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Abstract 

Several adaptation approaches have been devised to ensure end-to-end quality-of-service (QoS) for enterprise dis-

tributed systems in dynamic operating environments. Not all approaches are applicable, however, for the stringent 

accuracy, timeliness, and development complexity requirements of distributed real-time and embedded (DRE) sys-

tems. This paper empirically evaluates constant-time supervised machine learning techniques, such as artificial 

neural networks (ANNs) and support vector machines (SVMs), and presents a composite metric to support quantit-

ative evaluation of accuracy and timeliness for these adaptation approaches. 
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1. Introduction 

Emerging trends and challenges. Enterprise distri-

buted real-time and embedded (DRE) systems manage 

resources and data that are vital to organizations or 

projects. Examples include shipboard computing envi-

ronments, air traffic management systems, and recovery 

operations in the aftermath of regional or national dis-

asters. These systems often adjust their operations based 

on their external environment. For example, search and 

rescue missions as part of disaster recovery operations 

can adjust the image resolution used to detect and track 

survivors depending on the resources available (e.g., 

computing power, network bandwidth) [1]. 

Many enterprise DRE systems autonomically mon-

itor their environment and modify their modes as the 

environment changes since manual adjustment is too 

slow and error prone. For example, a shift in network 

reliability can prompt quality-of-service (QoS)-enabled 

middleware, such as the OMG Data Distribution Service 

(DDS) [2], to change mechanisms (such as the transport 

protocol used to deliver data) since some mechanisms 

provide better reliability than others in some environ-

ments. Likewise, cloud computing applications, where 

elastically allocated resources (e.g., CPU speeds and 

memory) cannot be characterized accurately a priori, 

may need to adjust to available resources (such as com-

pression algorithms optimized for given CPU power and 

memory) at system startup. The mission(s) of the sys-

tem could be jeopardized if these adjustments take too 

long. 

One way to adapt enterprise DRE systems auto-

nomically involves the use of policy-based approaches 

[3] that externalize and codify logic to determine the 

behavior of managed systems. Policy-based approaches 
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provide deterministic response times to perform appro-

priate adjustments given changes in the environment. 

The complexity of developing and maintaining policy-

based approaches for enterprise DRE systems can be 

unacceptably high and compromise trustworthiness, 

however, since developers must determine applicable 

policies for different environmental properties. Moreo-

ver, developers must manage the interaction of policies 

to provide needed adjustments. 

Machine learning techniques [4, 5] support algo-

rithms that allow systems to adjust behavior based on 

empirical data (e.g., inputs from the environment). 

These techniques can be used to support autonomic 

adaptation by learning appropriate adjustments to vari-

ous operating environments. Unlike policy-based ap-

proaches, however, machine learning techniques can 

automatically recognize complex sets of environment 

properties and make appropriate decisions accordingly. 

Conventional machine learning techniques, such as 

decision trees and reinforcement learning, address auto-

nomic adaptation for non-DRE systems [6]. These tech-

niques are not well-suited for enterprise DRE systems, 

however, since they do not provide data-independent 

bounded times when determining adjustments [7]. Rein-

forcement learning techniques [8] explore the solution 

space until an appropriate solution is found, regardless 

of the elapsed time. Decision tree techniques have time 

complexities dependent upon the specific data and can-

not be determined a priori. Moreover, decision trees 

may contain branches that are much longer than others, 

making the determination of appropriate adaptations 

unpredictable, which is undesirable in DRE systems. 

Supervised machine learning techniques use training 

data to guide learning [9]. These techniques can provide 

constant time complexity along with perfect accuracy in 

determining appropriate adaptations for environments 

on which they have been trained (i.e., known a priori). 

Techniques that trade off generality for specificity with 

perfect accuracy (i.e., are specialized for the environ-

ments they have seen and on which they have been 

trained) are called ―overfitted‖ [10], which makes the 

accuracy equal to policy-based approaches (i.e., 100% 

accurate). Moreover, several techniques with constant 

time complexity that are not overfitted provide high 

accuracy for determining adaptations for environments 

unknown until runtime.  

