodeManager,

which serves the deployment and configuration within an individual node.

All daemon processes can be deployed onto a set of distributed nodes and then cooperatively deploy the publish/subscribe

services as an integral part of the standards-based deployment process, all driven by the plan launcher utility. The numbered

bullets show the flow of control among different DAnCE entities, starting from a system deployer uses the plan launcher

utility to invoke the service on the ExecutionManager, which conforms to the standardized D&C process. The design

goals and implementation of the meta-programmable architecture are summarized in Table 2.

Design Goal 1: Eliminate the need for
manually writing code to bridge the CCM
Eventtype with ORB publish/subscribe ser-
vice eventtypes.

Solution approach → Automatic Code Generation: We en-
hanced the CIAO CIDL compiler to automatically generate the nec-
essary servant code for each CCM component port, which handles
many low-level tedious and error-prone details, such as registering
CCM Event valuetype factory with the ORB, marshaling and de-
marshaling different event types, and converting CCM Eventtype be-
tween publish/service typed events.

Design Goal 2: Eliminate the need for
manually writing code to identify the event
publishers and subscribers which are neces-
sary for certain QoS configurations such as
constructing event filters.

Solution approach → DAnCE Orchestration: When DAnCE
performs deployment, it automatically generates unique identifiers
for every event publisher and subscriber, and maps them to the spe-
cific event types of the corresponding object-oriented services. This
will eliminate the dependencies between the event filters we con-
structed and the event sources we declared.

Design Goal 3: Eliminate the need for
manually writing code to set up event
channel federations, which involves tedious
and error-prone details such as instantiating
gateway objects, activating gateway end-
points, and binding them with event chan-
nels.

Solution approach → Service-based Event Channel Federation
We developed a reusable Event Channel Federation Service within
the CIAO-container framework to allow different event channel fed-
eration mechanisms to be pluggable. For example, UDP Unicast
based federation mechanism can easily be replaced with UDP Mul-
ticast based federation or CORBA IIOP based federation.

Table 2. Meta-programming Design Goals and Solutions

4 Empirical Performance Evaluation

The success of QoS-enabled component middleware technologies to develop and deploy DRE systems depends on the

real-time performance of the publish/subscribe mechanisms supported by them. This section provides empirical results for

the container-managed CORBA real-time event service (RTES) integrated within our CIAO QoS-enabled component middle-

ware. We choose RTES as a vehicle to evaluate our design because it is a mature real-time publish/subscribe implementation

based on real-time CORBA and has been widely used in many DRE systems [22].

Our performance evaluation of container-managed RTES focuses on answering two key questions: (1) how well does the

performance of container-managed RTES in CIAO middleware compare with that of the widely used CORBA 2.x RTES

implementation in TAO object-oriented middleware, which is used as a baseline for RTES performance, and (2) how well

12



does the container-managed RTES in CIAO scale with different number of publishers and subscribers under different QoS

configurations. We illustrate how the flexible configuration capabilities of CIAO’s container-managed RTES can provide

desired event delivery QoS without modifications to the component implementations.

4.1 Experimental Testbed

All our benchmarks were conducted on ISISlab (www.isislab.vanderbilt.edu), which is a testbed of computers

and network switches powered by Emulab software suite that can be arranged in many configurations. ISISlab consists of

6 Cisco 3750G-24TS switches, 1 Cisco 3750G-48TS switch, 4 IBM Blade Centers each consisting of 14 blades (for a total

of 56 blades), 4 gigabit network IO modules and 1 management module. Each blade has two 2.8 GHz Xeon CPUs, 1GB of

RAM, 40GB HDD, and 4 independent Gbps network interfaces. The underlying hardware used by ISISlab can be configured

to provide a virtual network topology and configure various parameters of that network including link bandwidth capacities,

node characteristics for use in routing, traffic shaping or traffic generation, and link error rates.

In our tests, we used up to 5 blades. Each blade ran Fedora Core 4 Linux, version 2.6.16-1.2108 FC4smp. All our

benchmark applications were run in the Linux real-time scheduling class to minimize extraneous sources of memory, CPU,

and network load. For each test, we run the iteration at least 10,000 times.

