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Domain-specific models increase the level of abstraction used to develop large-scale
component-based systems. Model-driven development (MDD) approaches (e.g., Model-
Integrated Computing and Model-Driven Architecture) emphasize the use of models at
all stages of system development. Decomposing problems using MDD approaches may
result in a separation of the artifacts in a way that impedes comprehension. For exam-
ple, a single concern (such as deployment of a distributed system) may crosscut different
orthogonal activities (such as component specification, interaction, packaging and plan-
ning). To keep track of all entities associated with a component, and to ensure that the
constraints for the system as a whole are not violated, a purely model-driven approach
imposes extra effort, thereby negating some of the benefits of MDD.

This paper provides three contributions to the study of applying aspect-oriented
techniques to address the crosscutting challenges of model-driven component-based dis-
tributed systems development. First, we identify the sources of crosscutting concerns that
typically arise in model-driven development of component-based systems. Second, we de-
scribe how aspect-oriented model weaving helps modularize these crosscutting concerns
using model transformations. Third, we describe how we have applied model weaving
using a tool called the Constraint-Specification Aspect Weaver (C-SAW) in the con-
text of the Platform-Independent Component Modeling Language (PICML), which is
a domain-specific modeling language for developing component-based systems. A case
study of a joint-emergency response system is presented to express the challenges in
modeling a typical distributed system. Our experience shows that model weaving is an
effective and scalable technique for dealing with crosscutting aspects of component-based
systems development.
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1. Introduction

Model-driven development (MDD) is emerging as a new paradigm to develop com-
plex component-based distributed systems. By promoting models to the status of a
first-class entity in the design and implementation of such systems, developers can
reason about systems at a much higher level of abstraction than by using purely
programmatic techniques. Reusable approaches to distributed systems development
based on component middleware technologies, such as CORBA Component Model
(CCM) [19], .NET [18] and J2EE [26], have yielded a paradigm shift from focusing
on building individual components to composition and integration of systems from a
set of pre-built, reusable components. MDD-based approaches lend themselves well
to composition and integration-related tasks since they emphasize a visual approach
to system development, which is crucial to composition and integration activities.
MDD also permits the description of a system using constraint languages [21], which
can be enforced during design-time to prevent common errors that may otherwise
occur late in the integration stage. A further benefit of MDD is that it makes
the task of system analysis easier by providing better abstractions and notations
that are closer to the domain of the system. As such, MDD helps to shield system
developers from changes in the underlying middleware platform.

1.1. MDD Challenges

Although MDD approaches are desirable in large-scale component-based distributed
system development, the promotion of models to the status of first-class entities
incurs other challenges, wherein system developers are exposed to a number of
crosscutting concerns at the modeling level [11]. The crosscutting concerns include
activities like composition of sub-systems from individual components, configuration
of the different components, integration of systems using components from different
vendors, and deployment of such composed systems. In Section 2, we showcase the
details of these concerns as applied to component-based distributed system devel-
opment. An example of such a concern is that of keeping track of the dependencies
on the run-time environment for every component in a system. Prior to MDD, this
dependency was captured at the implementation level using scripts, but often the
implications of the dependency were ignored in the implementation. If any modifi-
cation was made at the system level (e.g., if a component was removed, or a new
component was added), the scripts that manage the run-time dependencies must
be updated manually. This is a tedious and error-prone task. In an MDD-based
approach, such dependencies are captured at the modeling level using elements of
the language. Although MDD makes the task of keeping track of the run-time de-
pendencies easier, it still is error-prone to modify the dependencies manually in
a system that has a large number of components. Addressing these crosscutting
concerns using conventional MDD approaches can increase the type and number of
elements that need to be manipulated at the modeling level, which may negate some
of the benefits offered by MDD. What is desired is an enhanced MDD approach that
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is scalable (i.e., it should be easy to perform modifications to the model even in the
presence of a large number of components), and gives assurance that changes to
model elements keep the model in a consistent state.

1.2. Solution approach → Aspect-Oriented Model Weaving.

A promising approach to address the problems associated with applying MDD to
large-scale distributed systems development is aspect-oriented model weaving [12],
which unites the ideas of aspect-oriented software development (AOSD) [7] with
MDD to provide better modularization of properties that crosscut multiple layers
of a model [11].

Our approach to improving the scalability of MDD [13] for component-based
distributed system development - and subsequently untangling the crosscutting con-
cerns at the modeling level - relies on applying aspect-oriented weaving to domain-
specific modeling languages (DSMLs). In this paper, we illustrate our ideas in
the context of a sample distributed system scenario by applying the Constraint-
Specification Aspect Weaver (C-SAW) [25], which is an aspect-oriented model
weaver, to the Platform-Independent Component Modeling Language (PICML) [2].

PICML is an open-source DSML (available for download at www.dre.

vanderbilt.edu/cosmic) developed using the Generic Modeling Environment
(GME) [17]. PICML enables developers of component-based distributed systems to
define component interfaces, along with their properties and system software build-
ing rules. PICML also provides generative tools to synthesize valid XML descriptor
files that enable automated system deployment. C-SAW is a model transforma-
tion engine that can be used to describe the essence of a model-based crosscutting
concern and transform a model accordingly. In C-SAW, aspects are defined at the
modeling level using the Embedded Constraint Language (ECL). C-SAW assists
model engineers in rapidly inserting and removing new properties and policies into
models without the need for extensive manual adaptation. This paper examines the
benefits that can be achieved from combining the aspect-oriented model weaving
supported by C-SAW with PICML’s MDD-based approach to distributed systems
development. The primary combination of this synergy closes a significant gap in
developing and deploying component-based distributed systems.