Some techniques provide lower response times with 

lower accuracy, whereas others provide higher accuracy 

and response times. It is hard to manage (1) overfitted 

and non-overfitted techniques, (2) the accuracy and re-

sponse times for these constant time techniques, and (3) 

the trade-offs between them. Developers must empiri-

cally evaluate the techniques, combine the results of 

accuracy and response time manually, and determine the 

most appropriate technique. 

Solution approach → Integrated supervised ma-

chine learning techniques and composite metrics to 

guide trade-offs of accuracy and response times. This 

paper describes our timely-integrated machine learning 

(TIML) approach to integrating the following tech-

niques: (1) overfitted supervised machine learning to 

respond perfectly to environments known a priori, (2) 

non-overfitted techniques to respond to environments 

unknown until runtime with high accuracy and constant 

response times, and (3) a composite metric to evaluate 

the accuracy and response time of different techniques 

quantitatively. TIML supports low-latency, constant-

time complexity for determining adaptations to operat-

ing environments, 100% accuracy for environments 

known a priori, and high accuracy for environments 

unknown until runtime. We evaluate techniques for 

managing both response times and accuracy.  

Our prior work [11, 12, 13] presented an architec-

ture for autonomic adaptation and evaluated machine 

learning techniques without pinpointing the fastest re-

sponse times. The work presented in this paper adds 

new experimental data and analysis, including fastest 

response times, as well as providing a new composite 

metric to evaluate accuracy and response time. We (1) 

overfit an artificial neural network (ANN) [14] (which 

is a technique modeled on interactions of neurons in the 

human brain) to retain as much information about spe-

cific environment configurations and adjustments as 

possible (e.g., greatly increasing the number of connec-

tions between input environment characteristics and 

output adjustments used in an ANN), (2) integrate non-

overfitted ANNs and support vector machines (SVMs) 

[15] (which generate the boundaries between different 

groupings to maximize the differences between group-

ings and aid in classification) to provide low response 

times and high accuracy for environments unknown 

until runtime, and (3) evaluate the machine learning 

techniques using the AccuLate metric that quantitatively 

combines accuracy and latency. Our ADAptive Middle-

ware And Network Transports (ADAMANT) frame-

work integrates TIML with the DDS QoS-enabled mid-

dleware to ensure accurate, timely, and predictable 

adaptation to dynamic environments. 

The remainder of this paper is structured as follows. 

Section 2 provides a motivating example to illustrate the 

need for evaluating both timeliness and accuracy of 

machine learning approaches. Section 3 outlines key 

challenges for enterprise DRE systems in dynamic envi-

ronments. Section 4 presents our solution approach of 

integrating multiple machine learning techniques and 

using composite metrics for quantitative evaluation. 

Section 5 describes our experimental results. Section 6 

compares our work with related research. Finally, Sec-

tion 7 concludes with lessons learned. 
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2. Motivating Example - Search and Rescue 

(SAR) Operations for Disaster Recovery 

To motivate the need for integrating machine learning 

techniques, this section describes the challenges asso-

ciated with search and rescue (SAR) operations. SAR 

operations are part of disaster recovery enterprise DRE 

systems which manage relief efforts in the aftermath of 

a disaster, such as a hurricane or earthquake. SAR oper-

ations help locate and extract survivors in a large met-

ropolitan area after a regional catastrophe. SAR opera-

tions use unmanned aerial vehicles (UAVs), existing 

operational monitoring infrastructure (e.g., building or 

traffic light mounted cameras intended for security or 

traffic monitoring), and (temporary) datacenters to re-

ceive, process, and transmit event stream data from sen-

sors and monitors to emergency vehicles that can be 

dispatched to areas where survivors are identified. 

Fig. 1 shows an example SAR scenario where infra-

red scans along with GPS coordinates are provided by 

UAVs while video feeds are provided by existing infra-

structure cameras. These infrared scans and video feeds 

are then sent to a datacenter, where they are processed 

by fusion applications to detect survivors. Once a survi-

vor is detected the application can develop a three di-

mensional view and highly accurate position informa-

tion so that rescue operations can commence. 

 

Fig. 1: Search and Rescue Motivating Example 

3. Key Challenges of Enterprise DRE Systems 

This section summarizes key challenges that arise when 

developing autonomic enterprise DRE systems, such as 

the datacenter in the SAR motivating example in Sec. 2. 