4.2 Comparing Performance of CIAO’s Container-Managed RTES and TAO’s RTES

In this test we measure the end-to-end latency introduced between publishers and subscribers. In order to measure the

performance of CIAO’s container-managed RTES, both the publishers and subscribers are developed as reusable CCM com-

ponents, which can be deployed by DAnCE for different test cases. On the other hand, for TAO’s RTES both the publishers

and subscribers are developed in the form of CORBA objects. To ensure an accurate comparison between the CIAO container-

managed RTES and TAO’s RTES implementations, we designed both tests using the same set of QoS configuration settings

on publishers, subscribers and event channels. The subscriber does nothing with the events it receives other than storing

the data in a preallocated array. Both tests are configured to measure the end-to-end publish/subscribe latency using the

IIOP communication mechanism, which uses point-to-multipoint event delivery rather than IP multicast. We measure the

end-to-end latency based on different event payload size as well as increasing number of subscribers.

Latency Results for Process Collocated Event Processing. In this test all the event publishers, subscribers, and the

event channel are collocated in the same process, which eliminates effects of ORB remote communication overhead. In the

container-managed RTES case, both the publisher and subscriber components are deployed into the same container which

in turn is hosted in a single CIAO component server. The end-to-end latency is determined by the publisher sending out the

timestamp right before the push call and subsequently the subscribers calculating the difference between the timestamp at

the publisher side and the subscriber side. We also use variable-sized octet sequence as the payload so that we can easily

control the volume of the payload.

13

www.isislab.vanderbilt.edu


One important fact worth mentioning concerns the event data type we used in the TAO’s RTES benchmarking test. Since all

the event source and event sink ports of CCM components are defined as Eventtype, which is a specialized valuetype,

it is unavoidable to eliminate the additional overhead incurred due to marshaling/demarshaling of such a data type. To ensure

a fair comparison between the performance of TAO’s RTES and CIAO’s container-managed RTES, we send valuetype

data in both test cases, and make the octet sequence payload as the member of this data type.

Figure 13 shows the latency results for the point-to-point (i.e., one-to-one) configuration. In this test, there is only one

publisher and one subscriber both of which are collocated within the same event channel in a single OS process. We use

variable-sized octet sequence payload so that we can easily control the volume of the payload.

Figure 14 shows the latency results for the one-to-many case. In this test, we increase both the number of subscribers and

the payload size to see how the end-to-end latency is affected. For the one-to-many case, the measured end-to-end latency is

determined by the publisher sending out the timestamp then calculating the difference between the timestamp at the publisher

side and the last subscriber that receives it.

Figure 13. Collocated Point-to-Point Latency Figure 14. Collocated One-to-Many Latency

Analysis. Our collocation experiment results indicate that the event dispatching overhead in CIAO’s container-managed

RTES incurs about 20∼25% latency performance overhead consistently over the TAO’s RTES implementation. This overhead

is primarily due to two reasons: (1) in contrast to programming with CORBA RTES, where the publisher CORBA objects

and the subscriber CORBA objects can directly interact with the event channel as RTES clients, the OMG CCM standard

introduces multiple indirections involving component executors that must communicate through their individual contexts,

which in turn interact with the component servants and CORBA RTES, and (2) the additional indirection introduced with the

higher-level container mediation interface as described in Section 3.

While it is inevitable to avoid the overhead caused by the indirection defined in the OMG CCM standard without break-

ing standards-based interfaces, we applied process-collocation optimization to CIAO’s implementation to improve the per-

formance and predictability of collocated component communication. The process-collocation optimization we conducted

improves the performance and predictability for objects that reside in the same address space as the servant implementation,

14



while maintaining locality transparency.

Our process-collocated experiment results demonstrate that the performance optimizations of object-oriented real-time

event dispatching are preserved within a container-based solution. It is also interesting to observe that as the number of

subscribers increase, the increase in latency is less than linear in both TAO’s CORBA RTES implementation and CIAO’s

container-managed RTES implementation, due in large part to the Handle/Body idiom used to optimize the processing of

CORBA Any data types in TAO’s RTES implementation [23], which is inherited by CIAO RTES. This idiom presents

multiple logical copies of the same data while sharing the same physical copy.

Latency Results for Remote Event Processing. 1 In this test, we run the experiment by creating two different processes

within a single node to allow the events to be sent remotely. The event publisher and the event channel are collocated in one

process, while the subscribers are in the other process. Figure 15 and Figure 16 show the latency results of point-to-point and

one-to-many configurations, respectively.