Paper organization. The remainder of this paper is organized as follows: Sec-
tion 2 evaluates the use of MDD for distributed component systems by using an
unmanned air vehicle (UAV) application as a running example; Section 3 gives an
overview of the aspect-oriented model weaving approach, illustrates how we have
applied it to the UAV example developed using PICML, and showcases the benefits
of this approach; Section 4 compares our work with other tools that apply aspect-
oriented approaches to distributed component systems development; and Section 5
presents concluding remarks.
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2. Evaluating Model-driven Development Approaches to
Developing Component-based Systems

MDD provides numerous benefits over programmatic approaches to large-scale
component-based distributed systems development [10]. However, MDD also incurs
challenges due to scalability and crosscutting concerns, similar to the challenges seen
in programmatic approaches. Hence, it is imperative to enhance MDD to address
these challenges.

To illustrate the crosscutting and scalability challenges in MDD for component-
based distributed systems, we first present a brief overview of MDD approaches
highlighting a DSML we have developed for component-based distributed systems.
We then use a component-based distributed system case study to illustrate how the
crosscutting challenges manifest themselves in MDD. Our case study is an emer-
gency response system that uses multiple unmanned air vehicles (UAVs) to perform
aerial imaging, survivor tracking and damage assessment. Using the UAV scenario,
we then highlight the scalability challenges and crosscutting concerns a model en-
gineer faces when building a system like the emergency response system.

2.1. Overview of Model-driven Development of Component-based

Systems

MDD is a paradigm that focuses on using models to describe many system devel-
opment activities (i.e., models provide input and output at all stages of system
development until the final system itself is generated). In MDD, models are used to
describe all artifacts of the system (e.g., interfaces, interactions, and properties of
all the components that comprise the system). These models can be manipulated
in a number of different ways to analyze the system, and in some cases to generate
the complete implementation of the system. In order to capture the semantics in an
effective manner that is as close as possible to the domain of the developed system,
a DSML can be used. A DSML is a five-tuple [14] consisting of:

• Concrete syntax (C), which defines the notation used to express domain enti-
ties,

• Abstract syntax (A), which defines the concepts, relationships and integrity
constraints available in the language,

• Semantic Domain (S), which defines the formalism used to map the semantics
of the models to a particular domain,

• Syntactic mapping (MC : A→C), which assigns syntactic constructs (e.g.,
graphical and/or textual) to elements of the abstract syntax,

• Semantic mapping (MS: A→S), which relates the syntactic concepts to those
of the semantic domain.

Crucial to the success of DSMLs is metamodeling and auto-generation. A meta-
model defines the elements of a DSML that are tailored to a particular domain,
such as the domain of avionics mission computing or emergency response systems.
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Auto-generation involves automatically synthesizing artifacts from models, thereby
relieving DSML users from the accidental complexities of the artifacts themselves,
including their format, syntax, or semantics. Examples of such artifacts include (but
are not limited to) code in some programming language, and descriptors (in formats
such as XML) that can serve as input to other tools.

To support effective design and development of component-based systems, we
have defined the Platform-Independent Component Modeling Language (PICML) [2,
9, 16] using the Generic Modeling Environment (GME) [17]. GME is a meta-
programmable modeling environment with a general-purpose editing engine, sepa-
rate view-controller GUI, and a configurable persistence engine. Because GME is
meta-programmable, the same environment used to define PICML is also used to
build models, which are instances of the PICML metamodel.

At the core of PICML is a DSML (defined as a metamodel using GME) for
describing components, types of allowed interconnections between components, and
types of component metadata for deployment. The PICML metamodel defines the
different types of modeling elements that are essential to developing, composing,
configuring and deploying component-based systems. The artifacts pertaining to
configuration and deployment of component-based systems that are generated from
PICML are then deployed using the Component-Integrated ACE ORB (CIAO) [28,
29], which is an implementation of the CCM.a

In terms of the five-tuple defined above, PICML uses bitmap-based icons rep-
resenting elements of the platform (e.g., CCM) as the concrete syntax. For ele-
ments like components, PICML also uses enhanced visualizations called “decora-
tors,” which display the different ports of a component and allow connections to
be made between ports of different components. The abstract syntax of PICML is
defined using a variant of UML class diagrams available in GME. In addition to
the class diagrams, OMG’s Object Constraint Language (OCL) is used to enforce
the semantics that are not captured by the class diagrams. The semantic domain
of PICML is the CCM platform. Thus, the semantics of the different elements are
governed by the CCM specification, which defines the elements as well as valid in-
teractions between the different elements that make up a system built using CCM.
The syntactic mapping between the different elements in the abstract syntax to
the elements in the concrete syntax is achieved by associating each element in the
metamodel with icons, or with a decorator (in case of special elements like com-
ponents and assemblies). The semantic mapping associating the elements in the
metamodel with elements in the CCM platform is performed partly using the OCL
constraints, and partly using the various model interpreters defined in PICML. A
model interpreter is a GME plug-in written using a high-level language like C++,
and can be used to enforce the semantics not captured by OCL constraints alone.
Interpreters for PICML are also used to generate various artifacts like component

aPICML is currently being enhanced to model systems using other standards-based component
middleware, such as J2EE and .NET, in addition to CCM.
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configuration files and deployment plans, which are needed for the deployment of
CCM components.

