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Abstract

Developing real-time software for large-scale distributed real-time and embedded (DRE) systems is hard due to

variabilities that arise from (1) integration with various subsystems based on different programming languages and

hardward, OS, middleware platforms, (2) fine tuning the system to satisfy a range of customer requirements, such

as various quality-of-service (QoS) properties, and (3) changing functional and QoS properties of the system based

on available system resources. This paper describes our experience applying model-driven development (MDD)

tools and QoS-enabled component middleware technologies to address domain- and middleware-specific variability

challenges in an inventory tracking system, which manages the storage and flow of items in warehouses. Our

results show that (1) coherent integration of MDD tools and component middleware can provide a productive

software process for developing DRE systems by modularizing and composing variability concerns and (2) significant

challenges remain that must be overcome to apply these technologies to a broader range of DRE systems.

Keywords: Model-Driven Development, Domain-Specific Modeling Languages, Component Mid-

dleware, and Inventory Tracking Systems

1 Introduction

Emerging trends and challenges. Developing software for large-scale distributed, realtime and embedded

(DRE) systems of systems, such as a warehouse inventory tracking system (ITS), is hard due to the numerous factors

that must be addressed. For example, ITS software must provide reliable, efficient, and convenient mechanisms

that manage warehouses and the movement of inventory items in a timely and reliable manner. An ITS should

enable human operators to configure warehouse storage organization criteria and warehouse transportation facility

criteria, maintain the set of items known throughout a distributed environment (which may span organizational

and even international boundaries), and track warehouse assets using GUI-based operator monitoring consoles.

Addressing these challenges is crucial since it impacts the large set of users of an ITS, which includes couriers (such
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as UPS, FedEx, and DHL), airport baggage handling systems, and large trading and manufacturing companies

(such as Wal-Mart and Target).

Standards-based quality-of-service (QoS)-enabled object-oriented middleware technologies, such as Real-time

CORBA [1] and Real-time Java [2], have been successful in small- to medium-scale DRE systems [3], where

they support the provisioning of key QoS properties, such as (pre)allocating CPU resources, reserving network

bandwidth, and monitoring/enforcing the proper use of distributed real-time and embedded DRE system resources

at runtime to meet end-to-end QoS requirements, such as throughput, latency, and jitter. Since object-oriented

technologies tend to tangle functional (e.g., application business-logic) aspects and QoS (e.g., end-to-end latency

and jitter requirements) aspects [4], however, it remains hard to develop larger-scale DRE systems, such as an

ITS. In recent years, therefore, QoS-enabled component middleware [5–8] has emerged to help developers of DRE

systems enhance reuse by factoring out reusable concerns, such as component lifecycle management, system resource

reservation and allocation, system authentication/authorization, and remoting. As a result, software for large-scale

DRE systems is increasingly being assembled from reusable and configurable components.

Although QoS-enabled component middleware technology provides powerful capabilities, however, it also yields

the following challenges for developers of DRE systems [9, 10]:

1. Increased scale. As DRE subsystems are joined together to form large-scale systems, developers rarely

have in-depth knowledge of the entire system or an integrated view of all subsystems and libraries, which may

cause them to implement suboptimal solutions that duplicate code unnecessarily, complicate system evolution,

affect system QoS, and violate architectural principles. For example, in an ITS new warehouses may be added at

remote locations, which will require reuse of existing ITS software assets to work for the new warehouses and their

incorporation within the global ITS system. It is hard enough to satisfy ITS QoS requirements independently at

remote locations, and even harder to satisfy them in concert.

2. Increased variability. Additions to the features of the system and/or availability of better implemen-

tations of the same type of systems can further increase functional and QoS variability. For example, new types

of warehouse transportation facilities, such as forklifts or cranes, which may have more sophisticated features and

timeliness requirements may be introduced in a warehouse, hence requiring appropriate changes in the ITS soft-

ware. It is hard to accommodate these changes within individual components without complicating the solution

and affecting the overall QoS of the entire system.

To maximize software reuse and productivity, therefore, increased scale and variability must be addressed by

more effectively combining technologies and tools that support system configuration and integration.

Promising approach → Integrating model-driven development and QoS-enabled component mid-

dleware. A promising way to alleviate the challenges of DRE system scale and variability described above is
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to integrate model-driven development (MDD) [10–13] techniques with QoS-enabled component middleware [6,8].

MDD helps resolve key software development challenges by combining (1) metamodeling, which defines type systems

that precisely express key abstract syntax characteristics and static semantic constraints associated with applica-

tion domains, such as software defined radios, avionics mission computing, and warehouse inventory tracking, (2)

domain-specific modeling languages (DSMLs), which provide programming notations that are guided by certain

metamodels to formalize the process of specifying application logic and QoS-related requirements in a particular

domain, and (3) model transformations and code generation that help automate repetitive, tedious and error-prone

tasks in the software lifecycle to ensure the consistency of software implementations with analysis information

associated with functional and QoS requirements captured by structural and behavioral models.

In prior work, we developed (1) a MDD toolsuite called Component Synthesis using Model Integrated Computing

(CoSMIC) (www.dre.vanderbilt.edu/cosmic), which is an integrated collection of DSMLs that support the spec-

ification, analysis, development, configuration, deployment, and evaluation of DRE systems, and (2) a QoS-enabled

component middleware platform called Component-Integrated ACE ORB (CIAO) [6], which combines Lightweight

CORBA Component Model (CCM) [5] capabilities with Real-time CORBA features [1]. To evaluate how well the

integration of MDD tools and QoS-enabled component middleware helps resolve the scale and variability challenges

described above, we developed an ITS case study that provides logistics support to manage the flow of items and

assets in and across warehouses in a distributed and timely manner.