Figure 15. Two Process Point-to-Point Latency Figure 16. Two Process One-to-Many Latency

Analysis. The results indicate that the remote event processing latency in both CIAO’s container-managed RTES and TAO’s

RTES are much higher than that of process-collocated cases (both incurring about about 6∼10 times overhead) due to the

process boundary crossing, though they are close to the performance of a remote operation invocation. With increasing

number of event subscribers and payload size, the results still show that the event dispatching performance in container-

managed RTES in CIAO consistently has about 70∼80% performance of TAO’s RTES in all test cases. In conjunction

with the results of process-collocated tests, these results further confirm that the CIAO container-based RTES solution has

predictable performance which is comparable with TAO’s RTES, and is thus suitable for DRE systems.

4.3 Evaluating Scalability of CIAO’s Container-Managed RTES

Another important characteristic of real-time publish/subscribe services is the scalability. As discussed in Section 3,

CIAO’s container-managed RTES provides support for both single event channel based event dispatching as well as federated

1In this test configuration, a ”remote” event is one intended for a subscriber located in the other process.

15



event channels across multiple containers. To evaluate scalability therefore in this test we measure the throughput of CIAO

RTES’ event dispatching under different configuration settings. Our goal is to demonstrate the efficiency of remote event

processing using federated event channels where there are multiple remote subscribers or multiple distributed nodes. As a

result, we split our tests into two parts, one with multiple subscribers on the same node but different processes, and one with

multiple subscribers distributed on different nodes, and observe how different configurations can affect scalability.

Figure 17. Host Collocated Throughput Mea-
surement: All Subscriber on a Different Com-
ponent Server

Figure 18. Distributed Throughput Measure-
ment: Each Subscriber on a Different Node

Scalability Results for Host Collocated Remote Event Processing. This test measures the throughput of CIAO’s container-

managed RTES where all the subscriber components are hosted in a remote container, while the publisher component is

hosted in another container. Both containers are hosted in different CIAO component server processes but on the same node.

We send a fixed number of events on the publisher side and measure the rate of the number of events dispatched per second.

Figure 17 shows the throughput results for this configuration. The bottom two curves show the throughput results when

there is no container-managed event channel configured on the subscriber side, and all the subscriber components are directly

connected to the real-time event channel hosted in the publisher side container. The upper two curves show the throughput

results where both containers have real-time event channel configured locally and they are federated through UDP unicast

gateway objects [24].

Analysis. Our results indicate that a federated group of event channels can improve the throughput performance dramati-

cally because publishers and subscribers connect only to their local event channel, while event channel instances talk to each

other via the CORBA bus. When multiple subscribers are collocated in the same process, instead of making multiple remote

calls (one for each subscriber), only one remote call is necessary from the publisher process to the subscriber process. This

configuration improves the total throughput by reducing the average latency for all the subscribers in the system because

subscribers and publishers exhibit locality of reference, i.e., most subscribers for any event are in the same domain as the

publisher generating the event. We can imagine that in a networked environment, when multiple remote subscribers are inter-

16



ested in the same event only one message is sent to each remote event channel thereby also minimizing wastage of network

resources.

Scalability Results for Distributed Event Processing. This test measures the throughput of CIAO’s container-managed

RTES when the subscriber components are hosted in different containers on different physical nodes, while the publisher

component is hosted in another remote node. Again, we send a fixed number of events on the publisher side, and measure the

dispatching rate of number of events per second. Figure 18 shows the throughput results for this configuration. The bottom

two curves show the throughput results when there is no container-managed event channel configured on the subscriber

side, and all the subscriber components are directly connected to the real-time event channel hosted in the publisher’s side

container through TCP-based IIOP protocol. The upper two curves show the throughput results where all the containers have

its own real-time event channel configured locally and they are federated through UDP multicast gateway objects [24].

Analysis. The results indicate that the throughput performance improves drastically thanks to the UDP multicast federation

settings among different container-managed event channels distributed across different nodes. Using multicast protocol can

avoid duplicate network traffic, and offload event dispatching workload from the CPU to the network infrastructure. The use

of multicast is ideal for the scenario where many subscribers are distributed across different nodes in a networked environment

since increasing the number of nodes distributed across the network has little effect on UDP multicast. Since currently TAO’s

RTES only supports unreliable multicast, we are working on a reliable multicast solution within TAO’s RTES design so

components using CIAO’s container-managed RTES can take advantage of this feature.