The PICML metamodel defines approximately 115 different types of basic ele-
ments, with 57 different types of associations between these elements grouped under
14 different folders. The PICML metamodel also defines 222 constraints that are en-
forced by GME’s constraint manager during the design process. Using GME tools,
the PICML metamodel can be compiled into a modeling paradigm, which defines a
domain-specific modeling environment. From this metamodel, approximately 20,000
lines of C++ code (used to represent the modeling language elements as equivalent
C++ types) is generated. This generated code allows manipulation of modeling el-
ements (i.e., instances of the language types using C++) and forms the basis for
writing model interpreters. Each interpreter is written as a DLL that is loaded at
run-time into GME and executed to generate the XML descriptors based on mod-
els developed by the component developers using PICML. PICML currently has
8 interpreters using 222 generated C++ classes and approximately 8,000 lines of
hand-written C++ code to generate the following descriptors needed to support the
OMG Deployment and Configuration (D&C) specification [20]:

• Component Interface Descriptor (.ccd) – Describes the interfaces – ports,
attributes of a single component.

• Implementation Artifact Descriptor (.iad) – Describes the implementation
artifacts (e.g., DLLs, executables) of a single component.

• Component Implementation Descriptor (.cid) – Describes a specific im-
plementation of a component interface; also contains component inter-connection
information.

• Component Package Descriptor (.cpd) – Describes multiple alternative im-
plementations (e.g., for different OSes) of a single component.

• Package Configuration Descriptor (.pcd) – Describes a component package
configured for a particular requirement.

• Component Deployment Plan (.cdp) – Plan which guides the run-time de-
ployment.

• Component Domain Descriptor (.cdd) – Describes the deployment target
(e.g., nodes, networks) on which the components are to be deployed.

2.2. A Representative Case Study using PICML

This section presents an emergency response system as the guiding example to
illustrate the MDD approach, and to illustrate the challenges that arise in modeling
distributed component systems. This example models emergency response situations
(such as disaster recovery efforts stemming from floods, earthquakes, or hurricanes)
and consists of a number of interacting subsystems. Our focus in this paper is on
the composition, integration and deployment of a UAV, which is used to monitor
terrain for flood damage, spot survivors that need to be rescued, and assess the
extent of damage. The UAV transmits this imagery to various other emergency
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response units. The software components of this UAV application are shown in
Figure 1 and described in detail in [2].
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Fig. 1. Emergency Response System components

The UAV application involves sending streams of images from each UAV to
a control center responsible for monitoring the image data. Each image stream is
composed of a Sender (e.g., the UAV), a number of Qosket components, and a
Receiver component. Sender components are responsible for collecting the images
from each image sensor on the UAV. The Sender passes the images to a series of
Qosket [29] components. Qoskets are software components that encapsulate a set of
contracts, a set of system condition objects and performance adaptation behavior
logic. Thus, Qoskets perform adaptations on the images to ensure that the images
can be transmitted without violating the quality of service (QoS) requirements. Ex-
amples of Qosket components include CompressQosket, ScaleQosket, CropQosket,
PaceQosket, and a DiffServQosket. The final Qosket in the pipeline then passes
the images to a Receiver component, which collects the images and passes them
on to a display in the control room of the emergency response team.



December 26, 2006 11:3 WSPC/Guidelines IJSEKE05

8 Krishnakumar Balasubramanian et al

2.3. Scalability and Crosscutting Challenges in Applying MDD to

Component-based Distributed Systems

This section describes how DSMLs (e.g., PICML) applied to component-based dis-
tributed systems (e.g., a UAV) incur different scalability challenges and crosscut-
ting concerns. We illustrate these challenges as they are manifested in each of the
modeling stages of systems development described below. Although the description
illustrates these challenges as they emerge in PICML, we believe similar challenges
will exist in any DSML used to develop large-scale component-based distributed
systems.

2.3.1. Crosscutting Concerns in Modeling Interface Definitions

PICML assists in modeling the individual component types of a system, which
involves either importing the component interface definitions from existing interface
definition language (IDL) files, or explicitly modeling them using PICML. In our
example, this involves defining the interfaces for the Sender, Receiver, Qosket,
SystemResourceManager, and the LocalResourceManager components.

In order to deploy a system using component middleware, such as CIAO,
the individual components that together realize the application must be speci-
fied. This step is very crucial because the type (indicated by its name, such as
LocalResourceManagerComponent) of the individual monolithic components is de-
fined at this stage. The interface of the system with external entities is also defined
during this stage.