This paper presents our experience gained and lessons learned while integrating MDD and QoS-enabled com-

ponent middleware to address two key variability concerns in designing the ITS: (1) warehouse configuration and

management concerns and (2) component management, assembly, QoS configuration, and deployment concerns.

The goal of our case study was to evaluate how well these technologies could be integrated together to (1) mod-

ularize key functional and real-time QoS concerns of ITS at higher levels of abstractions than third-generation

programming languages, such as Java and C++, (2) handle variabilities at different levels of abstractions, e.g.,

by assembling a set of components to provision ITS functionality based on particular warehouse requirements,

and configuring middleware and services via DSMLs, and (3) automate key steps in the software lifecycle, such

as automated ITS product instance software assembly, deployment, and configuration based on warehouse-specific

deployment requirements.

Paper organization. The remainder of this paper is organized as follows: Section 2 provides an overview of

the ITS case study; Section 3 describes how we integrated and applied MDD tools together with QoS-enabled

middleware to resolve key technical problems faced in our case study; Section 4 further evaluates our approach;

Section 5 compares our work with related efforts; and Section 6 presents concluding remarks and summarizes

lessons learned.
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2 Overview of the ITS Case Study

This section provides an overview of the ITS case study, focusing on its component architecture, as well as the

scale and variability of its requirements.

2.1 ITS Component Architecture

Figure 1 illustrates the components that form the core implementation and integration units of our ITS case

study. Some ITS components (such as the OperatorConsole) expose interfaces to end users, i.e., ITS operators.

Other components (such as TransportationUnit) represent hardware entities, such as cranes, forklifts, and belts.

Yet other database management components (such as ItemRepository and StorageFacility) expose interfaces to

manage external backend databases (such as those tracking items inventory and storage facilities). Finally, the

sequences of events within the ITS is coordinated by control flow components (such as the WorkflowManager and

StorageManager).

An ITS needs capabilities to tolerate partial failures due to transportation hardware facility problems, such as

broken belts. To handle such failures, the software entities associated with hardware devices must alert the ITS

work flow manager in real-time, i.e., with low latency delay, and higher processing priority. The ITS must then

recalculate the delivery possibilities dynamically based on available transportation resources and delivery time

requirements and then reschedule the delivery.

The capabilities shown in Figure 1 are used in
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Figure 1: ITS Subsystems and Key Components

the context of their associated ITS subsystems

as follows: (1) the Warehouse Management sub-

system consists of a set of high-level functional-

ity and decision making components that calcu-

late the destination location and delegates other

details other subsystems, (2) The Material Flow

Control subsystem executes high-level decisions

calculated by the Warehouse Management sub-

system to deliver items to the destination loca-

tion, e.g., it (re)calculates routes, schedules transportation facilities, and reserves storage facilities, (3) the Ware-

house Hardware subsystem handles physical devices, such as sensors and transportation units (e.g., belts, forklifts,

cranes, and pallet jacks) that correspond to various component types, such as ItemLocationSensor and Trans-

portUnit.
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The functionality of the ITS subsystems shown in Figure 1 can be monitored and controlled by one or more

OperatorConsole components, and all persistence concerns are handled via databases. The Material Flow Control

subsystem requires high throughput of continuously refreshed data, soft real-time processing of regular tasks.

Components in the Warehouse Hardware subsystem require hard real-time deadlines associated with periodic

processing.

Our ITS component architecture is implemented using the CIAO QoS-enabled component middleware, which

combines Lightweight CCM features (such as standard mechanisms for specifying, implementing, packaging, as-

sembling, and deploying components) with Real-time CORBA features (such as thread pools, portable priorities,

synchronizers, priority preservation policies, and explicit binding mechanisms). ITS also use CIAO’s Deployment

And Configuration Engine (DAnCE) [14], which implements the OMG Deployment and Configuration (D&C) spec-

ification [15] to help developers deploy and configure pre-built components and component assemblies. Finally, ITS

uses the CoSMIC MDD tools work in conjunction with CIAO and DAnCE to separate the application business

logic from system deployment and configuration concerns to make ITS development more rapid and flexible.

2.2 Scale and Variability in the ITS Case Study

Although the ITS component archihtecture described in Section 2.1 are present in most warehouses, there may

be significant differences in customer needs, warehouse specific requirements, task specific QoS requirements, and

integration with other subsystems. Implementing an ITS properly therefore requires a thorough understanding of

the scalability and variability manifested in the system. For example, the warehouse automation hardware and

software infrastructure is often supplied by multiple vendors who select different hardware and software platforms

and tools. The resulting heterogeneity yields integration and deployment challenges over an ITS lifetime since

various components may be removed or replaced by components from other vendors, which often requires system-

wide reconfiguration of system resources to ITS components to improve overall system QoS.

In general, variabilities resulting from different warehouse configurations, hardware/software platforms, and QoS

requirements yield much diversity in ITS implementations, particularly for large-scale warehouses that consists

of thousands of software/hardware components. An ITS could have a diverse set of characteristics and QoS

requirements including – but not limited to – high throughput of continuously refreshed data, hard real-time

deadlines associated with periodic processing, well defined computational paths traversing multiple components,

soft real-time processing of regular tasks, and operator display and control requirements.

Figure 2 shows the ITS product instance we developed for this case study. Based on requirements mined from

Siemens warehouse management business units our case study consists of ∼120,000 lines of C++ source code and

contains 8 component types and 193 component instances deployed into a warehouse, including 2 OperatorCon-
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soles, 1 TransportationFacility, 1 ItemRepository, 1 StorageManager, 1 WorkflowManager, 1 StorageFacility, 18

ItemLocationSensors and 168 TransportUnits.