5 Related Work

This section surveys literature on some available real-time publish/subscribe systems, both standards-based and propri-

etary, concentrating on the abstraction layers these publish/subscribe mechanisms are based on and the QoS capabilities they

support. Some of the prior work provide real-time QoS support for DRE systems, however, their QoS assurance mecha-

nisms are based on the traditional object-oriented middleware layer, which hinders system reusability and maintainability

and makes complex DRE systems hard to develop. On the other hand, some others take advantage of the strengths of compo-

nent middleware, but they are not yet suitable for DRE systems due to the limited real-time QoS support, addressing which

is the focus of our work.

5.1 Standards-based Publish/Subscribe Architectures for DRE Systems

• The OMG Data Distribution Service The OMG Data Distribution Service (DDS) specification [4]is a standard for

QoS-enabled publish/subscribe communication aiming at mission-critical DRE systems. It is designed to provide (1) lo-

cation independence via anonymous publish/subscribe protocols that enable communication between collocated or remote

publishers and subscribers, (2) scalability by supporting large numbers of topics, data readers, and data writers, and (3)

17



platform portability and interoperability via standard interfaces and transport protocols. Multiple implementations of DDS

are now available ranging from high-end COTS products to open-source community-supported projects, such as NDDS [25],

OpenSplice [26] and TAO DDS [27]. The OMG DDS standard is based on the object-oriented middleware. Currently we are

evaluating the performance of various DDS implementations, and plan to integrate an open source implementation into our

CIAO component middleware.

• The CORBA Distributed Notification Service The OMG has also issued a specification to build distributed versions of

the Notification Service via its “Management of Event Domains Specification” [28]. This document describes how multiple

instances of the Notification Service can be interconnected to avoid the excessive overhead and eliminate the single point

of failure represented by the event channel object. This specification, however, does not incorporate any mechanisms to

reduce event delivery based on filters. Similar to DDS, both the CORBA Notification Service and the CORBA Distributed

Notification Service are based on object-oriented middleware rather than component middleware, and are a target of our

integration approach.

5.2 Proprietary Publish/Subscribe Architectures for DRE Systems

• Cadena Event Channel Framework Cadena Event Communication Framework [29] includes a CORBA-based event

channel which has been integrated into the OpenCCM component middleware infrastructure. The framework implements a

number of features of the event service middleware, such as event filtering and event correlation. Although this work comes

close to our work, however, it does not address the problems such as event channel federation, real-time event scheduling

and dispatching and periodic event processing, which are crucial for a number of mission-critical real-time applications.

Our work, on the other hand, leverages the real-time event channels and QoS-enabled component middleware to provide the

properties outlined above.

• SIENA SIENA [30, 31] is a notification service architecture for Internet-scale event distribution. The architecture is based

on content-based networking, where a network of routers propagate packets based not on a specific destination address, but

on the contents of the packet. The authors propose using an event format similar to the CORBA Notification Service, i.e.,

sequence of (name, value) tuples. Using this format, consumers use a boolean predicate on the tuple values to describe the

sets of events they are interested in. The authors describe algorithms to reduce the use of network resources.

Both SIENA and TAO’s RTES use similar techniques to conserve network and CPU resources, however, SIENA’s event

and filtering models are more powerful than the model in RTES. In contrast, however, our real-time Event Service is better

suited for applications with stringent latency and predictability requirements, such as avionics mission computing.

• CMU Real-time Publish/Subscribe Rajkumar, et al., describe a real-time publish/subscribe prototype developed at

CMU SEI [32]. Their Publish/Subscribe model is functionally similar to the CORBA RTES, though it defines its own

programming APIs and communication protocols. The authors detail how real-time threads and adequate synchronization

primitives can be used to implement the RT publish/subscribe model without undue priority inversions. However, the authors

18



do not consider the fact that adequate synchronization primitives are a necessary condition to address unbounded priority

inversions, but it is not a sufficient condition.

5.3 Summary

Much has been written about real-time publish/subscribe systems, but little effort has been expended in documenting

the patterns, optimizations and architectures required to implement QoS-enabled publish/subscribe models in component-

based software architectures. Also, there is very little or no empirical evidence to support the performance and predictability

claims of several of these systems when used in component-based systems, even when research concentrates on real-time

applications. We have addressed some of these shortcomings in this paper.

