
Adaptive and Flexible SDN-based Multicast for
Efficient Data Center Networking

Prithviraj Patil∗, Akram Hakiri† and Aniruddha Gokhale∗
∗ISIS, Dept of EECS, Vanderbilt University, Nashville, TN, USA.
† Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France.

Email: {prithviraj.p.patil,a.gokhale}@vanderbilt.edu, hakiri@laas.fr

Abstract—Data center networks (DCNs) rely heavily on the
use of group communications for various tasks. For example,
data center management utilities (e.g., software update/upgrade,
log management, resource monitoring, scaling up or down of re-
sources, access control etc.), collaborative applications (e.g., social
media, project management tools, version control systems, etc.),
multimedia applications and multi-player on-line games are few
examples of tasks that require efficient group communications.
Although multicast is useful for efficient group communications,
IP multicast has seen very low deployment in the data center
networks due to its shortcomings, such as inefficient switch-
memory, inability to adapt to network load, and initial receiver
latency due to the creation of multicast routing tree. Even with
the advent of Software-defined Networking (SDN), which makes
it easier to implement multicast in the SDN controller, this
approach too faces many challenges.

In this paper we propose a novel approach to using SDN-based
multicast (SDMC) for flexible, network-load aware, and switch-
memory efficient group communication, suitable particularly
to data center networks. Our SDN-based multicast adaptively
uses a combination of unicast and software-defined multicast by
switching between the two at run-time while ensuring that the
application remains agnostic to this adaptation and to find a
better trade-off to retain the benefits of group communication
while avoiding its disadvantages. We describe the design and
implementation of SDN-enabled Multicast using SDN controllers
and OpenFlow-enabled switches, and evaluate it along a num-
ber of metrics, such as initial receiver latency, network load-
awareness, and switch-memory utilization efficiency.

I. INTRODUCTION

Group communication is used when one or more partici-
pants need to communicate with multiple other participants.
A participant could be any entity, such as an application-level
abstraction, a class object, a process, a host machine or IP
address, a person, etc. Group communication is heavily used
in today’s data center networks (DCNs) because a number
of infrastructure-level tasks that are routinely performed in
data center networks inherently follow the one-to-many or
many-to-many communication semantics [1]. Typical exam-
ples of group communication in DCNs include software up-
date/upgrade, active/passive data replication, access control
policies, security enforcement policies, and elastic tenant-
based services like Amazon Elastic Compute Cloud (EC2).

All these tasks are routinely and heavily used in data centers
and hence even the slightest inefficiency (network in this
case) is detrimental to the overall performance of data centers
networks. Additionally, DCNs also host client applications

which rely on group communication. For example, in dis-
tributed interactive simulation, the state information should
be exchanged among multiple players when they move and
interact in a highly interactive virtual environments. Likewise,
collaborative tools such as Exchange, Lync, and SharePoint
use group communication in a cloud environment to allow
users to efficiently communicate and collaborate with one
another and with their team through web conferencing, doc-
uments and calendars. Moreover, group communication is
present in distributed database applications such as Hadoop
HDFS and Apache Spark to execute resilient distributed
datasets and provide a consistent view of stored data to
multiple users. These use cases drive the need for efficient
group communication support in data center networks.

Traditionally, IP multicast (IPMC) has been prudently and
carefully used for group communication requirements of dif-
ferent applications [2]. However, IPMC is very inefficient in
adapting to dynamically changing network loads and the net-
work switch memory utilization. These challenges are difficult
to overcome in legacy networks where IPMC is implemented
in the switches and is totally distributed. Due to these reasons,
IPMC has not seen large-scale deployments in DCNs.

In recent years, Software Defined Networking (SDN) [3]
has emerged as a new way for managing networks. SDN
decouples the control plane of networking devices from its
data plane. SDN brings several benefits to cloud computing
and data centers since it provides new capabilities like network
virtualization, automating resource provisioning, and creating
new services on top of the provisioned network resources [4].
In particular, SDN was used in unicast communication to
allow retrieving the network topology, monitoring the network
conditions in case of failure, and initiating and adjusting the
network connectivity such as tunneling and traffic engineering.

However, SDN does not clearly specify how multicast
communication should be implemented in cloud-based en-
vironment. OpenFlow, the dominant SDN technology, floods
both the Layer 2 unicast and multicast packets to all VLANs
irrespective of whether the ports are protected or not. Conse-
quently, when OpenFlow tries to setup and tear down multicast
sessions, the OpenFlow multicast control traffic will hit all the
OpenFlow connected interfaces. As data centers are typically
composed of highly structured topologies and exercise single
window control of all the networking infrastructure, their is
a real need to design and implement a novel SDN-enabled

978-1-4799-7899-1/15/$31.00 c© 2015 IEEE

approach that fulfills the requirements of data center com-
munication. Such an approach should be able to offer better
flexibility and scalability by enabling a only a group authorized
use of SDN-enabled multicast communication.

To address all these challenges yet leverage the benefits
stemming from SDN-based network softwarization, we pro-
pose a novel way of using SDN-based multicast for flexible,
network load-aware, switch-memory efficient group commu-
nication specifically for data center networks.

