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Abstract

Service oriented architecture (SOA) design principles are increasingly being
adopted to develop distributed real-time and embedded (DRE) systems, such
as avionics mission computing, due to the availability of real-time component
middleware platforms. Traditional approaches to fault tolerance that rely on
replication and recovery of a single server or a single host do not work in this
paradigm since the fault management schemes must now account for the timely
and simultaneous failover of groups of entities while improving system avail-
ability by minimizing the risk of simultaneous failures of replicated entities.
This paper describes MDDPro, a model-driven dependability provisioning tool
for DRE systems. MDDPro provides intuitive modeling abstractions to specify
failover requirements of DRE systems at different granularities. MDDPro enables
plugging in different replica placement algorithms to improve system availability.
Finally, its generative capabilities automate the deployment and configuration
of the DRE system on the underlying platforms.

Keywords: Dependability Design Tools, Model-Driven Engineering, Gener-
ative programming, Real-time SOA systems

1 Introduction

Dependability is a crucial design consideration for mission-critical distributed
real-time and embedded (DRE) systems, such as avionics mission computing,
and supervisory control and data acquisition (SCADA) systems. DRE systems
development processes are increasingly adopting the service oriented architecture
(SOA) design principles due in large part to the availability of real-time compo-
nent middleware platforms, such as the Lightweight CORBA Component Model

? This work is supported in part or whole by subcontracts from LMCO ATL and
BBN for the DARPA Adaptive and Reflective Middleware Systems Program, and
Raytheon IRAD.



(LwCCM) [1]. The SOA approach when applied to DRE systems gives rise to
what we term enterprise DRE systems, which are a loose coupling of interacting
real-time and embedded services that are composed, assembled, deployed and
configured on the underlying platforms to realize the end-to-end functionality.
With the newer SOA-style design, however, new challenges emerge in the design
of dependability management solutions for enterprise DRE systems, which stem
from the following limitations of contemporary mechanisms:

Limitations of existing dependability mechanisms. A substantial amount
of research in dependable distributed computing has predominantly concentrated
on providing fault tolerance solutions to intrinsically homogeneous, two-tier
client-server systems with mostly request-response semantics or cluster-based
server systems with transactional semantics. These research artifacts most often
assume single language and single platform systems, which when incorporated
in middleware platforms form point solutions, limit reuse, and are too restrictive
for enterprise DRE systems.

Lack of support for mixed-mode dependability semantics. DRE sys-
tems of interest to us require mix mode dependability wherein parts of the system
may require ultra high availability calling for solutions that require active repli-
cation schemes while other parts of the systems may demand passive forms of
replication to overcome issues with non-determinism.

Lack of support for variable failover granularity and failure risk
management. In enterprise DRE systems, traditional approaches to fault tol-
erance that rely on replication and recovery of a single server process or a single
host are not sufficient since the fault management schemes must now account for
the timely and simultaneous failover of groups of entities while also improving
the system availability by minimizing the risk of simultaneous failures of groups
of replicated entities.

Lack of intuitive and scalable dependability provisioning tools. Stan-
dardized middleware solutions to dependability, such as FT-CORBA [2], provide
a one-size-fits-all approach, which do not support the different properties, such
as mixed-mode dependability semantics, required by enterprise DRE systems.
Moreover, dependability provisioning in DRE systems tend to use imperative,
programmatic mechanisms which are tedious, inflexible, non reusable and error
prone, and cannot scale to large enterprise DRE systems, where heterogeneity
of the underlying platforms is the norm.

To address the challenges outlined above, design-time tools that can auto-
mate the dependability provisioning problem for enterprise DRE systems are
needed. This paper describes MDDPro (Model Driven Dependability Provision-
ing), which is a Model-driven Engineering (MDE) [3] tool for design-time de-
pendability provisioning in enterprise DRE systems. We demonstrate

• how the intuitive modeling capabilities in our tool can model fault tolerance
elements in DRE systems at different granularities,

• how system availability can be enhanced by applying replica placement de-
cision algorithms on the models, and
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• how generative programming capabilities in the tool can be used to rapidly
and reliably provision dependability in DRE systems.
The rest of the paper is organized as follows: Section 2 describes the chal-

lenges in designing the dependability provisioning tool for enterprise DRE sys-
tems; Section 3 describes the design and implementation of our dependability
provisioning tool; Section 4 describes related research; and Section 5 provides
concluding remarks and directions for future research.