3.1. Challenge 1: Timely Adaptation in Dynamic 

Environments 

Due to the dynamic environment inherent in enterprise 

DRE systems, application operations (such as image 

compression to reduce network traffic or disseminating 

data with timeliness and reliability properties) must ad-

just in a bounded—ideally constant time—manner as 

the environment changes. Operations that cannot adjust 

quickly and in a bounded amount of time will fail to 

perform adequately when resources change. For exam-

ple, if resources are lost or withdrawn—or demand for 

information increases—operations must be configured 

to accommodate these changes with appropriate respon-

siveness to maintain a minimum level of service. If re-

sources increase or demand decreases, operations 

should adjust as quickly as possible to provide higher 

fidelity or more expansive coverage. Manual modifica-

tion is often too slow and error prone to maintain QoS. 

 

3.2. Challenge 2: Accurate Adaptation to Dy-

namic Environments 

Application operations in enterprise DRE systems must 

accurately adjust to changes in the environment. As 

changes in enterprise DRE systems occur (e.g., in-

creases in networking capability or requests for data 

from new senders and receivers), the system should take 

advantage of additional resources or provide access to 

additional data producers and consumers while main-

taining QoS. For a given environment configuration, the 

enterprise DRE system must accurately implement ad-

justments to attain an appropriate response and fully 

leverage existing resources. 

3.3. Challenge 3: Flexibility in Trading Off Accu-

racy and Timeliness 

Application operations in enterprise DRE systems must 

be able to trade-off adaptation accuracy with timeliness. 

The situation may demand that finding a less accurate 

adaptation in time is better than finding an ideal adapta-

tion too late [16]. For example, selecting an adaptation 

that responds more quickly but has a lower probability 

of accuracy may be needed when response time is cru-

cial (e.g., failure of critical infrastructure is imminent or 

groups of injured survivors must be detected quickly). If 

perfect detection of survivors is performed too late, it 

may not be possible to rescue the survivors. 

4. Solution Approach - Integrating Machine 

Learning Techniques and Composite Metrics 

Timely integrated machine learning (TIML) integrates 

multiple machine learning techniques to provide both 

(1) perfect accuracy and low response latency in deter-

mining appropriate adjustments, such as adjustments to 

transport protocols to support QoS in dynamic environ-

ments, for environments known a priori and (2) high 

accuracy for environments unknown until runtime. The 

AccuLate composite metric provides quantitative guid-

ance for balancing accuracy and response time latency. 

This approach enables enterprise DRE systems to adjust 
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to their environments autonomically and evaluate accu-

racy and response latency quantitatively. Moreover, we 

leverage techniques that provide the constant time com-

plexity assurance needed for enterprise DRE systems. 

TIML overfits ANNs to retain a high degree of in-

formation about specific environment configurations 

and adjustments (e.g., increasing the number of hidden 

nodes used in an ANN). Hidden nodes are the computa-

tional components that provide connections between the 

relevant properties of the operating environment (e.g., 

CPU speed, network reliability) with the adjustments 

needed for those environments. As the ANN learns, it 

strengthens or weakens the connections between inputs, 

hidden nodes, and outputs to provide appropriate ad-

justments. Increasing the number of hidden nodes in-

creases the level of detail that the ANN maintains. 

Moreover, TIML utilizes SVMs configured with differ-

ent kernels (i.e., approaches to generating additional 

features from the environment configurations [17]) to 

increase accuracy over ANNs for environments un-

known until runtime. Our approach resolves the chal-

lenges presented in Sec. 3 as described below. 

 Machine learning techniques that use a static num-

ber of equations for learning address Challenge 1 in 

Sec. 3.1 by providing predictable time complexities 

for determining appropriate adjustments. In particu-

lar, we apply overfitted ANNs for environments 

known a priori and multiple machine learning tech-

niques for environments unknown until runtime to 

support enterprise DRE systems by incorporating the 

appropriate QoS-enabled middleware and transport 

protocol adjustments based on accuracy and timeli-

ness concerns. When machine learning techniques 

are used in an enterprise DRE system, the time 

needed to make an appropriate adjustment is 

bounded by a constant number of equations. 