These definitions (including the names) serve as a bridge between the entities de-
fined at the modeling level and the corresponding implementation. Such component
definitions are scattered throughout the system model through the use of references
to the individual component types. For example, the component instances that are
used to define the component interactions are instances of the individual component
types. Thus, it is the model engineer’s responsibility to maintain the one-to-many
relationship between the component types and the different instances of the same
type that are scattered across the models. If a component type is modified/deleted,
then the model engineer has to manually update/remove all the references scattered
in the remaining model. This is an inherently time-consuming and error-prone task
when performed manually, and does not scale when the number of components in
the model increase. For example, addition of new ports to a component type that
is part of a stream in the UAV scenario results in a need to modify all the existing
uses of that component type throughout the model.

2.3.2. Modeling Implementation Artifact Definitions

In this stage, a model engineer defines the implementation artifacts shown in Fig-
ure 2 for each monolithic component, which involves defining the different imple-
mentation artifacts (e.g., shared libraries) that each component depends on, as well
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as describing the dependencies that each component may have on external system
libraries.

Fig. 2. Implementation Artifact Definition

For example, when building the UAV application using CIAO, a monolithic
component, such as SystemResourceManager, is composed of three libraries, (1)
SystemResourceManager exec, which contains the implementation of the compo-
nent functionality, (2) SystemResourceManager stub, which contains code that
provides the marshaling and de-marshaling related functionality for each compo-
nent, and (3) SystemResourceManager svnt, which contains the code to glue to-
gether the component with other portions of the execution environment, such as
the underlying CORBA middleware infrastructure. Any error in capturing the de-
pendencies will result in run-time failure of the components. Although the number,
names and kinds of implementation artifacts might differ across different middle-
ware implementations, each component in a distributed system will end up having
dependencies on the artifacts that are necessary to provide the functionality of the
component. Thus, these artifacts need to be modeled explicitly, an activity that
does not scale well as the number of components and their corresponding imple-
mentation artifacts increase. Moreover, the model engineer is also responsible for
maintaining the dependencies as the system evolves. Any error in the maintenance
of the dependency will also result in a run-time error due to unresolved dependencies
on implementation artifacts of component instances.

Another example of a concern associated with an implementation is the need
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to follow specific naming conventions as imposed by the underlying middle-
ware, wherein the naming of implementation artifacts in the model must mirror
the naming conventions of the underlying component middleware infrastructure.
For example, in the default configuration of CIAO, if the three dependent li-
braries for SystemResourceManager are not named SystemResourceManager exec,
SystemResourceManager stub, and SystemResourceManager svnt respectively, it
will result in a run-time error. Another example from .NET related to naming is
with the manifest files associated with an assembly. Each assembly in .NET (equiv-
alent to a component in CCM) is associated with a manifest file. A manifest file is
an XML file that can be used to configure the behavior of the assembly. Before the
.NET run-time loads an assembly, it searches for any manifest files associated with
the assembly. This search is designed to look for manifest files that follow a specific
naming convention, and only in specific directories: For each assembly implemented
as a shared library, say Foo.dll, the .NET run-time searches for a manifest file named
Foo.dll.manifest; for each assembly implemented as an executable, say Foo.exe, the
.NET run-time searches for a manifest file named Foo.exe.manifest. If the manifest
files are given different names, the .NET run-time does not load the manifest, which
might result in a different behavior for the assembly Foo.

Yet another naming related crosscutting concern is with the specification of the
entry point for loading a component implemented as a shared library in a language
like C++. Because the C++ compiler mangles the names of the methods in classes,
method names that need to be exported are marked using special extern "C" tags.
Only names that are marked using these tags are available for invocation by clients
that dynamically load these components. In order to ensure that a component can
be dynamically loaded, the model engineer must make sure that the definitions of
the entry points defined in the implementation artifacts of a component actually
map to entry points defined in the shared libraries.

2.3.3. Modeling Interaction Definitions

In this stage of development, a model engineer defines the different interactions be-
tween components, which involves composing the application from a set of individual
components. The components are connected using their ports to form assemblies,
which could be nested. In PICML, assemblies contain monolithic components that
are connected together. Assemblies can also be hierarchical (i.e., an assembly can
contain other assembly components). In our example, each stream of images is mod-
eled as an assembly by connecting the Sender, LocalResourceManager, Qoskets,
and the Receiver, as shown in Figure 3. This assembly is then instantiated multiple
times depending on the number of UAVs, along with the SystemResourceManager,
and the ControlCenterDisplay, to form the complete UAV application.

There are several cases when much effort is required to manually add (or remove)
new links between components:



December 26, 2006 11:3 WSPC/Guidelines IJSEKE05

Weaving Deployment Aspects into Domain-Specific Models 11

Fig. 3. Interaction Definition

1. If a component is removed from an application,
2. If a new port is to be connected to all external uses of a component,
3. Or, if a component is replaced by another component.

In cases where the number of components is large, the amount of effort required to
perform these modifications manually is equivalent to starting the modeling effort
from scratch. In the UAV example, the addition of a new management interface
to all the Qosket components will result in extensive changes to every assembly
that models a stream. The amount of effort grows exponentially because a single
assembly is instantiated multiple times, depending upon the number of UAVs that
are desired. Even if the required changes are performed manually, it is necessary to
ensure that the changes are correct by checking the constraints in the model. In case
there are violations, the correction of the constraint violation also needs to be done
manually. Thus, changes to the interactions between components necessitate similar
changes at multiple locations - scattered across the whole model - in a repetitive
fashion.