2 Design Considerations for Automated Dependability
Provisioning

Several factors must be considered when developing a dependability provisioning
tool, such as MDDPro, for enterprise DRE systems. In this section we use a
sample enterprise DRE system as a guiding example to outline the requirements
of such a design-time tool.

2.1 Enterprise DRE System Case Study

Figure 1 illustrates a sample enterprise DRE system drawn from representative
domains, such as avionics mission computing or shipboard computing, where
variables of interest are sensed by the sensor equipment, which are software
controlled and fed to a set of planners who determine the appropriate control
action to be taken, and subsequently relay this information to the actuator
software components.

Enterprise DRE systems are often deployed over heterogeneous platforms,
which consist of multiple different networks, hardware and several layers of soft-
ware. We consider the fact that failures may occur in any of these entities. For
example, node failures, operating system crashes, middleware broker process fail-
ures, and even network link failures are common. In our current discussion we
do not consider multiple cascaded failures.

Quite often the critical functionality of enterprise DRE systems is spread
across multiple components. For example, the planning activity in Figure 1 is
spread across two planning components, which could be deployed in separate
application servers on different hosts. Since these distributed set of components
form a unit of critical functionality, for high availability and even for the correct
operation of the system, it may be required that all such components in the
critical path be protected against failure.

Moreover, if any of these individual components fail, it may not be sufficient
to recover only the failed component but rather the failover should recover a
group of critical components. This is because failure recovery takes finite amount
of time and therefore by the time the failed functionality is recovered, the system
may lose some critical system events. Therefore, it is highly desirable in such
situations to failover to another replica of the protected group of the components
although the failure may occur in only a single component. Thus, the fault
recovery granularity can be much larger than the system elements affected by
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Fig. 1: A Sample Enterprise DRE System

the single failure. The functionality and the topology of replica workflow could
be different from that of the primary set of components to account for graceful
degradation.

Risk management and availability considerations in enterprise DRE systems
involve how individual or groups of critical components are replicated and de-
ployed. Effective deployment of replica (or replica groups) minimize the risk of
simultaneous failures in individual replica groups thereby improving the avail-
ability of the system.

2.2 Design Considerations

Using the enterprise DRE system case study illustrated in Figure 1 and the
dependability management requirements outlined above, we now describe the
design considerations for an automated dependability provisioning tool for en-
terprise DRE systems. In the following we describe the desired characteristics of
such a design tool.

1. Variable granularity of system protection: Enterprise DRE systems
are composed of several independently deployable assemblies of components
that communicate together in a workflow fashion to carry out the system’s
functionality. Quite often the unit of modularity in the system design is larger
than a single deployed component and results in some critical functionality
of the system being spread across multiple components and/or assemblies.
As outlined in the case study, in terms of the availability perspective, the
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entire critical functionality which is spread across multiple components must
now be protected from failures. Moreover, failure of any one component in
the workflow now implies the failure of the entire flow. In such a situation,
the system must failover to a redundant workflow as opposed to a single com-
ponent. One strategy for the failover mechanism could be to allow graceful
degradation. The functionality of the replica components may not be the
exact duplicate of the original. For example, the replica component can pos-
sibly implement an algorithm that is less resource hungry compared to the
primary.
A design-time tool must allow the specification of these requirements of en-
terprise DRE system. Section 3.2 describes how MDDPro provides intuitive
abstractions to capture these dependability requirements of enterprise DRE
systems.

2. Mixed-mode dependability requirements: Enterprise DRE systems are
large-scale and comprise several different components each of which ac-
complishing specific tasks of the entire system functionality. Some parts of
the system may require ultra high reliability mandating active replication
schemes. However, due to the overhead associated with active replication
and the non determinism issues [4, 5] involved in active replication, it may
be necessary to restrict the use of active replication to a small part of the
enterprise DRE systems. Other parts of the system may then use other forms
of replication, such as passive replication, or depend on simple restart mech-
anisms depending on the criticality of the component and available resources
in the system.
The design-time tool must enable enterprise DRE system developers to cap-
ture these mixed-mode dependability semantics of the system. When com-
bined with the granularity of protection units and other performance re-
quirements of the system, this provisioning task becomes complex to per-
form manually using ad hoc and programmatic techniques. Section 3.2 de-
scribes how MDDPro provides intuitive abstractions to capture mixed-mode
dependability requirements of enterprise DRE systems.