 

 Integrating machine learning techniques address 

Challenge 2 in Sec. 3.2 by increasing the accuracy 

for environments known a priori and increasing the 

accuracy for environments unknown until runtime. 

Our approach increases the accuracy of determining 

appropriate adjustments by using an overfitted ANN 

for environments known a priori and integrated ma-

chine learning techniques that provide increased ac-

curacy as compared to overfitted ANNs. Specifi-

cally, overfitting ANNs provides accuracy equal to 

policy-based approaches for environments known a 

priori, while non-overfitted techniques increase ac-

curacy for environments unknown until runtime. 

 

 Incorporating multiple machine learning techniques 

and evaluating accuracy and timeliness simulta-

neously addresses Challenge 3 in Sec. 3.3 by sup-

porting multiple techniques with different levels of 

accuracy and response times for environments un-

known until runtime and providing a composite me-

tric to evaluate the trade-offs of these different tech-

niques quantitatively. TIML supports ANNs and 

SVMs with various configurations. Integrating these 

ANNs and SVMs provides flexibility to support 

timeliness and accuracy for systems that need to bal-

ance the two concerns. Moreover, the AccuLate 

composite metric described in Sec. 5.3 allows quan-

titative evaluation of these techniques. 

5. Experimental Results 

The section presents the results of experiments we con-

ducted using ANNs and SVMs to determine timeliness, 

accuracy, and the balance between them to show the 

SAR datacenter leveraging ADAMANT in selecting an 

appropriate transport protocol configuration for a given 

operating environment. The experimental input data 

used to train the machine learning techniques include 

ADAMANT with multiple properties of the operating 

environment varied (e.g., CPU speed, network band-

width, DDS implementation, percent data loss in the 

network), along with multiple properties of the applica-

tion being varied (e.g., number of receivers, sending rate 

of the data), as would be expected with SAR operations. 

We collected 394 inputs from previous experiments 

[18] where an input consists of data values that deter-

mine a particular operating environment (e.g., CPU 

speed, network bandwidth, number of data receivers, 

sending rate). We also provided the expected output to 

the ANNs and SVMs which is the transport protocol 

that provided the best QoS with respect to data reliabili-

ty, average latency, and jitter (i.e., standard deviation of 

the latency of network packets). An example of one of 

the 394 inputs is the following: 3 data receivers, 1% net-

work loss, 25Hz data sending rate, 3GHz CPU, 1Gb 

network, using the OpenSplice DDS implementation, 

and specifying reliability and average latency as the 

QoS properties of interest. Based on our experiments, 

the corresponding output would be the NAK-based mul-

ticast protocol with a 1 ms retransmission timeout. 

5.1. Evaluating the Accuracy of ANNs and SVMs 

We addressed the SAR accuracy requirement by first 

training the ANNs and SVMs on the 394 inputs men-

tioned above. We used the Fast Artificial Neural Net-

work (FANN) library [19] as our ANN implementation 

due to its configurability, documentation, and open-

source availability. FANN offers extensive configura-

bility for the neural network including the number of 

hidden nodes connecting inputs with outputs. For 
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SVMs, we used the libSVM library [20] due to its confi-

gurability, documentation, and open-source availability. 

To determine the most accurate ANN and SVM we 

ran training experiments with the ANNs using different 

numbers of hidden nodes and SVMs with different ker-

nels. Only one SVM, however, provided 100% accuracy 

for the environment configurations on which they had 

been trained (i.e., known a priori). For a given number 

of hidden nodes we trained the ANN 10 different times. 

The weights of the ANN determine how strong connec-

tions are between nodes. The weights are randomly in-

itialized and these initial values have an effect on how 

well and how quickly the ANN learns. 

Fig. 2 shows the accuracies for the ANN configured 

with 3, 4, 6, and 12 hidden nodes over 10 training runs. 

Fig. 2 also shows the effect of random initial weights on 

the accuracy of the ANN since the accuracy can vary 

across training runs. Accuracy was determined by que-

rying the ANN with the data on which it was trained. 