Figure 2: Characteristics of an Example ITS System

These 193 components are deployed into

191 processes, which in turn are hosted in 26

physical nodes, with 2 single-CPU PCs run-

ning on Windows XP and 24 nodes running

on various versions of Linux OS with some of

which having Timesys Linux real-time schedul-

ing class. All the nodes are connected through

100 MB Fast Ethernet and all nodes are in-

stalled with the ACE 5.4.7, TAO 1.4.7, and

CIAO 0.4.7 middleware. The database man-

agement system for ITS case study is MySQL

5.0.

All components run in separate processes except in two collocated cases: ItemRepository/StorageManager and

TransportationFacility/StorageFacility. One should note that even for the same set of components, however, the

composition and configuration of an ITS deployment may vary significantly across different warehouses, depending

on the availability of actual transportation facilities, computing hardware and software resources.

3 Resolving ITS Challenges via an Integrated MDD Tool and Component Middle-

ware Solution

This section describes how we applied the CoSMIC MDD tools and CIAO QoS-enabled component middleware

to help simplify and automate the following activities related to developing the ITS described in Section 2:

• Modeling and synthesizing warehouse configurations, which involves simplifying and automating phys-

ical layout configuration and transportation facility network design of warehouses, as well as automatically popu-

lating databases to capture the above information. Section 3.1 describes the Warehouse Modeling and Generation

Language (WMGL) MDD tool we developed which raises the abstraction layer of warehouse structures and behav-

iors to higher-level models.

• Modeling and synthesizing component software deployment and configuration concerns, which

involves simplifying and automating various configuration concerns of middleware and applications that implement

ITS functionality. Section 3.2.1 describes how the CoSMIC MDD tools were integrated to help develop, assemble,

and configure ITS software components.
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• Automation of system deployment and configuration, which involves (1) deploying component assem-

blies into the appropriate ITS warehouse target nodes, (2) activating and deactivating component assemblies

automatically, (3) initializing and configuring component server resources to enforce end-to-end QoS requirements

of component assemblies, and (4) simplifying the configuration, deployment, and management of common services

used by applications and middleware. Section 3.2.2 describes how the DAnCE middleware was used to help deploy

an ITS system onsite.

The remainder of this section describes key problems we faced when addressing these concerns, presents our

solutions, and evaluates these solutions qualitatively and/or quantitatively in the context of the ITS case study.

3.1 Addressing ITS Warehouse Configuration Concerns

A key challenge in designing an ITS is to provide a generic, reconfigurable architecture that can be deployed

rapidly in different warehouse configurations or redeployed to adapt to reconfiguration needs of existing warehouses.

The proper configuration of an ITS depends heavily on the physical layout of transportation facilities and storage

facilities of a warehouse, which may vary in different circumstances. A good warehouse physical layout configuration

design should enable timely delivery of messages across ITS components, since the “logical” connections of ITS

CCM components must map to “physical” layout of a warehouse. The layout information that is specified during

the warehouse design phase should therefore be amenable to changes both before and after the warehouse is

deployed.

For example, when deploying an ITS in a specific warehouse, all transportation facility units should be mapped

to their corresponding software entities, i.e., TransportationUnit components, as described in Section 2.2. Likewise,

backend databases should capture and store warehouse physical layout information (e.g., represented by the physical

locations of transportation and storage facilities), as well as the reachable range of each transportation facility (i.e.,

the range within which a transportation unit can pickup and transport items).

Problem: Ad hoc, tightly coupled warehouse design. ITS developers have historically relied on ad hoc

approaches (i.e., manually writing programs from scratch) to (1) create software components that correspond to

transportation facility units and (2) populate physical warehouse layout configurations into databases. Moreover,

they often hard code such information using third-generation programming languages or scripts, which overly

couples their solutions to particular warehouse configurations and technologies. Such tight couplings make an ITS

software product hard to evolve after the initial deployment since changes in the warehouse configuration require

modification, reverification, recompilation, and redeployment throughout the code.

Solution: A DSML for warehouse configuration. To address the problems described above, we developed

the Warehouse Modeling and Generation Language (WMGL), which is a DSML in CoSMIC that represents ware-
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house structures and behaviors as higher-level models. WMGL allows developers to visually depict and manipulate

the transportation facility network, which includes position information (e.g., the physical location and reachable

areas) and properties (e.g., the type, capacity and toxicity of items each transportation unit could transport in the

network). It can also be used to visually depict and manipulate the available storage facilities, which include their

physical position information and properties (e.g., storage capacity and type of items they can store).

By capturing the physical position information of the transportation facilities and storage facilities in visual

models, WMGL can automatically deduce the topology of the warehouse and generate a warehouse connectivity

graph, which is a directed weighted graph that represents the connectivity among transportation facilities and

storage facilities. The WorkflowManager component can then apply any pluggable customized path finding algo-

rithm on this graph to determine the optimal transportation path to transfer a particular item from a source (e.g.,

loading dock or gate) to its destination (e.g., a storage unit). Whenever the warehouse is reorganized or a new

transportation facility or storage facility is added, therefore, the graph can be (re)generated automatically from

the model, and all other information associated with such change are updated automatically.

We selected Microsoft Visio to build WMGL

Figure 3: A Warehouse Configuration in WMGL

since it supports a wide range of sophisticated

graphics capabilities, an embeddable program-

ming environment that enables developers to build

custom tools, and integration with popular database

management systems, such as Oracle and MySQL.

Figure 3 illustrates a Visio screenshot of a par-

tial ITS WMGL model, where warehouse model

elements are available from the left-side master

panel and the right-side panel contains a drawing

that represents a warehouse configuration con-

sisting of two moving angle belts, three cranes,

four storage racks, two folk lifts and two gates. Modeling a warehouse in WMGL involves drawing the concrete

warehouse physical structure and then adding customized properties (such as capacity, size, etc) to transportation

and storage facilities model elements. Warehouse modelers can also specify the reachable range of particular trans-

portation units (e.g., forklifts and cranes) visually and define various properties (e.g., capacity, heating or cooling)

of storage locations.