3. Effective replica deployment for maximizing availability: As alluded
to above, enterprise DRE systems may have a number of different protected
units of functionality that are assembled together to form the system. More-
over, different parts of the system may use different replication schemes.
Considering both these requirements, it is now necessary to introduce re-
dundancy in the system that accounts for the units of protection used and
the replication styles used. Redundancy in the system improves system avail-
ability, however, high levels of reliability are realized only when replicas are
placed in such a way that the risk of simultaneous failures of replicas is min-
imized. Effective replica placement also impacts several other performance
characteristics of the entire system. For example, effective replica placement
may be necessary to maintain a bounded and fast state synchronization
among the replicas.
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A design-time tool can be used to ensure that the system simultaneously
satisfies multiple QoS requirements such as performance, predictability and
availability, by incorporating deployment state space search algorithms that
automatically find effective deployments. This feature boils down to the gen-
eral problem of constraint satisfaction. Optimality is a harder problem than
constraint satisfaction, however, we do not consider it yet in our design. Sec-
tion 3.3 describes how we have designed our MDDPro tool that can plug
in different replica placement algorithms that find effective deployments for
enterprise DRE systems.

4. Automated provisioning of dependability: Even though the modeling
techniques can help capture dependability requirements while replica place-
ment algorithms can provide effective deployment decisions, these must ul-
timately be realized in the context of the underlying hosting platforms, such
as the component middleware. Component middleware often use XML meta-
data that describes how components of an enterprise DRE system should be
hosted in the middleware and how they must be connected to each other.
For large-scale systems, the amount of metadata becomes very large and
ad hoc techniques, such as handcrafting these descriptors becomes infeasible
and error prone.
Dependability provisioning makes this task harder since the metadata must
now account for the protection units and provisioning the multiple replica-
tion schemes within the enterprise DRE system. This requires substantial
degree of middleware configuration by allocating different resources end-to-
end. Replication adds to the number of connections that must be established
between the different protection units and their replicas. The replication style
makes this task even harder. For example, when active replication is used,
the middleware must be configured to use a group communication substrate
that is used by the communication between replicas. On the other hand,
in passive replication, the secondary replicas must be provisioned on the
middleware to accept periodic state updates from the primary. Section 3.4
describes how generative programming [6] techniques used within our MD-
DPro tool automates the metadata generation to provision dependability for
enterprise DRE systems within the middleware platforms.

Solution Approach. Model Driven Engineering (MDE) [3] is a promising
approach to provision the dependability requirements for enterprise DRE sys-
tems because it raises the level of the abstraction of system design to a level
higher than third-generation programming languages by providing a scalable
and intuitive abstractions that are closer to the domain. The model-per-concern
paradigm within MDE alleviates system complexity because it abstracts away
the irrelevant details from the developer’s current “view” of the system. Genera-
tive tools provided by MDE approaches can seamlessly integrate multiple views
of the system and produce a consistent set of metadata used by underlying hard-
ware/software platforms for configuration. The MDDPro tool described in this
paper is therefore based on the MDE approach.
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3 Dependability Provisioning using Model-driven
Engineering

In this section we describe the design and implementation of our MDDPro
design-time, automated dependability provisioning tool, which uses a model-
driven engineering (MDE) approach in its design and satisfies the requirements
of such a tool outlined in Section 2.2.

3.1 Overview of Enabling Technologies

Before delving into the details of our design-time dependability provisioning tool,
we first provide an overview of the enabling technologies we have leveraged to
develop MDDPro.

MDDPro has been developed in the context of the CoSMIC (Component Syn-
thesis with Model Integrated Computing) [7] MDE toolsuite. CoSMIC is an open
source MDE tool suite used to simplify the development of component-based
DRE applications focusing particularly on the assembly, deployment, configu-
ration, and validation of component-based enterprise DRE systems. CoSMIC
comprises a collection of domain-specific modeling languages (DSMLs), which
define the concepts, relationships, and constraints used to express domain en-
tities [8], and generative programming capabilities that automate the different
development concerns of DRE systems.