 

Fig. 2: ANN Accuracy for Known Environments 

100% accurate classification was generated at least 

once with all hidden node configurations except when 

using 3 hidden nodes. The ANN with 12 hidden nodes 

provided the best accuracy across all the training runs—

100% accuracy all but 3 times out of 10 which would 

make it more likely to provide 100% accuracy for any 

single training run. However, once a single 100% accu-

rate classification has been found it provides the maxi-

mum accuracy. Therefore we chose the ANN with 4 

hidden nodes since it has the lowest response time as 

shown in Sec. 5.2. 

No ANNs configured with hidden nodes fewer than 

4 and only a single SVM configuration provided 100% 

accurate classifications for the test data. We do not in-

clude the accuracy data for SVMs since the SVM re-

sponse times are an order of magnitude greater than 

ANNs as shown in Sec. 5.2. The training data values 

had to be scaled from -1 to 1 in order to achieve 100% 

accuracy for the configurations in Fig. 2. 

 

Fig. 3: ANN Accuracy for Unknown Environments 

Fig. 3 and Fig. 4 present accuracy results for ANNs 

and SVMs respectively for operating environments un-

known until runtime. The ANNs are randomly assigned 

initial weights for the connections between nodes which 

accounts for variations in accuracy across training runs. 

We average the accuracy results across all runs below. 

The accuracy for SVMs is dependent upon scaling of 

the input and output training data. The different scaling 

scenarios are presented in Fig. 4. 

To evaluate accuracy with unknown environments 

we used 2-fold cross-validation, where 394 environment 

configurations are split into two mutually exclusive 

training and testing data sets [21]. ANNs and SVMs are 

trained using training data and evaluated using testing 

data. The highest average accuracy for ANNs across the 

10 training runs is produced with 12 hidden nodes (i.e., 

76.09% average accuracy). The second highest average 

accuracy is produced with 6 hidden nodes (i.e., 72.84% 

average accuracy). SVMs produce higher accuracies, 

however, (i.e., 86.29% accuracy for SVMs using either 

the RBF or polynomial kernel). 
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Fig. 4: SVM Accuracy for Unknown Environments 

5.2. Evaluating the Timeliness of ANNs and SVMs 

As described in Challenge 2 in Sec. 3.2, the datacenter 

for SAR operations requires timely configuration ad-

justments. This section provides timing information for 

ANNs and SVMs when queried for an optimal transport 

protocol. We used a 3 GHz CPU with 2GB of RAM 

running Fedora Core 6 with real-time extensions. Time-

liness was determined by querying the ANNs and SVMs 

with all 394 inputs on which they were trained. A high 

resolution timestamp was taken before and after each 

call to the ANNs and SVMs. 

 

Fig. 5: ANN Average Response Times (μseconds) 

Fig. 5 shows the average response times for 10 sepa-

rate experiments where for each experiment we query 

the ANN for each of the 394 inputs. The figures show 

that ANNs provide timely and consistent responses. As 

expected, the response times using more hidden nodes 

are slower than response times with fewer hidden nodes. 

The increase in latency is less than linear, however (e.g., 

response times using 12 hidden nodes are less than 

twice that using 6 hidden nodes). 

Fig. 6 shows the response times for SVMs confi-

gured with different kernels and data scaling ap-

proaches. The SVM with the linear kernel tends to have 

the lowest response time with the polynomial and RBF 

kernels being the next most responsive respectively. 

Scaling the environment configuration input data and 

the transport protocol output response has an effect on 

the response times as well since this scaling affects the 

specific kernels that are created for the data. 

 

Fig. 6: SVM Average Response Times (μseconds) 

5.3. Evaluating the Trade-offs of Accuracy and 

Timeliness for ANNs and SVMs 

Deciding which machine learning technique to use for 

environments known a priori is straightforward. The 

ANN configured with 4 hidden nodes provides a confi-

guration with 100% accuracy (shown in Fig. 2) and the 

lowest latency with a 100% accurate configuration 

(shown in Fig. 5). It is more challenging, however, to 

decide which technique to use for environments un-

known until runtime. ANNs generally provide a lower 

response time, while SVMs provide higher accuracy. 