One benefit of WMGL is its ability to validate location-related constraints automatically to ensure that the

physical layout and configuration of the warehouse is valid at design-time, rather than run-time. For example, when
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a crane is positioned over a storage location, the WMGL model interpreter can ensure that the crane is capable of

reaching all the storage cells of the location. When warehouse modelers mistakenly model a transportation facility

or a storage facility that is isolated from the rest of the warehouse transportation facility network, the WMGL

model checker will warn the modelers before generating code.

After WMGL has validated a model, it can generate C++ or Java code for warehouse configuration artifacts,

such as lookup tables for transportation route calculation, lookup data for storage facility utilization planning, and

schedules for warehouse maintenance. Different domain-specific concerns captured by WMGL can be extracted from

the model and used to generate code artifacts that ITS components based on CIAO middleware can subsequently

use to populate the databases, construct the warehouse connectivity graph, and initialize the backend databases by

using generic database access libraries, such as the Open Database Connectivity (ODBC) Template Library (OTL).

After running the WMGL model interpreter, the ITS can proceed with component deployment and configuration

process described in Section 3.2.

Evaluating WMGL for ITS. WMGL significantly increased the productivity of application developers. For

example, in our ITS product instance scenario shown in Figure 2, the WMGL model interpreter automatically

synthesizes ∼6,300 lines of C++ code (which is over 90% of the total code) that describes the warehouse layout

and artifact property information. The generated code is then used by CIAO components to populate databases

before the ITS system is actually deployed.

3.2 Addressing ITS Component Deployment and Configuration Concerns

As discussed in Section 2, our ITS case study is a DRE system created using components developed to run

on CIAO QoS-enabled component middleware. QoS-enabled component middleware introduces new complexities,

however, that stem from the need to deploy component assemblies into the appropriate DRE system target nodes

while simultaneously initializing and configuring components to enforce end-to-end QoS requirements of component

assemblies. Below, we discuss how we applied CoSMIC’s MDD tools to resolve key deployment and configuration

challenges that arose when developing our ITS case study using CIAO.

3.2.1 Simplifying ITS Deployment and Configuration Profile Design

Deploying an ITS product instance into a warehouse involves configuring the functional and QoS behavior of

its software components and deploying them throughout the underlying hardware and software infrastructure.

Like most other DRE systems, an ITS is assembled from many independently developed reusable components, as

described in Section 2.2. These components must be deployed and configured so that (1) assemblies meet ITS

operational requirements and (2) interactions between the components meet ITS QoS requirements.
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Developers must address a number of crosscutting concerns when deploying and configuring component-based

ITS applications, including (1) identifying dependencies between component implementation artifacts, such as the

OperatorConsole component having dependencies on other ITS components (e.g., the WorkflowManager compo-

nent) and other third-party libraries (e.g., the QT library, which is a cross-platform C++ GUI library compatible

with the Embedded Linux OS), (2) specifying the interaction behavior among ITS components, (3) specifying

components to configure and control various resources, including processor resources, communication resources,

and memory resources, and (4) mapping ITS components and connections to the appropriate nodes and networks

in the target environment where the ITS will be deployed.

Problem: Ad hoc deployment and configuration design for diverse system requirements. A large-

scale DRE system like ITS often require the creation of assemblies containing thousands of components. Con-

ventional techniques for deploying and configuring such component-based systems can incur both inherent and

accidental complexities. Common inherent complexities involve ensuring syntactic and semantic compatibility,

e.g., only connecting ports of components in an ITS assembly with matching types. Common accidental complex-

ities stem from using ad hoc techniques for writing and modifying middleware and application configuration files,

such as handcrafting XML files describing component metadata (e.g., the hundreds of connections between com-

ponents in ITS assemblies), which are very large, even for relatively simple groups of connected components. Ad

hoc techniques are tedious and error-prone, making it hard to adapt the ITS to new deployment and configuration

requirements, such as another warehouse that may have different types of transportation units or ITS operator

console GUI terminals.

Solution: MDD-based deployment and configuration of ITS components. In our ITS project, sys-

tem deployment and configuration is performed via the Platform-Independent Component Modeling Language

(PICML) [16], which is a DSML in the CoSMIC toolsuite that works together with the DAnCE middleware to

implement the OMG D&C specification [15]. PICML provides capabilities to handle complex component engi-

neering tasks, such as multi-aspect visualization and manipulation of components and the interactions of their

subsystems, component deployment planning, and hierarchical modeling and generation of component assemblies.

PICML itself uses the Generic Modeling Environment (GME) [17], which is a metaprogrammable development

environment for building and processing DSMLs.

PICML allows modelers to define component interfaces and component compositions, and establish connections

among components visually. In our ITS, for example, PICML is used to model the interaction behavior among the

ITS components, such as the facet/receptacle interface port connection between WorkflowManager component and

the StorageFacility component, and the event source/sink connections between the WorkflowManager component

and TransportationUnit components. These interacting components are connected together to form a valid com-
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ponent assembly. The semantic rules associated with component assemblies are enforced by constraints defined

in PICML’s metamodel and model interpreter. Its metamodel defines static semantic rules that determine valid

connections between components. PICML’s model interpreters ensure the dynamic semantics of models specified

by users, e.g., they can analyze models for various well-formedness properties and synthesize code for components

and their XML descriptors that convey metadata needed by DAnCE.

In the context of ITS, a major cause of missed deadlines is priority inversions, where lower priority requests

access a resource at the expense of higher priority requests. Priority inversions must be prevented or bounded since

they can cause some critical paths in the ITS system to miss their deadlines. To reduce priority inversions, we

use PICML to configure Real-time CORBA policies of the ITS component instances, which include (1) processor

resources via priority mechanisms, thread pools, and synchronizers, for real-time components with fixed priorities,

(2) communication resources via protocol properties and explicit bindings to server objects using priority bands

and private connections, and (3) memory resources via bounding the size of request buffers and thread pools.