The different capabilities in CoSMIC including the MDDPro tool described
in this paper have been developed using the Generic Modeling Environment
(GME) [9]. GME is a metaprogrammable modeling environment that enables
domain experts to develop visual modeling languages and generative tools asso-
ciated with those languages. The modeling languages in GME are represented
as metamodels. A metamodel in GME depicts a class diagram using UML-like
constructs showcasing the elements of the modeling language and how they are
associated with each other.

A key CoSMIC DSML developed in GME is the Platform Independent Com-
ponent Modeling Language (PICML) [10], which enables graphical manipulation
of modeling elements, such as component ports and attributes. PICML also
performs various types of generative actions, such as synthesizing XML-based
deployment plan descriptors defined in the OMG Deployment and Configuration
(D&C) specification [11]. CoSMIC provides the Component QoS Modeling Lan-
guage (CQML), which is a mapping of the platform-independent PICML models
to models that are specific to the lightweight CORBA Component Model. Fig-
ure 2 illustrates the CQML model for the enterprise DRE system case study
from Figure 1. Our MDDPro tool is an enhancement to the CQML DSML and
its generative capabilities.

3.2 Modeling Dependability Requirements in MDDPro

We now describe how the MDDPro tool addresses Requirements (1) and (2)
described in Section 2.2. CQML allows modelers to annotate the system elements
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Fig. 2: CQML Model of the Enterprise DRE System Case Study

modeled with platform-specific details and different quality of service (QoS)
requirements as shown in Figure 2. MDDPro is responsible for the dependability
QoS attributes in CQML. The artifacts that can be annotated are component
instances, component implementations, connections between component ports,
component assemblies, among others.

MDDPro allows an enterprise DRE system deployer to model the dependabil-
ity requirements in the QoS view of the DRE system as shown in Figure 3. The
QoS view leverages the basic structure of the DRE system in terms of the com-
ponent instances in an assembly, component ports and their inter connections. It
allows FT elements to be modeled orthogonally to the system components and
therefore achieves separation of dependability concerns from the primary system
composition and functionality concerns.
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Fig. 3: Availability Requirements Modeling in CQML

The following modeling elements are supported within MDDPro:

• Failover units (FOUs), which enable control over the granularity of pro-
tected system components, such as software components, component assem-
blies, or entire component workflows. Failure of any one element belonging
to a FOU is treated equivalent to the failure of all the elements in the FOU
and the system effectively “fails over” to another replica of the FOU. This
modeling abstraction not only captures the failover granularities of system
entities, but also the degree of replication for each FOU and other systemic
requirements, such as the periodicity of liveness monitoring for FOUs. The
degree of replication is represented as a pair of numbers representing mini-
mum and maximum number of replicas. The programming language artifacts
that implement the replica components could be different from that of the
primary components allowing graceful degradation of the functionality if the
dependability solution desires it.

Frequently, the liveness of distributed components is monitored using a
“heart beat” protocol. The frequency of the heartbeat is one configurable
parameter in the liveness monitoring, which can be configured in MDDPro.
The heartbeat itself is configurable in two ways: push model or pull model.
Thus, the directionality of the heartbeat can also be configured in MDDPro.
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In Section 3.4 we show how modeling of FOUs enable us to automatically
synthesize and configure liveness monitoring components as well as heartbeat
producing components. Conceptually, a FOU is an abstraction to capture the
availability requirements at the control plane of the dependability solution.

• Replication groups (RGs), which allows capturing the replication re-
quirements of software components within a FOU. These models specify
replication strategies, such as active, passive or other variants, and the state
synchronization policies for components. A replication group captures the
configuration parameters related to the data plane of the deployment so-
lution. Multiple replicas of the system components synchronize their state
with each other as per the configuration of the data plane. For example,
data synchronization frequency of the replicas is configurable. Moreover, the
topology of state synchronization among replicas is also a data plane level
configuration issue handled in MDDPro.