2.3.4. Modeling Package Definitions

The packaging of component assemblies involves defining the relation between units
of deployment called packages, and the individual assemblies that are the output
of the composition process defined earlier. A package is associated with a top-level
assembly, and is used to bootstrap the deployment of the application. For exam-
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ple, in the UAV application, the top-level assembly that contains many individual
streams as sub-assemblies needs to be associated with a package so that the UAV
application can be deployed. Packages are the units of deployment in CCM. It is
also true for other middleware technologies like EJB (e.g., EJB uses an .ear file to
initiate deployment). In order for a deployment tool to be successful in deploying
an application, each package needs to be associated with metadata that describes
the capabilities of each package. Examples of such metadata include the interfaces
that are implemented by the component(s) that are contained in a package, depen-
dencies on the run-time environment by components in a package, and any startup
ordering dependencies on external components.

Thus, it is necessary to maintain the consistency of a package during system
evolution. For example, any change in the interface definition needs to result in
an appropriate change in the packages containing components that implement that
interface. Any change in the dependent implementation artifacts of a component
implementation also requires that the corresponding component package be up-
dated with these artifacts. For example, in the UAV application, any change to the
composition of a stream by addition or removal of a Qosket component necessitates
appropriate changes to be made to the component packages. The need to ensure
that changes to some elements are propagated to a dependent element indicates the
emergence of another crosscutting concern.

2.3.5. Modeling the Domain Definition and Component Mapping

Domain definition involves modeling the elements of the target domain and a map-
ping between component instances and the target domain. This task is usually
done by a domain administrator who has knowledge of the physical infrastructure
on which the application is to be deployed. After the elements of the target domain
are defined, a mapping between the individual component instances and assemblies
onto elements of the target domain is specified. This activity results in the creation
of a deployment plan, which is used by the run-time infrastructure to deploy the
application.

In order to ensure successful deployment of the application, the mapping between
the component instances (or assemblies) and nodes of the target domain needs to
be consistent. Although constraints can help in matching the capabilities of each
node with the requirements of the individual components, all the components (or
assemblies) need to be assigned to nodes, and this assignment needs to be updated
when the definitions of the component assemblies change. Any error in this process
shows up only at run-time, which is very late in the lifecycle and proves to be very
expensive to correct. For example, in the UAV example, if a new type of Qosket
(e.g., DiffServQosket, which assists in enforcing network priorities) is added to
each stream, it is necessary to ensure that the DiffServQosket is mapped to a UAV.
Without the DiffServQosket, a UAV will not be able to perform QoS adaptations
based on network priorities, and images that are critical to a mission might show
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up in the control center after images that are peripheral. This would potentially
undermine the importance of the images sent by the UAV.

The use of MDD to develop systems like the UAV application provides a signif-
icant improvement over programmatic approaches based on using only component
middleware. However, as outlined in the UAV context, a number of tangled con-
cerns and scalability issues emerge in the modeling of component-based distributed
systems. The concept of a component pervades these artifacts, and the challenges
that occur are due to the tangling of the concerns associated with a component at
multiple places in the model. If left unresolved, these challenges can hamper de-
veloper productivity, and also negatively affect the correctness of the system being
modeled. Section 3 describes our solution to these problems.

3. Applying Aspect-Oriented Model Weaving to PICML

This section presents a solution to the crosscutting and scalability challenges of
modeling large-scale distributed systems described in Section 2.3. Our approach to
resolving these challenges relies on the use of aspect-oriented model weaving using
C-SAW. We first provide an overview of aspect-oriented modeling and then describe
our solution.

3.1. Overview of Aspect-Oriented Modeling

A distinguishing feature of AOSD is the notion of crosscutting, which character-
izes the phenomenon whereby some representation of a concern is scattered among
multiple boundaries of modularity, and tangled amongst numerous other concerns.
Aspect-Oriented Programming (AOP) languages, such as AspectJ [15], permit the
separation of crosscutting concerns into aspects.

We have found that the same crosscutting problems that arise in code also exist
in domain-specific models [11]. For example, it is often the case that the metamodel
forces a specific type of decomposition, such that the same concern is repeatedly
applied in many places, usually with slight variations at different nodes in the
model. This is a consequence of the “dominant decomposition” [22], which occurs
when a primary modularization strategy is selected that subjects other concerns to
be described in a non-localized manner.

Aspect-Oriented Modeling (AOM) is an AOSD extension applied to earlier
stages of the lifecycle. Our specific perspective of AOM improves the modeling
task itself by providing the ability to specify properties across a model during the
system modeling process. This action is performed by using a weaver that has been
constructed for the GME modeling tool. We consider AOM to be much more than
mere notations that provide traceability to latter stages of development - a model
weaver can assist in the automation of the modeling process.
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3.2. Aspect Modeling with C-SAW

We have designed C-SAW to provide support for modularizing crosscutting mod-
eling concerns in the GME. This weaver operates on the internal representation of
a model (similar to an abstract syntax tree of a compiler). GME provides a frame-
work that allows DSML developers to register custom actions and hooks with the
environment. These hooks can read and write the elements of a model during the
modeling stage. GME also provides an introspection API, which provides knowledge
about the types and instances of a model, without a priori knowledge about the
underlying DSML. Utilizing this feature of GME, we have implemented C-SAW as
a “plug-in,” which is GME terminology for a DSML independent hook. Thus, the
benefits of C-SAW are applicable across a whole spectrum of DSMLs.