 

Fig. 7: AccuLate Formula 

We created the AccuLate composite metric to pro-

vide quantitative evaluation of machine learning tech-

niques when considering both accuracy and response 

latency. As shown in Fig. 7, the AccuLate metric mul-

tiplies the inaccuracy percentage of a technique by its 

average latency. The number of total samples minus the 

number of correct classifications yields the number of 

inaccurate classifications. This result is divided by the 

number of total samples to produce inaccuracy as a frac-

tion. We multiply the inaccuracy fraction by 100 to get 

the inaccuracy percentage. This multiplication by 100 

gives the inaccuracy equal weight with the latency when 

multiplying the two values (i.e., the inaccuracy values 

range from 0 to 100 while the latency values for our 

current timing experiments range from single digits to 

double digits of microseconds). 

We then add one to the inaccuracy percentage to ac-

count for perfect accuracy where the inaccuracy value 
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would otherwise be zero making the entire AccuLate 

value zero. Adding one to the inaccuracy percentage 

allows AccuLate to produce a useful quantitative value 

for comparing machine learning techniques even when 

the techniques are 100% accurate. The utility of this 

adjustment is shown for some machine learning tech-

niques (e.g., overfitted ANNs) when they are queried 

against the data on which they have been trained (i.e., 

known environments). 

We use inaccuracy rather than accuracy as a factor 

in the AccuLate formula so that a technique that has 

both desirable qualities of high accuracy/low inaccuracy 

and low latency will produce a lower AccuLate value 

than a technique that has either (1) the same high accu-

racy and higher latency or (2) lower accuracy and the 

same latency. The inaccuracy percentage is based on 2-

fold cross-validation as outlined in Sec. 5.1 which gives 

guidance as to how a machine learning technique will 

perform given an operating environment configuration 

on which it has never been trained. The AccuLate for-

mula can be easily modified to use units of measure-

ment other than microseconds for latency. We use mi-

croseconds since the techniques we evaluated all re-

sponded within 10s of microseconds. 

 

Fig. 8: AccuLate Values for 100% Accuracy Known Envs. 

Fig. 8 shows the AccuLate values for the various 

machine learning techniques we evaluated for operating 

environments known a priori when 100% accuracy was 

achieved The ANN configured with 4 hidden nodes 

produces the best AccuLate value since it provides 

100% accuracy (i.e., for 5 different classification runs) 

and the lowest overall latency. These values are equal to 

the values shown in Fig. 5 when 100% accuracy is 

achieved which highlights AccuLate’s utility in com-

paring techniques when accuracy is equal. 

 Fig. 9 shows the AccuLate values for ANNs when 

operating environments were unknown until runtime. 

This figure shows that when accuracy and latency are 

given roughly equal weight (i.e., same order of magni-

tude for values), the ANN with more hidden nodes pro-

vides a better balance of both accuracy and low latency 

for deciding an appropriate transport protocol for a giv-

en operating environment. The ANN with 12 hidden 

nodes consistently provides the best (i.e., lowest) Accu-

Late values while the ANN with 3 hidden nodes pro-

vides the worst (i.e., highest) values. 

 

 Fig. 9: ANN AccuLate Values for Unknown Envs. 

Fig. 10 shows the AccuLate values for SVMs when 

operating environments were unknown until runtime. 

This figure shows that generally the SVM with the li-

near kernel produces the best (i.e., lowest) AccuLate 

value. The figure also highlights that scaling the data 

(i.e., the input operating environment and the output 

transport protocol) has an effect on the AccuLate values 

due to the corresponding change in accuracy.  

 

Fig. 10: SVM AccuLate Values for Unknown Envs. 

In particular, when no scaling of the data is done the 

SVM with the linear kernel produces the worst (i.e., 

highest) AccuLate values. Scaling the operating 

environment data to be between -1 and 1 produces the 

best AccuLate values for all the SVMs including the 

worst performing SVM using this scaling (i.e., with the 

RBF kernel) which produces results better than any 

other kernel using a different scaling approach. 

AccuLate values can also be useful in evaluating 
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machine learning techniques within a latency threshold. 

These values can aid real-time systems with deadlines 

where several techniques may exist that fulfill the tim-

ing requirements (i.e., are within the deadline). Based 

on response times shown in Fig. 5 and Fig. 6, if the 

average response time must be below 2.5 microseconds 

then the relevant techniques are ANNs configured with 

3, 4, and 6 hidden nodes. For unknown environments,  

 Fig. 9 shows that the ANN with 6 hidden nodes 

provides the best (i.e., lowest) AccuLate values relative 

to the required deadline with an average AccuLate value 

of 56.22 (as compared to values of 69.26 and 119.22 for 

ANNs with 4 and 3 hidden nodes respectively). 