• Shared Risk Groups (SRGs), which defines one way of grouping of the
resources in the target network of the applications that share a risk of simul-
taneous failure. Application components share a risk of simultaneous failure
by virtue of the failure of the resources they share, such as processes, nodes,
racks or even data centers on which they are hosted. Risk factors are deter-
mined by assigning the metrics, such as co-failure probabilities to a hierarchy
of the network resources in a risk group that affects the availability of the
system. The computation of the co-failure probabilities themselves is beyond
the scope of this paper and is assumed to be done apriori using reliability
engineering methodologies.

The primary purpose behind modeling the shared risk groups and their
respective co-failure probabilities is to facilitate automated deployment deci-
sions of the components in the system such that the probability of failure of
entire system is minimized thereby increasing the availability. One way of re-
ducing the co-failure probability is to increase the physical distance between
the nodes where the components are deployed. Here, the physical distance
can be thought of as the distance from a remote host or a remote blade or a
remote data center and so on. An advantage of using distance metric is that
it is simpler and quite intuitive than co-failure probability. In Section 3.3 we
show how the shared risk group model is used by the MDDPro model in-
terpreter to determine a suitable and effective deployment that satisfies the
availability requirements and minimizes risks of simultaneous failures. In
our prototype implementation of the algorithm we use the simpler distance
metric to guide the decision of the replica placement.
The Figure 4 shows a model of the Shared Risk Group hierarchy. Hosts 1 to
5 are part of a domain and are contained under a common “RootRiskGroup”
at the top. A RootRiskGroup represents comparatively larger structures
such as a ship or an entire building. All the hosts in the domain share a
common risk of failure of the largest composing structure represented by a
RootRiskGroup. We limit the scope of our dependability solution at that
level. The RootRiskGroup is further divided in to smaller units of Shared
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Fig. 4: Shared Risk Group Hierarchy Modeling in CQML

Risk Groups as shown in the figure. For example, Host1, Host4 and Host5
share a common risk of a failure of the NodeGroup1 but failure of Node-
Group2 that consists of Host4 and Host 5 does not affect Host1.
The distance between hosts is simply computed as the number of tree edges
between two hosts. For example, the distance between the Host2 and Host3
is 2. Similarly the distance between the Host2 and the Host4 or Host5 is
5. Based on such a Shared Risk Group hierarchy, deployment decisions are
taken to maximize the distance between the primary component and its
replicas as shown in the Figure 4

3.3 Improving Availability via Effective Replica Placement

Requirement (3) in Section 2.2 states that the dependability solution for enter-
prise DRE systems must minimize the risk of simultaneous failures of replicated
functionality. This requires effective replica placement algorithms, where replica-
tion is provided for protection units that are modeled as failover units described
in Section 3.2.

MDDPro uses GME’s plugin capabilities to add model interpreters. One such
model interpreter addresses the replica placement problem. The placement model
interpreter provides a strategizable framework that can use different constraint-
based algorithms to determine an effective replica placement plan to minimize
the co-failure probability of the system as a whole.
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Formulation of replica placement problem instance in MDDPro. In
one instantiation of the formulation of the replica placement problem within our
strategizable model interpreter, we use mathematical vectors to represent the
distance of the replicas from the primary component. If the primary component
has N replicas, then we form N orthogonal vectors, where each vector represents
the distance from the primary component node in terms of hops captured in the
shared risk group hierarchy. The magnitude of the resultant vector of the N
orthogonal vectors is used to compare different deployment configurations and
to find the one that satisfies the constraints.

In this formulation of the placement problem algorithm, we have taken care
to avoid generation of some obviously undesirable deployment configurations of
the system. For example, it does not allow deployment configuration where all
the replicas of a component are located in the same host. This is obviously unde-
sirable in dependable enterprise DRE systems because placing multiple replicas
in the same host increases the risk of simultaneous failure of replicas.

Prototype heuristic algorithm using the distance metric. The pro-
totype placement algorithm that we have developed maximizes the distance of
the replicas from the primary replica but the pair-wise distance between repli-
cas themselves can be small. In other words, the replicas themselves can group
together in closely located hosts that are farthest from the primary host. Such a
deployment configuration is skewed and undesirable. To alleviate the problem we
apply a penalty function to the resultant magnitude of the vector. The penalty
function gives more precedence to uniform deployments than highly skewed de-
ployments. The penalty function that we have used is a simple standard devia-
tion of the distances of individual replicas from the primary component. We can
generate better configurations by penalizing highly skewed deployment configu-
rations heavily compared to the more uniform deployment configurations.