After using PICML to create compo-

Figure 4: Partial PICML Assembly Model for ITS

nent assemblies for our ITS based on

warehouse-specific deployment and con-

figuration requirements, we used it to

generate the metadata needed to deploy

the ITS assemblies. As shown in Fig-

ure 4, this metadata includes the list

of implementation artifacts associated

with each component instance, the list

of connections between the different component instances, the organization of the application into different levels

of hierarchy, and the default properties with which each component instance is initialized. PICML generates the

different types of metadata in the form of XML descriptors that are tedious and error-prone to write manually.

This metadata is used by DAnCE to drive the deployment of the complete ITS applications, which is explained in

Section 3.2.2.

Evaluating PICML for ITS. We applied PICML to a warehouse scenario where 193 ITS components are

deployed across 26 physical nodes, as described in Figure 2. Based on the deployment decisions discussed earlier,

∼400 connections must be established among these component ports. All these connections are specified by using

two types of XML descriptor files: component interface descriptors and component implementation descriptors.

To create a deployment profile for this scenario is prohibitively tedious and error-prone without tool support, i.e.,

the XML files are hard to write manually since cross-referenced identifiers specify the component connections in
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accordance with the OMG’s D&C standard.

In contrast, it was much easier to create a PICML model for these ITS connections visually, rather than writing

XML files manually. The PICML packaging interpreter generates all six types of descriptor files described above,

with a total number of 582 XML files averaging ∼25 lines per file. Generating the deployment automatically via

PICML’s model interpreter enforces the correct-by-construction paradigm in component-based application devel-

opment, which eliminates a common source of errors [13]. The effort we saved in applying PICML to a warehouse

deployment scenario shown in Figure 2 was more than 300 developer hours, which freed us to focus on more strate-

gic aspects of our ITS case study. Moreover, the diversity of services and variability of QoS requirements supported

by the ITS requires tremendous development effort. PICML shields developers from the inherent complexities of

the configuration code and allows them to concentrate on the business logic of application components.

3.2.2 Automating ITS Deployment Process to Ensure QoS Requirements

Deployment is the sequence of activities that occurs between (1) the acquisition of software and its associated

configuration and deployment metadata and (2) the actual execution of software in a target environment based

on the acquired software and associated metadata. Likewise, configuration is the process of mapping known varia-

tions in the application requirements space to known variations in the software (and particularly the middleware)

solution space. To complete the deployment and configuration of an ITS application, DAnCE uses the metadata

generated by PICML (Section 3.2.1) to describe the concerns from multiple actors and combines them in the target

environment to enforce overall system QoS requirements.

To deploy an ITS assembly, ITS developers must perform four tasks based on the deployment profile, including

(1) preparation, which takes the pre-built ITS software package and brings it into a component software repository

under the deployer’s control, (2) installation, which downloads the ITS components to component server processes

that run in each node in the target environment, including embedded system nodes used to host TransportUnit

components and PC nodes that host other types of ITS components, such as WorkflowManager and Operator-

Console, (3) configuration, which customizes QoS properties of components and containers on each node, and (4)

launching, which connects the ports of ITS components that are distributed throughout the target environment

and bring the entire system into running mode.

Problem: Ad hoc deployment mechanisms for variable ITS deployment requirements. In large-scale

DRE systems, QoS requirements (such as low latency and bounded jitter) are often important considerations

during the deployment process since component (re)deployment may occur throughout the lifecycle of a large-scale

system. To enforce these QoS requirements, components, containers, and component servers must be configured

in accordance with real-time QoS properties. Component deployment and configuration tools must therefore be
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able to (1) specify the middleware configurations needed to configure components, containers, and component

servers and (2) set the QoS policy options provided by the underlying middleware into semantically consistent

configurations. For instance, in our ITS case study, whenever a ConveyorBelt component’s hardware fails, it

should notify the WorkflowManager in real-time to minimize/avoid damage. Likewise, ITS ConveyorBelt and

Crane components may need to be collocated with WorkflowManager in some assemblies to minimize latency.

The existing OMG D&C specification does not support real-time QoS policies. Moreover, QoS-enabled object-

oriented middleware, such as Real-time CORBA and Real-time Java, lacks the flexible higher level abstractions

that component middleware provides to separate real-time policy configurations from application functionality. As

a result, conventional object-oriented middleware platforms for deploying large-scale DRE systems incur inherent

complexities stemming from ad hoc, tightly coupled deployment mechanism to ensure system QoS. To ensure

real-time QoS requirements for large-scale DRE systems manually and programmatically is not only tedious and

error-prone, but also makes deployment artifacts and effort hard to reuse, e.g., there is no easy way to reconfigure

a warehouse to accommodate the variability. It is therefore hard for ITS developers to configure, validate, modify,

and evolve their systems consistently using QoS-enabled object-oriented middleware.

Solution: Extending the OMG D&C specification to support real-time QoS policies. DAnCE extends

the OMG D&C specification to enable the configuration of real-time QoS policies

IT S  D & C

P r o file

IT S  D & C

P r o file

Model ITS

D&C 

Concerns

Create D&C

Profile

ITS System  

Designer

Model with 

PICML
Deploy and Configure 

with DAnCE

Deployment Target Host

Node Manager

Node

Application

Manager

Execution Manager

ITS 

Deployer

1. Deploy an 

ITS

assembly

Node

Application

Container

5. configure component 

server resources

Domain

Application

Manager

8. Install component

& homes

2. Deploy 

components 

on each node

7. Create

containers

Standard

Configurator

10. Configure 

components

4. Create 

component servers

6. Load and initialize 

middleware services

IT S  D & C

P r o file

IT S  D & C

P r o file

XML 

Configuratio

n Handler

9. Activate 

component

s and ports

Repository 

Manager

3. Fetch 

com ponent 

binaries across 

network

Figure 5: DAnCE Architecture and PICML Relationship

through metadata generated by

PICML. The overall architecture of

DAnCE is shown in the right side

of Figure 5. This figure also shows

how ITS developers can model var-

ious warehouse D&C concerns via

PICML, which then automatically

generates the corresponding D&C

profile for the designated system.