6 Concluding Remarks

Component middleware has already received widespread acceptance in the enterprise business and desktop application

domains. However, developers of DRE systems have encountered limitations with the available component middleware plat-

forms, such as the CCM and J2EE. In particular, component middleware platforms lack standards-based real-time publish/-

subscribe communication mechanisms that support key QoS requirements of DRE systems, such as low latency, bounded

jitter, and end-to-end event propagation. This paper provides guidance to establish the feasibility of integrating mature

object-oriented real-time publish/subscribe services in QoS-enabled component middleware architectures. In particular, our

results indicate that the approach of using container-managed real-time publish/subscribe service not only provides the most

flexible way to developing DRE systems by taking advantage of standards-based component models, and the deployment and

configuration model, but also provide predictable end-to-end performance and scalability.

The lessons we learned in this study indicate that component middleware standards often introduce some event dispatching

overhead compared to the object-oriented middleware. For example, the CCM standard inevitably introduces some perfor-

mance overheads for event dispatching caused mainly by valuetype based CCM Eventtype marshaling/demarshaling costs

and some levels of indirection between different entities including component executors, servants, contexts and containers.

It is worth noting that discussion of these overheads is orthogonal to the focus of this paper.

Our ongoing R&D in this field will examine performance optimization opportunities in our CIAO container-managed real-

time publish/subscribe service architecture, and further evaluate our approach in the context of a variety of concrete DRE

domains with our industry partners, including telecom, avionics mission computing, software defined radio and industrial

process control. The software described in this paper is available for download from www.dre.vanderbilt.edu, which

includes the modeling tools, the D&C tool chain and the middleware.

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software Architecture—A System of Patterns. New York: Wiley
& Sons, 1996. 1

19

www.dre.vanderbilt.edu


[2] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and Performance of a Real-time CORBA Event Service,” in Proceedings of OOPSLA
’97, (Atlanta, GA), pp. 184–199, ACM, Oct. 1997. 1

[3] P. Gore, D. C. Schmidt, C. Gill, and I. Pyarali, “The Design and Performance of a Real-time Notification Service,” in Proceedings of the 10th
Real-time Technology and Application Symposium (RTAS ’04), (Toronto, CA), IEEE, May 2004. 1

[4] Object Management Group, Data Distribution Service for Real-time Systems Specification, 1.0 ed., Mar. 2003. 1, 5.1

[5] Object Management Group, Real-time CORBA Specification, OMG Document formal/05-01-04 ed., Aug. 2002. 1

[6] D. C. Sharp, “Reducing Avionics Software Cost Through Component Based Product Line Development,” in Proceedings of the 10th Annual Software
Technology Conference, Apr. 1998. 1

[7] J. P. Loyall, R. E. Schantz, D. Corman, J. L. Paunicka, and S. Fernandez, “A Distributed Real-Time Embedded Application for Surveillance,
Detection, and Tracking of Time Critical Targets,” in IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 88–97, 2005. 1

[8] N. Wang, C. Gill, D. C. Schmidt, and V. Subramonian, “Configuring Real-time Aspects in Component Middleware,” in Lecture Notes in Computer
Science: Proc. of the International Symposium on Distributed Objects and Applications (DOA’04), vol. 3291, (Agia Napa, Cyprus), pp. 1520–1537,
Springer-Verlag, Oct. 2004. 1, 3.1

[9] W. Roll, “Towards Model-Based and CCM-Based Applications for Real-time Systems,” in Proceedings of the International Symposium on
Object-Oriented Real-time Distributed Computing (ISORC), IEEE/IFIP, May 2003. 1

[10] T. Ritter, M. Born, T. Unterschütz, and T. Weis, “A QoS Metamodel and its Realization in a CORBA Component Infrastructure,” in Proceedings of
the 36th Hawaii International Conference on System Sciences, Software Technology Track, Distributed Object and Component-based Software
Systems Minitrack, HICSS 2003, (Honolulu, HW), HICSS, Jan. 2003. 1

[11] M. Jordan, G. Czajkowski, K. Kouklinski, and G. Skinner, “Extending a J2EE Server with Dynamic and Flexible Resource Management,” in
Proceedings of the ACM/IFIP/USENIX International Middleware Conference (Middleware 2004), Toronto, Canada, pp. 439–458, 2004. 1

[12] Object Management Group, Lightweight CCM FTF Convenience Document, ptc/04-06-10 ed., June 2004. 2

[13] Object Management Group, CORBA Components, OMG Document formal/2002-06-65 ed., June 2002. 2.1

[14] Object Management Group, Deployment and Configuration Adopted Submission, OMG Document mars/03-05-08 ed., July 2003. 2.1