For example, consider two resultant vectors v1{4, 4, 4} and v2{1, 1, 8} having
3 dimensions. Although the magnitude of v2 is much greater than v1, the deploy-
ment configuration captured in v1 is more desirable than v2 because the replicas
are spread across more uniformly around the primary unlike v2. The heuris-
tic algorithm for the prototype implementation of the deployment algorithm is
illustrated in Listing 1.

3.4 Automated Dependability Provisioning via Generative
Programming

The model interpreters and generative tools in MDDPro use the dependability
requirements captured in the models for synthesizing metadata used to provision
dependability for enterprise DRE systems. In order to realize such an automation
in the provisioning process several artifacts of dependability must be addressed:
(a) the designer of the dependable system has to annotate the desired degree of
replication of the protected components in the model, (b) the generative tools
have to process the replication requirements and produce deployment metadata
that reflects the number of physical software components that will actually be
deployed but not necessarily be represented in the model, (c) derive the complex
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1. Compute the distance from each of the replicas to the primary for a placement.

2. Record each distance as a vector, where all vectors are orthogonal.

3. Add the vectors to obtain a resultant.

4. Compute the magnitude of the resultant.

5. Use the resultant in all comparisons (either among placements or against a threshold)

6. Apply a penalty function to the composite distance (e.g. pairwise replica distance)

Listing 1: Replica Placement Heuristics

connection topology interconnecting the generated components, which is dic-
tated by the degree and style of replication of the primary component as well as
replication requirements of the components it interacts with, and (d) generating
the fault-tolerance infrastructure components that produce a periodic heartbeat
as well as monitor the liveness of the replicated components.

Deployment metadata generation framework As noted in Section 3.1,
the real-time component middleware platforms used to host the enterprise DRE
systems use standardized XML-based metadata descriptors to describe the de-
ployment plans of the entire system, which the runtime system uses to actually
deploy the different components of the system. Our challenge involved enhanc-
ing the metadata descriptors to include dependability provisioning decisions. For
this goal to realize, MDDPro’s generative capabilities had to be integrated with
the existing generators available in CQML without obtrusive changes to exist-
ing capabilities. This approach ensures that generators for QoS issues beyond
dependability, such as security, can seamlessly be integrated with CQML.

To address these concerns, we have developed an extensible framework called
The Deployment Plan Framework that allows augmentation of metadata gener-
ation “on-the-fly” as it is being generated. The framework exposes a fixed set
of hooks to be filled in by the developer of the existing and any new CQML
model interpreters including the MDDPro model interpreters. The main job of
the deployment framework is to generate the standardized metadata describ-
ing the components, their implementations, their inter-connections and so on.
Additionally, it invokes predefined hook methods implemented by different QoS
model interpreters of CQML. The MDDPro interpreter implements a subset of
a large set of different possible hook methods. The hook methods “inject” auto-
generated standardized metadata in response to the availability requirements
captured in the model. The metadata generated on-the-fly blends into the other
standardized metadata.

This architecture allows large scale reuse of earlier code base that deals with
the basic structure and composition capabilities of PICML/CQML. The de-
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veloper producing QoS enhancements to the existing modeling capabilities of
CQML need not be concerned with the other complexity of the framework and
the format of the standardized descriptors, but simply add/modify the metadata
for the QoS dimension they are addressing. Our MDDPro model interpreter ex-
ploits these capabilities of the Deployment Plan Framework to ”inject” three
different kinds of metadata.

1. Replica component instances of the primary protected component de-
pending upon replication degree annotated in the model. For example, if
replication degree of an FOU is 3, then two replicas of the primary FOU are
created. Thus, two replicas of each component in the FOU are effectively
added by the interpreter.

2. Component connection metadata is injected based on the replication
style and degree of replication. The incoming connections to the protected
components are marked with special annotations so that the run-time sys-
tem can use suitable implementations to realize them. One such possible
annotation is IOGR, i.e. Interoperable Object Group Reference. IOGR is a
part of the FT-CORBA [2] standard.