6. Related Work 

In this section we present research work related to our 

work on the timeliness and accuracy of supervised ma-

chine learning for adaptation. 

6.1. Integration of Computational Intelligence 

Techniques 

De Castro et al. [22] have conducted research on the 

diagnosis of Alzheinmer’s disease using a hybrid model 

of influence diagrams and multicriteria decision making 

methods. An influence diagram is a generalization of a 

Bayesian network. It provides a representation that is 

both easily understandable between decision-maker and 

analyst and mathematically consistent [23]. Multicriteria 

methods address complex decision making problems 

where several people and several different criteria are 

involved [24]. 

This work combines influence diagrams and multi-

criteria methods to aid in the determination of which 

questions are the most relevant in decision making. This 

work is done within the context of diagnosis of Alz-

heinmer’s disease. Combining both influence diagrams 

and multicriteria methods provides a more robust and 

complete solution for decision support when uncertainty 

is a factor. However, this work does not focus on the 

timeliness concerns for DRE systems (as outlined in 

Challenge 1) as is provided by TIML and the AccuLate 

composite metric. 

Huan et al. [25] propose a dynamic model for inte-

grating multiple machine learning techniques. The goal 

of the model is to incorporate several learning tech-

niques dynamically as needed to produce the best over-

all machine learning for the requirements of a given 

environment (e.g., the need for fast responses, the need 

for accurate responses). This work differs from our ap-

proach in TIML in that TIML allows concerns of both 

timeliness and accuracy to be considered concurrently 

(as presented in Challenge 3) and specifically addresses 

the concern of bounded—and ideally constant—

timeliness needed for DRE systems (as outlined in Chal-

lenge 1). The AccuLate composite metric is used to 

provide a quantitative evaluation in this regard. 

Fan et al. [26] have developed a machine learning 

model that integrates the machine learning techniques of 

Bayesian Clustering by Dynamics (BCD) [27] and Sup-

port Vector Machines (SVM). The model is used to 

forecast short-term electricity prices. The BCD classifi-

er partitions the space of the input training data into 

multiple subsets without a priori knowledge of the crite-

ria used for classification. The SVMs, using techniques 

for data classification and regression based on advances 

in statistical learning theory [28], are used for prediction 

in each subset. 

This work serializes the use of BCD and SVMs (i.e., 

the output of the BCD is used as the input to the SVMs) 

while not being concerned with timeliness. In contrast, 

our work in TIML selects the best machine learning 

technique based on the quantitative values produced 

using composite metrics. TIML is also focused on the 

timeliness concerns of DRE systems (as presented in 

Challenge 1). 

6.2. Machine learning in support of autonomic 

adaptation 

The Dynamic Control of Behavior based on Learning 

(DCBL) middleware developed by Vienne and Sour-

rouille [29] incorporates reinforcement machine learn-

ing in support of autonomic control for QoS manage-

ment. In addition to reducing the overall system know-

ledge required by the system developers, reinforcement 

machine learning also allows DCBL to handle unex-

pected changes. System developers are required to pro-

vide an XML description of the system. DCBL then 

uses this description together with an internal represen-

tation of the managed system to dynamically select the 

appropriate QoS. 

However, since reinforcement learning is un-

bounded in its time complexity, DCBL’s use of rein-

forcement learning does not address Challenge 1 (timely 

adaptation). The focus of DCBL is also on single com-

puters rather than addressing scalable DRE systems. 

Moreover, DCBL requires developers to specify in an 

XML file the selection of operating modes given a QoS 

level along with execution paths, which leaves manag-

ing interacting QoS to developers. Conversely, TIML 

automates the management of this complexity via ma-

chine learning techniques. 

In work on Multicast Mapping (MCM), Tock et al. 

[30] utilize machine learning for data dissemination to 

manage the scarce resources of multicast groups. MCM 

hierarchically clusters data flows so that multiple topics 

are mapped onto a single session and multiple sessions 

are mapped onto a single reliable multicast group. 