DAnCE then takes the generated

profile and automatically deploys

the system into CIAO, thereby

bridging the gap between higher-

level MDD tools and lower-level middleware runtime platforms.

As shown in Figure 5, DAnCE consists of implementations of a set of runtime services that deal with the

instantiation, installation, configuration, monitoring, and termination of components on the nodes of the target
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environment. Some services (such as ExecutionManager and DomainApplicationManager) run at the global domain

level, whereas others (such as NodeManager and NodeApplicationManager) run on each node. These services

together manage the lifecycle of the ITS deployment process to help configure component servers on the individual

nodes, install components into containers, and set up connections among components.

When an ITS deployer instructs a global interface to deploy an ITS assembly, he/she must give the XML-based

deployment profile generated by the PICML MDD tool. The global interface then uses this profile to populate a

global deployment plan that describes a mapping of a configured ITS assembly into a target domain. This plan

includes information about nodes where components will be deployed, the mapping of component to nodes, the QoS

configuration of components, the connections among component instances, and the process collocation strategy

settings. Depending on the total number of nodes needed for a particular deployment, the global deployment service

then split the global plan into multiple local (node-level) deployment plans and passes them to each node-level

service, based on the specification in the PICML model of the ITS.

To enforce QoS requirements, DAnCE extends

Figure 6: Specifying Real-time QoS Requirements

the OMG D&C specification to define Node-Application

server resource configurations, which heavily in-

fluence end-to-end QoS behavior.

Figure 6 shows the different categories of server

configurations that can be specified using the DAnCE

server resources XML schema, which are related

to system end-to-end QoS enforcement. Each

server resources specification can set the follow-

ing options: (1) ORB command-line options, which

control TAO’s connection management models,

protocol selection, and optimized request pro-

cessing, (2) ORB service configuration option, which specify ORB resource factories that control server concurrency

and demultiplexing models. Using this XML schema, a system deployer can specify the designated ORB configu-

rations.

ITS components are hosted in containers created by the NodeApplication process, which provides the run-time

environment and resources for components to execute and communicate with other components in a component

assembly. The ORB configurations defined by the server resources XML schema are used to configure Node-

Application processes that host components, thereby providing the necessary resources for the components to

operate. For example, some ITS components, such as ItemLocationSensor and WorkflowManager, have stringent
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QoS requirements since they handle real-time item delivery activities.

Figure 7 shows an example XML document that specifies the server resource configurations defined by an ITS

deployer. To honor the specified real-time configurations, the component servers hosting these components are

configured with server-declared priority model with the highest CORBA priority, thread pools with a preset number

of static real-time threads, as well as priority-banded connections.

<orbConfigs>

<resources>

<threadpool id=“threadpool-WFM">

<stacksize>0</stacksize>
<static_threads>5</static_threads>

<dynamic_threads>0</dynamic_threads>

<default_priority>1</default_priority>

<allow_request_buffering>false</allow_request_buffering>

<max_buffered_requests>0</max_buffered_requests>
<max_buffered_size>0</max_buffered_size>

</threadpool>

<connectionBands id=“BandedConnection_WFM">

<band>
<low>0</low>

<high>10</high>

</band>

</connectionBands>

</resources>
</orbConfigs>

<policySet id="WFM_PolicySet">

<priorityModel>

<priority_model>SERVER_DECLARED</priority_model>
</priorityModel>

<threadpool>threadpool-WFM</threadpool>

</policySet>

Figure 7: Example Resource Configuration

Evaluating DAnCE for ITS. Without

DAnCE tool support it is prohibitively hard

to manually (re)install all 193 components on

26 nodes in our ITS case study shown in Fig-

ure 2 while taking into consideration the het-

erogeneous software/hardware platforms, and

variable component QoS configuration. It

would require ∼20,000 lines of code to ac-

complish this task, and the code would be

scattered throughout the ITS system software

since many QoS configuration tasks are embedded into component implementation code, hence it is extremely hard

to accommodate any warehouse reconfiguration changes.

In contrast, by using DAnCE in conjunction with PICML, the entire component deployment process can be

automated and simplified for ITS deployers. Moreover, when the warehouse is reconfigured, deployers need only

extend the existing ITS WMGL and PICML models. The new ITS can then be redeployed and configured correctly

without tedious manual activities.

4 Evaluation

Our motivation for integrating MDD tools with QoS-enabled component middleware in the ITS case study was

to (1) construct software-intensive DRE systems using higher-level visual models that facilitated more effective

analysis, verification, and better productivity than handcrafting software using third-generation languages and (2)

provide more reusable and composable abstractions than using conventional object-oriented real-time middleware

platforms for DRE systems. This section evaluates how well we achieved these goals.

4.1 Verifiability

When developing large-scale DRE systems – especially mission- or safety-critical systems – it is essential that

system be verified and validated against certain pre-defined domain rules before the product is deployed. As
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described in Section 3.1, the WMGL DSML generated and ensured the syntactic correctness of warehouse initial-

ization code that precisely define the physical layout of the warehouse, characteristics of warehouse storages and

facilities. Moreover, the embedded model checker of WMGL performed semantic analysis, such as reachability

analysis, of the warehouse configuration to ensure that each warehouse storage cell could be reached by least one

transportation unit. In addition, WMGL encapsulated domain knowledge from warehouse domain experts in the

form of additional advanced warehouse model checkers. Prior to this MDD tool support, warehouse initialization

and configuration scripts were handcrafted manually, which was tedious and error-prone.