3. Deployment metadata is the assignment of components to computing
resources available in the system. This metadata includes information for
all the primary protected components, their replicas and the dependability
infrastructure components (e.g. Heartbeat components).

Handling complex connections As shown in Figure 5, shows the effect of
the replication style and the degree of replication on the complexity of the con-
nection establishment. In an unprotected system, the Processor component and
the Planner component have exactly one connection between them. The Fig-
ure 5 captures the multiplicative increase in the number of connections when
both, the Processor component and the Planner component, are protected using
active replication. Each Processor component, primary as well as its replica has
to make three connections to each member of the Planner replica group because
the degree of replication of the Planner fail over unit (FOU) is three. In general,
if the source component of the connection is replicated M times and the desti-
nation component is replicated N times then the number of connections grow by
a factor of M x N.

Note that the diagram only indicates the necessary number of connections
the middleware has to establish when components are deployed. These connec-
tion may or may not actually be used to send requests across because it really
depends upon where request/reply suppression is in place. Nevertheless, the com-
ponent container has to prepare for any unforeseen failures and has to establish
connections apriori in order to avoid the latency of connection establishment
later when failures occur. The model interpreter that we have developed com-
pletely hides away the complexity of modeling the component replica instances
and the connections between them.
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Fig. 5: Complexity of connection generation

Automatic generation of liveness monitoring infrastructure The model
interpreter also generates the infrastructure components necessary for liveness
monitoring of the protected components. It uses the availability requirements
in the models to generate supporting run-time components to realize ready-to-
deploy, robust, and fault-tolerant enterprise DRE systems. This includes gener-
ating, configuring, and deploying the status monitoring and fault recovery com-
ponents without the need for the application developer having to model/develop
them explicitly.

The generated architecture shown in Figure 6 has two important compo-
nents: the heartbeat (HB) component and the Fault Protection Center compo-
nent (FPC). The purpose of the HB components is to send a periodic heartbeat
beacon to the FPC or respond to the periodic liveness poll request received from
the FPC. The FPC is the central controlling component that ensures the liveness
of the protected components using either pull or push model of the heartbeat
beacon. The HB components are collocated with the protected components. The
underlying assumption is that the HB component and the protected component
would fail simultaneously in the face of a failure. The central FPC component is
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Fig. 6: Generated Deployment of Dependability Infrastructure Elements

also replicated to avoid single point of failure. Multiple copies of the FPC compo-
nents send heartbeat beacons among themselves to ensure that FPC themselves
are alive and are doing continuous liveness monitoring of the system.

As shown in Figure 6, every protected component has its own collocated
HB component and there is one FPC for every FOU. All the HB components
belonging to one FOU send heartbeat to its corresponding FPC. Multiple simul-
taneously active FOUs have equal number of FPCs, which communicate with
themselves to prevent single point of failure.

The heartbeat frequency at which the liveness indications are sent between
HBs and FPCs is configurable in the model. The advantage of this architecture is
that the infrastructure components for liveness monitoring can be auto-generated
using generative technologies. The necessary deployment metadata required to
collocate the HB components with their respective protected components and to
establish the connections between HB components and the FPC components is
auto-generated by the model interpreter from the requirements. Moreover, the
metadata that captures the configuration of HB components such as push/pull
model and heartbeat frequency is auto-generated for every HB component.
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4 Related Work

Although there has been substantial research in dependability mechanisms and
algorithms over the past several decades, applying modeling and generative tech-
niques to automate dependability provisioning has recently caught researchers’
attention. In this section we compare our work on model-driven engineering of
dependability with related research.

The CORRECT [12] project describes a project that is looking at applying
step-wise refinement and OMG’s Model Driven Architecture [13] to automati-
cally generate Java code used in a fault tolerant distributed system. The project
uses UML to describe the software architecture in both a platform-independent
and platform-specific form. Model-to-model transformations are used to incre-
mentally enrich the models with platform-specific artifacts until the Java skele-
ton code is generated. MDDPro, on the other hand, is designed to automatically
generate the complete source code (not just the skeletons) for the component
liveness monitoring infrastructure that detects exceptional conditions.