To be effective, C-SAW also requires the features of an enhanced model trans-
formation language. Standard OCL is strictly a declarative language for specifying
assertions and properties of UML models. Our need to extend OCL is motivated
by the fact that we require an imperative language for describing the actual model
transformations. We designed a language called the Embedded Constraint Lan-
guage (ECL) to describe model transformations. ECL is an extension of the OCL
and provides many of the common features of OCL, such as arithmetic operators,
logical operators, and numerous operators on collections (e.g., size, and select). A
unique feature of ECL that is not provided within OCL, however, is a set of re-
flective operators for querying models. For example, aggregation operators (e.g.,
models(expression) and atoms(expression)) are used to select all the models
from a model container (and all the atoms from a model) that satisfy the constraint
specified by the expression. These operators, together with the select operator, can
be applied to first class model objects (e.g., a container model or primitive model
element) to obtain reflective information needed to perform model weaving. In addi-
tion, ECL provides a set of transformation operators to change the state of a model
such as addModel, addAtom, removeModel, removeAtom and setAttribute. The
operators can change the structure and properties of a model.

The AOM approach that we have adopted in C-SAW can be summarized by the
diagram in Figure 4. As shown in this figure, model transformations are performed
between the source models and the target models that belong to the same meta-
model. C-SAW weaves additive changes into these source models to generate the
target models relying on transformation specifications written in ECL.

• Modeling Aspects: A modeling aspect is a modular construct that specifies
a crosscutting concern in a model hierarchy. A modeling aspect describes the
context of a strategy call (see the definition of strategy below), which can be a
specific model, atom, or connection. Like a pointcut designator in AspectJ [15],
a modeling aspect is responsible for identifying a set of model nodes across a
model hierarchy in a modular way, and offers the capability to make quantifiable
statements across the boundaries of a model.

• Strategies: A strategy is used to specify transformation logic (e.g., constraint
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DefinesDefines

MetaModel

Source Model

ECL Transformation 

Specifications

Target Model

aspect Start( )
{declare componentTypesFolder, implementationArtifactsFoler,
packagesFolder : folder;
componentTypesFolder := rootFolder().addFolder("ComponentTypes",
"ComponentTypes");

….

Aspect

Weaving

Fig. 4. C-SAW Aspect Model Weaver Framework

propagation, and the application of specific properties) to the model nodesb. Each
metamodel will have unique strategies that can be applied to a model through
C-SAW. A strategy provides a hook that the weaver can call in order to process
node-specific application and propagation. Thus, strategies offer numerous ways
for instrumenting nodes in a model with crosscutting concerns. A strategy call
in an aspect implements the binding and parameterization of the strategy to all
the model nodes specified by the aspect.

3.3. Resolving UAV Crosscutting Modeling Challenges with

C-SAW

As described in Section 2.3, the modeling concern related to application deployment
has been decomposed into multiple views along the dimension of the underlying
CCM run-time. However, this modularization results in related concepts from the
dimensions of individual components and assemblies to be non-localized and split
across multiple entities. This section describes how C-SAW is used to modularize
the concepts related to individual components and assemblies. The approach takes

b“model nodes” refer to modeling elements that are defined in the metamodel, and serve as
visualization elements in the domain model
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advantage of aspect-oriented model weaving to fill in the information into the various
artifacts that are necessary to deploy the UAV application.

1: aspect Deploy()
2: {
3: // Create a folder called "ImplArtifacts"
4: implementationArtifactsFolder
5: := rootFolder().addFolder("ImplementationArtifacts", "ImplArtifacts");
6:
7: // Create a folder called "Packages"
8: packagesFolder := rootFolder().addFolder("ComponentPackages", "Packages");
9:
10: // Retrieve component assembly, and invoke strategy
11: rootFolder().findFolder("ComponentImplementations").models()
12: ->select(f | f.kindOf() == "ComponentImplementationContainer")
13: ->models()->select(p | p.kindOf() == "ComponentAssembly")
14: ->models()->select(c | c.kindOf() == "Component")
15: ->WeaveDeploymentArtifacts();
16: }

Aspect Listing 1: Deployment Modeling Aspect

The task of modularizing the concerns of deployment begins with defining a
modeling aspect in C-SAW. Aspect Listing 1 shows a snippet of the definition of
the Deploy aspect. This modeling aspect defines the tasks that a model engineer
typically performs manually. It enables creation of different folders, which will con-
tain the different orthogonal entities (e.g., implementation artifacts and component
packages) needed to deploy an application using CCM. The initial creation of these
folders is similar to inter-type declarations in AspectJ [15]. Specifically, lines 4
and 5 create a new ImplementationArtifacts folder called ImplArtifacts (note
that the first parameter of the addFolder() function indicates the folder type and
the second parameter represents the name of the folder) under the root folder of
a UAV model. Similarly, line 8 creates a new ComponentPackages folder named
Packages. This aspect has been extended to cover all the different activities that
were discussed in Section 2.3. Due to space constraints, we have not shown all of
the different entities that are created by this aspect.