Prior work [7,10,13] has shown that it is hard for DRE developers to keep track of many complex dependencies

when configuring and deploying large-scale systems, even when using component middleware. Without MDD

tool support, therefore, the effort required to deploy large-scale DRE systems like ITS involves hand-crafting

deployment descriptor metadata in an ad hoc manner. Addressing this challenge effectively requires techniques

that can analyze, validate, and verify functional and QoS system properties.

In our ITS case study, simple CORBA objects and more sophisticated CCM components must coexist, which

introduces complexities in interface definition of components and interaction definitions between components. For

example, while CORBA object interfaces can support multiple inheritance, CCM components can only have only a

single component parent, so equivalent units of composition (i.e., interfaces in CORBA objects and components in

CCM) can have subtle semantic differences. Without automated support from MDD tools like PICML, developers

would have no systematic way to specify interconnections and configurations. Manually configuring the systems

via ad hoc techniques can overwhelm developers since many configuration aspects are tangled with each other

which spread throughout different subsystems and layers of the ITS and component middleware itself. When using

PICML, however, the problems associated with multiple inheritance and semantics of tangled configuration can

be detected and resolved at design time.

4.2 Reusability and Composability

Reusability and composability are important requirements, particularly for developing large-scale DRE systems

like ITS. Diversified operating policies of ITS components can be customized based on a particular warehouse

deployment scenario. In QoS-enabled object-oriented middleware, such as Real-time CORBA and Real-time Java,

these configurations are made imperatively via invocations on programmatic configuration interfaces. The draw-

backs with object-oriented approaches to reusability, however, are (1) impeded reusability due to tight coupling

of application logic with specific QoS properties, such as event latency thresholds and priorities [18], and (2) re-

duced composability due to hard coded application interfaces, such as those integrated with particular types of

middleware services.
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In contrast, component middleware, such as CIAO and DAnCE, enhances reusability and composability by using

metaprogramming techniques (such as XML descriptor files) to specify component configuration and deployment

concerns declaratively. This approach enables QoS requirements to be specified later (i.e., just before runtime

deployment) in a system’s lifecycle, rather than earlier (i.e., during component development). When deploying an

ITS product instance, DAnCE parses the given XML configuration files and make appropriate invocations on the

corresponding service configuration interfaces, which is useful for DRE systems like ITS that require changeable

customized QoS configurations for variable target OS, network, and hardware platforms with different capabilities

and properties.

Figure 8 shows the weight distribution of a
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Figure 8: Weight of WorkflowManager Component in ITS

typical ITS component WorkflowManager based

on its functionality and measured through lines

of code (LOC) and the percentage of code relative

to the entire component lifecycle. Other types

of ITS components have similar weight distribu-

tions. As illustrated in Figure 8, the amount of

code related to the WorkflowManager component

can be classified into five categories: Component Business Logic, Component Configuration, Component Deploy-

ment, Object Stub & Skeleton Glue code, and XML descriptors. Each category implements different aspect of

components during their lifecycles.

With object-oriented middleware, the Object Stub and Skeleton Code is generated by the IDL compiler that

shields application developers from low-level network programming details. This code accounts for 58.9% of the

entire implementation. The rest of the code (more than 40% of the implementation) must be hand written by

the application developers. With the component-based approach, conversely, most the code in the Component

Configuration and Component Deployment categories can be factored into reusable CIAO component middleware

infrastructure and then configured by MDD tools like PICML and D&C frameworks like DAnCE. For our ITS

product instance shown in Figure 2, where there are 8 components types and 193 component instances, more than

∼13,500 lines of code that were previously handcrafted are now refactored into reusable component frameworks

and configured and deployed using PICML and DAnCE.

5 Related Work

Our work on MDD extends earlier work on Model-Integrated Computing (MIC). Examples of MIC technology

used today include GME [17] and Ptolemy [19] (used primarily in real-time and embedded domains) and Model
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Driven Architecture (MDA) [20] based on UML and XML. Kennedy Carter’s iUML Product Suite [21] supports

the Executable UML process from textual requirements management through modeling to complete target code

generation. The Rhapsody System Designer tool by I-Logix (www.ilogix.com) is based on OMG’s MDA and UML

2.0 specification, and provides complete application generation from UML models, and the generated application

could be in multiple programming languages including C/C++, Java or Ada, and multiple middleware platforms

including CORBA and COM. Both tools have proved many successes in developing DRE systems. Unlike our

approach, however, these MDD tools are based on OMG’s UML specification which is still in the low-level solu-

tion space. In contrast, our work combines GME metamodeling mechanisms and UML capability to model and

synthesize component middleware for configuring and deploying DRE systems, which better unifies the problem

space and solution space.

The Embedded Systems Modeling Language (ESML) [22] was developed by ISIS at Vanderbilt University to pro-

vide a visual metamodeling language that captures multiple views of embedded systems, allowing a diagrammatic

specification of complex models. The modeling building blocks include software components, component interac-

tions, hardware configurations, and scheduling policies. The user-created models can be fed to analysis tools (such

as AIRES, VEST, and Cadena) to perform schedulability and event analysis. Using these analyses, design deci-

sions (such as component allocations to the target execution platform) can be performed. Unlike PICML, ESML is

platform-specific since it is customized for the Boeing Bold Stroke PRiSm QoS-enabled component model [10,23].

ESML also does not support nested assemblies and the allocation of components are tied to processor boards,

which is a proprietary feature of the Bold Stroke component model.