[15] G. Edwards, G. Deng, D. C. Schmidt, A. Gokhale, and B. Natarajan, “Model-driven Configuration and Deployment of Component Middleware
Publisher/Subscriber Services,” in Proceedings of the Third International Conference on Generative Programming and Component Engineering
(GPCE), (Vancouver, CA), ACM, Oct. 2004. 2.2.2

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley,
1995. 3

[17] J. K. Cross and D. C. Schmidt, “Meta-Programming Techniques for Distributed Real-time and Embedded Systems,” in Proceedings of the 7th

Workshop on Object-oriented Real-time Dependable Systems, (San Diego, CA), IEEE, Jan. 2002. 3

[18] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and S. Angel, A Pattern Language. New York, NY: Oxford University
Press, 1977. 3.1

[19] OMG, Deployment and Configuration of Component-based Distributed Applications, v4.0, Document formal/2006-04-02 ed., Apr. 2006. 3.2

[20] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked Objects,
Volume 2. New York: Wiley & Sons, 2000. 3.2

[21] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and A. Gokhale, “DAnCE: A QoS-enabled Component Deployment and Configuration
Engine,” in Proceedings of the 3rd Working Conference on Component Deployment, (Grenoble, France), Nov. 2005. 3.2

[22] C. O’Ryan and D. C. Schmidt, “Applying a Real-time CORBA Event Service to Large-scale Distributed Interactive Simulation,” in 5th International
Workshop on Object-oriented Real-time Dependable Systems, (Monterey, CA), IEEE, Nov. 1999. 4

[23] D. C. Schmidt and C. O’Ryan, “Patterns and Performance of Real-time Publisher/Subscriber Architectures,” Journal of Systems and Software,
Special Issue on Software Architecture - Engineering Quality Attributes, 2002. 4.2

[24] C. O’Ryan, D. C. Schmidt, and J. R. Noseworthy, “Patterns and Performance of a CORBA Event Service for Large-scale Distributed Interactive
Simulations,” International Journal of Computer Systems Science and Engineering, vol. 17, pp. 115–132, Mar. 2002. 4.3, 4.3

[25] Real-time Innovations, “NDDS: The Real-time Publish-Subscribe Middleware.” www.rti.com/products/ndds/ndwp0899.pdf, 1999. 5.1

[26] Prism Technologies, “OpenSplice Data Distribution Service.” http://www.prismtechnologies.com/, 2006. 5.1

[27] OCI Integrated Information Systems, “TAO DDS Open Source Project.” http://downloads.ociweb.com/DDS/, 2006. 5.1

[28] Object Management Group, Management of Event Domains Specification. Object Management Group, OMG Document formal/01-06-03 ed., June
2001. 5.1

[29] G. Singh, P. S. Kumar, and Q. Zeng, “Configurable Event Communication in Cadena,” in IEEE Real-time and Embedded Technology and
Applications Symposium, pp. 130–139, 2004. 5.2

[30] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and Evaluation of a Wide-Area Event Notification Service,” ACM Transactions on
Computer Systems, vol. 19, pp. 332–383, Aug. 2001. 5.2

[31] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Achieving Scalability and Expressiveness in an Internet-Scale Event Notification Service,” in
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, (Portland, OR), pp. 219–227, July 2000. 5.2

[32] R. Rajkumar, M. Gagliardi, and L. Sha, “The Real-time Publisher/Subscriber Inter-Process Communication Model for Distributed Real-time
Systems: Design and Implementation,” in First IEEE Real-time Technology and Applications Symposium, May 1995. 5.2

20


	Introduction
	Architectural Design Choices for Integrating Real-time Publish/Subscribe Services
	Overview of Lightweight CORBA Component Model
	Evaluating Publish/Subscribe Service Integration Design Choices
	Component-Managed Publish/Subscribe Services
	Container-Managed Publish/Subscribe Services
	Component Server-Managed Publish/Subscribe Services


	Container-based Integration of Real-time Publish/Subscribe Paradigm
	Pattern-Driven Integration Strategies
	Deployment and Configuration Design Goals and Implementation Strategies

	Empirical Performance Evaluation
	Experimental Testbed
	Comparing Performance of CIAO's Container-Managed RTES and TAO's RTES
	Evaluating Scalability of CIAO's Container-Managed RTES

	Related Work
	Standards-based Publish/Subscribe Architectures for DRE Systems
	Proprietary Publish/Subscribe Architectures for DRE Systems
	Summary

	Concluding Remarks