After creating the required folders, the Deploy aspect determines all com-
ponent assemblies, which contain the definitions of the component interactions.
The component assemblies are discovered by the weave-time introspection fa-
cilities that are provided by ECL. As shown from line 11, a component as-
sembly can be retrieved from the top level ComponentImplementations folder’s
ComponentImplementationContainer models. For each component model in the
component assembly, the WeaveDeploymentArtifacts strategy is applied, as shown
in Strategy Listing 1. Thus, this strategy is applied across model boundaries.

WeaveDeploymentArtifacts aggregates the different strategies that need to be
applied to each individual component. For brevity, we illustrate just two such strate-
gies — ImplementationArtifacts (as shown in line 3) and PackageDefinition

(line 4) — which are necessary to solve the challenges described in Section 2.3.2
and Section 2.3.4. Several other deployment strategies have been created, but are
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1: strategy WeaveDeploymentArtifacts()
2: {
3: ImplementationArtifacts();
4: PackageDefinition();
5: }

Strategy Listing 1: Weave Deployment Artifacts Strategy

not shown here in order to keep the example concise.

1: strategy ImplementationArtifacts()
2: {
3: component := self;
4: componentName := component.getName();
5:
6: // Create an instance of model ArtifactContainer
7: artContainer := rootFolder().findFolder("ImplArtifacts")
8: .addModel("ArtifactContainer", componentName);
9:
10: // Create Foo_exec, Foo_stub and Foo_svnt
11: ia_exec := artContainer.addAtom("ImplementationArtifact", componentName + "_exec");
12: ia_stub := artContainer.addAtom("ImplementationArtifact", componentName + "_stub");
13: ia_svnt := artContainer.addAtom("ImplementationArtifact", componentName + "_svnt");
14:
15: // Set the attribute "location" of Foo_exec, Foo_stub and Foo_svnt
16: ia_exec.setAttribute("location", componentName + "_exec");
17: ia_stub.setAttribute("location", componentName + "_stub");
18: ia_svnt.setAttribute("location", componentName + "_svnt");
19:
20: // Create a reference to Foo_stub
21: ia_stubRef
22: := artContainer.addReference("ImplementationArtifactReference", ia_stub);
23:
24: // Create a connection between Foo_svnt and Foo_stub reference
25: artContainer.addConnection("ArtifactDependsOn", ia_svnt, ia_stubRef);
26:
27: // Create a connection between Foo_exe and Foo_stub reference
28: artContainer.addConnection("ArtifactDependsOn", ia_exec, ia_stubRef);
29: }

Strategy Listing 2: Implementation Artifact Strategy

The ImplementationArtifacts strategy shown in Strategy Listing 2 is respon-
sible for creating the different auxiliary shared libraries that are needed to imple-
ment a single monolithic component. Specifically, the strategy first retrieves the
component (line 3) and its name (line 4). It then adds an ArtifactContainer model
with the component name under the ImplementationArtifacts folder that was
created in the Deploy aspect. From line 11 to line 18, three different component
libraries are built within the ArtifactContainer model as ImplementationArtifact
atoms by extending the component name with different suffixes (i.e., exec, stub

and svnt). Lines 21 and 22 create a reference to stub. Finally, two dependencies
are established in line 25 and line 28 as connections between the library atoms. It
can be seen that this strategy modularizes:

• Creation of all implementation artifacts mandated by the underlying run-time,
• Creation of implementation artifacts that adhere to a specific naming convention,
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• Keeping track of dependencies between a single monolithic component and its
associated implementation artifacts,

• Setting attribute values (e.g., location and entry points) in shared libraries.

By modularizing the different activities associated with defining implementation
artifacts and allowing for customizability based on idiosyncrasies of specific run-
time environments, C-SAW helps resolve the challenge described in Section 2.3.2
by modularizing artifact definitions for all available components. This is a very time
consuming and error prone task if performed manually across multiple components.

1: strategy PackageDefinition()
2: {
3: component := self;
4: componentName := component.getName();
5:
6: // Create an instance of model PackageContainer
7: pkgContainer := rootFolder().findFolder("Packages")
8: .addModel("PackageContainer", componentName);
9:
10: // Create an instance of atom ComponentPackage
11: compPackage := pkgContainer.addAtom("ComponentPackage", componentName);
12:
13: // Create a reference to the current component
14: componentRef := pkgContainer.addReference("ComponentRef", component);
15:
16: // Create a connection between ComponentPackage and component reference
17: pkgContainer.addConnection("PackageInterface", compPackage, componentRef);
18: }

Strategy Listing 3: Package Definition Strategy

The PackageDefinition strategy shown in Strategy 3 is responsible for creating
a package and associating a component assembly with the component package.
Line 11 creates a component package as an atom within the package container
that was constructed in line 7. Line 17 builds an association connection between
this component package and the component reference that was created in line 14.
Similar strategies were defined to solve the challenges outlined in Section 2.3.1,
Section 2.3.3 and Section 2.3.5. By combining specification aspects and strategies,
C-SAW enhances the utility of a DSML like PICML, and resolves the challenges
associated with a pure MDD-based approach to improve development of component-
based distributed systems.