Cadena [24] is a MDD tool developed within Eclipse Modeling Framework (EMF) for building component-

based DRE systems, with the goal of applying static analysis, model checking, and lightweight formal methods

to enhance these systems. Unlike our work on CoSMIC, however, Cadena does not support activities such as

component packaging, generating deployment plan descriptors, and hierarchical modeling of component assembly,

thus it introduces additional burden to DRE application developers to accomplish such tasks. In our work, these

aspects could be captured through PICML MDD tool and then all the deployment and configuration work can be

automated using DAnCE. We are collaborating with the Cadena researchers to create an integrated suite of MDD

tools citeSchmidt:04v.

6 Concluding Remarks

This section focuses on our experience gained and lessons learned when integrating MDD tools and QoS-enabled

component middleware technologies and applying them to a case study in the warehouse management domain.

In general, our development and experiments of ITS case study shows the complementary relationships between
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CoSMIC MDD tools (i.e., WMGL/PICML) and underlying component middleware and D&C frameworks (i.e.,

CIAO/DAnCE). The lessons learned thus far include:

• The component middleware paradigm elevates the abstraction level of middleware to enhance

software developer quality and productivity. It also introduces extra complexities, however, that are hard

to handle in an ad hoc manner for large-scale DRE applications. For example, the OMG Lightweight CCM [5] and

Deployment and Configuration (D&C) [15] specifications have a large number of configuration points, which we

handle with advanced MDD tools.

• Large-scale systems are rarely developed from scratch and often are composed of smaller systems.

The MDD paradigm expedites application development with the proper integration of the modeling tool and under-

lying technical infrastructure, such as the DAnCE D&C framework. In our ITS case study, if the warehouse model

is the primary changing concern in the system (which is typical for end users), little new application code must be

written, yet the complexity of the generation tool remains manageable due to the limited number of well-defined

configuration hot spots exposed by the underlying infrastructure. Likewise, when component deployment plans

are incomplete or must change, the effort required is significantly less than using the raw component middleware

without MDD tool support since applications can evolve from the existing set of PICML and WMGL models.

• Domain-specific modeling techniques can help reduce the learning curve for end users. For ex-

ample, warehouse modelers in our ITS project needed little or no knowledge of how to write component software

since they used higher-level models that correspond to the language understood by domain engineers and visual

modeling environments, such as WMGL. In addition to the warehouse configuration aspects, WMGL embodies

certain assumption and rules about the mapping (usage patterns) from problem domain of warehouse manage-

ment to the solution domain of component middleware. The mapping rules understood by WMGL are defined

by experienced software architects and then enforced by the WMGL modeling and code generation environment.

These enforcement mechanisms reduce the probability of architectural rules violation discussed in Section 2 and

ensure the proper usage of component middleware. Conversely, our experience applying PICML to model the ITS

deployment structure indicated that it raised the level of abstraction at which developers work, enabling them to

concentrate on certain aspects (e.g., deployment structure) in the multidimensional problem space associated with

applying component middleware for DRE systems. This separation of concerns in turn eliminated many sources

of accidental complexities and improved overall system quality.

While we were generally successful in integrating and applying MDD and component middleware into our ITS

case study, we also felt addition R&D is warranted to enable broader adoption of these technologies:

• How to optimally and effectively configure and deploy each product instances. Despite the fact that

PICML facilitates the configuration of enterprise DRE systems based on Real-time CORBA and Lightweight CCM,
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developers are still faced with the question of what constitutes a “good” configuration and they are still ultimately

responsible for determining the appropriate configurations. We observed that scheduling analysis and verification

tools would be helpful in performing this evaluation and should be integrated into CoSMIC’s MDD toolsuite to

help system designers address such challenges. In addition, despite the benefits of using visual MDD tools to

describe different aspects of the large scale DRE systems, it is still labor intensive and error-prone to manually

show all ∼400 connections for the number of components in our ITS case study. This observation motivates the

need for further research in automating the synthesis of large-scale DRE systems based on the different types of

meta-information about assembly units, such as components or services.

• How to reuse legacy code when transitioning from object-oriented to component-based archi-

tectures. Porting existing object-oriented DRE systems to component-based systems is an important concern

for production systems that achieve reuse in an ad hoc manner at the source code level. We observed that such

reuse is ineffective without advanced MDD tools to support this porting effort. Our experience with the ITS case

study indicated that these tools should enable application developers to identify (1) which part of the legacy code

originally compliant to traditional object-oriented middleware is still compliant to the new component-based mid-

dleware, (2) which part of the legacy code is no longer needed since it has been factored into reusable component

middleware frameworks, and (3) which part of the legacy code should be refactored and configured through other

tools and frameworks, such as PIMCL and DAnCE. Developing these tools requires analysis capability for both

the object-oriented and component-based programming models at the source code level.

• How to handle challenges associated with domain evolution. Using MDD technologies effectively re-

quires practical and scalable solutions to the domain evolution problem, which arises when existing software

products are extended and/or refactored to handle unanticipated requirements or better satisfy existing require-

ments. For example, changing metamodels can invalidate models based on previous versions of the metamodels.

While software developers can manually update their models and/or components developed with a previous meta-

model to work with the new metamodel, this approach is clearly tedious, error-prone, and non-scalable. Although

MDD tools remove many complexities associated with handcrafted solutions, developers are still faced with the

challenge of evolving existing models when the respective domain evolves. Although model evolution tools, such as

GReAT [25], exist they are hard to use and only provide partially automated solutions. Since these modifications

significantly complicate domain evolution efforts, they can outweigh the advantages of system development com-

pared to traditional development methods based on handcrafting solutions using third generation languages. To

rectify these problems, compositional architecture patterns are desired to guide the design of MDD tools component

middleware, so they can modularize system concerns and reduce the effort associated with domain evolution.

Our experiences described above motivate the need for further research on automated techniques to uncover
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effective heuristics to guide the complicated process of developing and evaluating DRE systems, reusing legacy

code, and migrating models and metamodels as knowledge of a domain expands. We are exploring all of these

open R&D issues in the context of our ITS case study and other large-scale DRE system projects.
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