The research on software systems reliability using MDA [14] focuses on a
platform-independent means to support reliability design following the princi-
ples of a model driven architecture and approach. The research aims to sys-
tematically address dependability concerns from the early to the late stages of
software development by expressing dependability architectures using profiles.
Design profiles are mapped to deployment domains, where the reliability config-
urations of how the components communicate and are distributed is explained.
Unlike the previous approach, MDDPro uses an extensible way to automatically
generate platform specific metadata and programming language artifacts that
realize parts of the dependability provisioning solution.

UML has been used perform model-driven dependability analysis [15] for
composite web services. The UML representation is based on BPEL, and exten-
sions are added to characterize the fault behavior of the elements comprising the
web services. Model transformations are used to map the UML models to Block
Diagrams, Fault Trees and Markov models to analyze the dependability char-
acteristics of the composite web services. On the other hand, our approach in
MDDPro enhances the productivity of the system developers rather than system
dependability analysts.

Although our research on MDDPro has similar goals, we use the concept of
domain-specific modeling languages, which provides more richer and semanti-
cally powerful modeling concepts than the general-purpose modeling elements
provided by UML. Additionally our framework allows plugging in multiple dif-
ferent model interpreters that can synthesize metadata for multiple different
middleware platforms provide deployment planning.

5 Conclusions

This paper describes how model driven engineering (MDE) can be used to sim-
plify and automate dependability provisioning in enterprise distributed real-time
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and embedded (DRE) systems. We describe the capabilities of the MDDPro
(Model Driven Dependability Provisioning) MDE tool which we have built as
part of the CoSMIC tool suite. Our work is suitable for component-oriented
systems that have multiple different quality of service requirements and which
are deployed and configured via declarative mechanisms. Both these traits are
common to systems that use the service oriented architecture. In the remainder
of this section we describe the lessons we learned in this effort and our future
work in this realm.

Lessons Learned and Future Work

Capturing availability requirements in terms of degree of replication, replication
style at the modeling time and generating component infrastructure components
increases productivity to a great extent but many unresolved challenges still
remain.

• Availability model analysis is useful to determine the effect of the avail-
ability requirements on other QoS aspects of the system. Our prototype
implementation of MDDPro is simplistic because it neglects the effects on
system resource consumption due to replication. Unconstrained increase in
the degree of replication of the protected components in the system may re-
sult in excessive resource consumption and may adversely affect other QoS
guarantees of the system such as timeliness and CPU load. An analysis tech-
nique needs to be in place that would help the system designers take correct
decisions about the system availability without adversely affecting the re-
source consumption and other QoS characteristics of the system.

• Run-time adaptation of the fault-tolerance infrastructure as well as the
replicated application components is highly desirable in enterprise DRE sys-
tems because these systems usually exhibit modal behavior. System func-
tionality as well QoS priorities may change as the mode of operation of the
system changes. Our approach to the availability modeling is static in nature
and depends on the availability of the target domain information and their
associations with each other in terms of co-failure probability. Although the
placement model interpreter does take deployment decisions at design time
using a strategizable constraint-solver framework, it does not make the sys-
tem adaptive at run-time. Runtime monitoring subsystems such as RACE
can be used to implement a general purpose resource constraint-solver frame-
work at runtime, not unlike the one we have in our design-time placement
model interpreter. Such a framework would make intelligent (re)deployment
decisions based on changing environment (failures, resource consumption)
and modes of the eDRE systems.

• Ensuring state consistency across replicas of components or FOUs in a
general is a challenge. Our availability model abstracts away the details of
the fault monitoring part of the FT subsystem and generates component
based infrastructure automatically for precisely doing that. However, state
synchronization and ensuring state consistency across replicated components
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of the system is a hard problem. The primary challenges in this space are
capturing and provisioning a variety of state synchronization mechanisms be-
cause different component developers may implement different mechanisms
as they see fit. Several different ways of ensuring state synchronization are
used, for example, central repository/database-based approach, transmission
of periodic state updates using point-to-point communication or multicast
communication. Modeling the topology transmission of state update mes-
sages is also important in case of non repository-based techniques because
the runtime failover critically depends on the order in which replica compo-
nents receive state updates.

All artifacts described in this paper are available in open source from the CoS-
MIC web site (www.dre.vanderbilt.edu/cosmic).
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