4. Related Work

The object-oriented and structured paradigms each had their genesis at the im-
plementation level, and were applied afterward to earlier phases of the software
lifecycle. A similar trend has occured in the investigation of aspect-oriented con-
cepts. Although the initial emphasis has been on aspect-oriented programming, there
is a growing body of research that is focused on applying aspects and other new
separation of concerns ideas to non-code artifacts [3]. Over the past decade, AOSD
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techniques have been investigated at all levels of the development lifecycle [5], in-
cluding requirements engineering and early design [23], and detailed analysis and
design [4].

Several researchers have investigated the application of AOSD concepts within
the context of the UML [6, 8, 24]. In fact, a very successful workshop on aspect-
oriented modeling (now in its 8th edition) has served as a common venue for re-
searchers working in the new aspect modeling area [1]. These efforts have yielded
guidelines for describing crosscutting concerns at higher levels of abstraction. A
focal point of these efforts is the development of notational conventions that assist
in the documentation of concerns that crosscut a design. Such notational conven-
tions improve the ability to modularize a design that is described as a UML model.
Moreover, the initial aspect modeling contributions have the important trait of im-
proving the traceability of crosscutting concerns from design to implementation.
From this perspective, the general goals of aspect modeling are similar to the ob-
jectives presented in this paper.

Many of the UML aspect modeling efforts have done much to improve the appli-
cability of AOSD at the modeling level, but they generally tend to treat the concept
of aspect-oriented design as an adjective; i.e., the focus has been on the notational
and decorative attributes concerned with aspects and their representation within
UML. The majority of aspect modeling research differs from the approach presented
in this paper. The application of C-SAW is much more than a notational abstraction.
The research into C-SAW has concentrated on the idea of building actual weavers
for domain models; i.e., aspect modeling is approached as a specific application of
model transformation, where models are evolved to specify crosscutting properties.
The contribution of C-SAW, and the application to component-based distributed
systems, is to consider aspect modeling as a verb. That is, viewing AOSD as a
mechanism to improve the modeling task, itself, by providing the ability to quan-
tify properties across a model during the system modeling process. This action is
performed by utilizing a weaver that has been constructed with the concepts of
modeling in mind. A research effort that also appears to have this goal in mind
can be found in [27], which is focused on UML models, but provides transformation
capabilities in addition to notational abstractions to represent aspects.

5. Concluding Remarks

Although MDD approaches to building distributed systems have inherent advan-
tages over a purely programmatic approach, additional tools are needed to assist in
modularizing crosscutting concerns that are not effectively captured by modeling
languages like PICML. To address this problem, this paper described the aspect-
oriented model weaving capabilities of the Constraint-Specification Aspect Weaver
(C-SAW). Using the C-SAW concepts — strategies and modeling aspects — many
of the problems associated with scattered pieces of deployment related artifacts and
model scalability can be effectively addressed. Weaving at the modeling level is a
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form of transformation that enables a developer to evolve and maintain consistency
across numerous views that are available in a modeling language. The key contribu-
tion is an ability to make changes across a model in many locations in an automated
manner.

In the specific context of distributed component-based systems, the primary
lessons learned concern the productivity benefits that can be achieved from an au-
tomated approach to evolving domain-specific models in the presence of crosscutting
concerns. A manual approach to the specific challenges presented in Section 2.3 is
tedious and error-prone. When the number of components increases, the number
of steps required to make such modifications increase accordingly. Because of the
crosscutting nature of model properties and constraints, the manual modification
of models hampers productivity because of all the mouse clicking and typing in-
volved in each change. An aspect model weaver like C-SAW offers needed support
to evolve crosscutting concerns that appear in modeling interface and artifact def-
initions. Other concerns (e.g., component interactions, component packaging, and
component mapping) also require the model engineer to explore various design al-
ternatives in a way that is not practical through manual modification. The lessons
learned in this context add to the growing number of application areas to which
we have applied C-SAW, including mission computing avionics [12] and hardware
configuration of physics-based applications [13].

There are several limitations to C-SAW that are being addressed as future work.
One limitation, as shown in Figure 4, is that C-SAW only works within a single
metamodel. That is, model transformations cannot occur between models that are
defined by different metamodels. This is not a problem for the types of crosscutting
deployment concerns mentioned in this paper, but this limitation does prohibit more
advanced transformations to be performed in other domains. We are working toward
a future version of C-SAW that allows the specification of model transformations
across multiple metamodels. A second limitation of C-SAW is the lack of support
to help ensure the correctness of a modeling aspect and strategy. Currently, there
is no capability provided to the model engineer to help assist in determining if
an error exists in a C-SAW transformation. To address this issue, we are currently
developing a testing and debugging capability within C-SAW. This would allow test
cases to be constructed to determine if the ECL is written correctly to perform a
desired transformation. If an error in the ECL exists, a debugger for the ECL would
allow a model engineer to step through each line of ECL and examine the affect
that occurs within the model.

In summary, this paper has demonstrated the application of aspect modeling to
address the deployment concerns of distributed component-based systems modeled
using PICML. The combination of MDD tools like PICML, and aspect-oriented
model weavers like C-SAW, are crucial to realizing the goal of automated design
and development of component-based middleware systems.
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