MCM’s approach manages the availability of multicast 

addresses in large-scale systems where these kinds of 
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resources can be scarce. MCM leverages machine learn-

ing to adapt as user interest and message rate change 

during different times of the day. MCM is designed only 

to address the scarce resource of IP multicast addresses 

in large-scale systems, however, rather than focusing on 

timeliness (as outlined in Challenge 1) and managing 

the trade-off between accuracy and timeliness (as out-

lined in Challenge 3) which are addressed with TIML. 

6.3. Classification Techniques for Knowledge Dis-

covery 

Wu et al. [] present work in diagnosing students with 

learning disabilities (LDs) using a knowledge discovery 

and classification tool. Previous work had been done in 

this area using ANNs and SVMs [32, 33]. However, 

assessors of LD students prefer knowledge discovery 

for verification rather than relying on the more opaque 

classifications of ANNs and SVMs. In this regard, 

rough set theory (RST) is a promising option since it not 

only performs as a classifier but can produce meaning-

ful explanations for the classifications. 

Experimental results from this work show that RST 

is a competitive approach for knowledge discovery and 

produces greater prediction accuracy than other rule-

based approaches (e.g., decision tree, ripper algorithms). 

Preprocessing has been added (e.g., clustering, discreti-

zation, reduct calculation) to improve the quality of the 

rules generated by the RST. However, this work is not 

concerned with classification timeliness (as outlined in 

Challenge 1) nor the trade-offs between timeliness and 

accuracy (as outlined in Challenge 3) in contrast to our 

work on TIML and the AccuLate composite metric.  

7. Concluding Remarks 

This paper illustrated the need to evaluate both the time-

liness and accuracy of machine learning approaches for 

adaptive enterprise DRE systems. We presented the 

AccuLate composite metric to quantitatively evaluate 

these QoS concerns together. Moreover, the results of 

the experiments presented in this paper show how inte-

grating ANNs and SVMs help address the timeliness, 

accuracy, and the trade-offs between them for these 

kinds of systems. Below we describe some lessons 

learned from our work on TIML: 

 ANNs provide perfect accuracy and low latency 

for guidance in operating environments known a 

priori. Our experiments showed that ANNs accu-

rately determined which protocol supported the de-

sired QoS for operating environments known a pri-

ori. Several different configurations of ANNs were 

able to provide perfect accuracy. We chose the 

ANN with the least number of hidden nodes that 

still provided 100% accuracy since this ANN also 

provided the lowest response latency. 

 SVMs provide higher accuracy than ANNs for 

operating environments unknown until runtime 

at a cost of higher response latency. Our experi-

ments showed that SVMs increased accuracy in de-

termining which protocol supported the desired 

QoS for operating environments unknown until 

runtime. SVMs produced a 13% increase in accu-

racy over ANNs when comparing the most accurate 

SVM with the most accurate ANN (i.e., 

86.29/76.09 – 1 = 0.13). ANNs produced a 91% de-

crease in response time over SVMs, however, when 

comparing the most responsive SVM to the most 

responsive ANN (i.e., 1 - 1.84/21.23 = 0.91). 

 Integrating ANNs and SVMs can leverage the 

strength of both approaches with the AccuLate 

providing quantitative comparisons. When 

ANNs and SVMs are integrated together in con-

stant-time, DRE systems in dynamic environments 

can leverage the low response time and accuracy of 

ANNs for operating environments known a priori 

and the accuracy of SVMs for environments un-

known until runtime. When the timeliness con-

straints of the system preclude certain techniques, 

the AccuLate metric can be used to determine 

which available technique provides the best mix of 

accuracy and response latency. 

 Scaling the environment configuration and 

transport protocol data affects accuracy. We 

were not able to produce an ANN with 100% accu-

racy for environments known a priori if the data 

were not scaled. Moreover, SVMs sometimes pro-

duced their most accurate results for environments 

known a priori when the data was not scaled while 

for environments unknown until runtime scaling the 

data produced the best accuracy. 

Additional information, papers, and source code for 

the technologies and tests are available in open-source 

form at www.dre.vanderbilt.edu/~jhoffert/ADAMANT. 
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