Our approach efficiently uses a combination of unicast and
software defined multicast, and switches between them at
runtime while ensuring that applications remain agnostic to
these adaptive changes, and without any additional packet
loss. It finds a better trade-off to retain the benefits of group
communication while avoiding its disadvantages. Our SDN-
enabled multicast protocol is more lightweight, dynamic, and
adaptive to networking resources, such as link utilization and
switch memory, when compared to traditional IP multicast.

To illustrate the benefits of our approach, consider tra-
ditional IP multicast as shown in Figure 1a. When a new
receiver joins a multicast group (line 1), it waits till the
multicast routing tree is created (lines 2, 3 and 4) before
it starts receiving packets (line 5). In contrast, for SDN-
enabled multicast (SDMC) as shown in Figure 1b, when a new
receiver joins multicast group (line 1), it is added as a unicast
destination by the SDN controller (line 2) and hence starts to
receive packets immediately (line 3). At a later time, SDN-
enabled multicast converts this unicast receiver to multicast
(or vice versa) based on the fluctuations in network load and
switch memory utilization (lines 4 and 5). This makes our
approach more flexible, scalable and adaptive compared to
both traditional IPMC and/or simple unicast.

Receiver
Host

Switch Switch
Sender

Host

1 2

34

5

(a) Traditional Multicast Topology

Receiver
Host

Switch

Controller

SwitchSender
Host

4

1

2
3

5

(b) Architecture of the SDN-enabled Multicast Approach

Fig. 1. Comparison between the SDN-enabled Multicast and Traditional IP
Multicast

The key contributions made in this paper are:
• We describe the design of a network-load-adaptive and

network switch-memory-adaptive multicast for data cen-
ter networks.

• We present implementation details of our SDN-enabled
multicast as a SDN network application running on a
SDN controller and OpenFlow-enabled switches.

• We evaluate the effectiveness of our approach in data
center networks along a number of metrics, such as load
variations and switch-memory utilization.

A. Organization of the paper

The rest of the paper is organized as follows: in Section II,
we discuss related research comparing it with our approach.
Section III discusses the considerations that drive the SDN-
enabled multicast design and its architecture. It then describes
the design and implementation details of our approach il-
lustrating how the design meets the various considerations.
This section also illustrates the behavior of our SDN-enabled
multicast during a variety of events like sender join, receiver
join etc. In Section IV, we provide an empirical evaluation of
our approach for multiple data center network topologies and
settings using metrics such as latency, network load variations,
switch-memory utilization etc, and compare it with unicast
and traditional multicast. Finally, in Section V, we provide
concluding remarks summarizing the work, and directions for
future work.

II. RELATED WORK

Several approaches have been proposed to improve the
efficiency of multicast in data center networks. Authors in [5]
describe an approach to improve multicast in DCNs by exploit-
ing the diversity of multi paths available in large and highly
connected DCNs. This approach creates backup overlays for
every multicast routing tree and switches among them as
per network load fluctuations. In [1], the authors describe
a technique to improve multicast latency by compressing
the tree using multi-class bloom filters. Such an approach
promises to make multicast more scalable to support large
number of multicast groups by removing distributed routes
computation in multicast routers. Similarly, authors in [6]
present an optimization multicast routing tree creation by using
the Steiner tree approach. Al those approaches do not use SDN
at all. In contrast to those papers, our SDN-enabled solution
uses the SDN paradigm to build multicast routing approach in
DCNs.

For related work on SDN-based multicast, the authors in [7]
propose an OpenFlow-based multicast mechanism that shifts
the multicast management to a remote centralized controller.
Although this work is focused on managing multicast, its
focus is more on evaluating the feasibility of multicast-
based OpenFlow in general and not particularly on group
communication in data centers. Authors in [8] propose the
Avalanche framework, which is a SDN-enabled multicast in
commodity switches used in data centers. Avalanche proposes
a new multicast routing algorithm called Avalanche Routing
Algorithm (AvRA) to minimize the size of the routing tree. In

contrast to Avalanche which is designed for particular Tree-
like topologies in data center, our approach in SDN-enabled
Multicast is a more general framework that can address
different topologies. Our approach fits well for tree topologies,
mesh topologies and jellyfish topologies as well.

Similarly, the authors in [9] describe a SDN-enabled effi-
cient multicast scheme especially for IP-over-OBS networks.
In [10], the authors propose another SDN-enabled multicast
scheme which uses knowledge of the anticipated processing
time for each route based on historical data to use an optimal
routing tree. Despite their novel approaches, all of the above
SDN-based approaches suffer from the same issues suffered
by traditional multicast, i.e., scalability and latency, since none
of these adopt to changing network load and switch-memory.

III. DESIGN AND IMPLEMENTATION OF SDMC

This section describes the design and implementation of
SDMC. Before delving into the design details, we first outline
the key design considerations for SDMC.

A. Design Considerations

Before presenting the detailed design of SDMC, we first
outline the key requirements of a solution that provides
efficient group communication in data center networks.

1. Flexible/Dynamic: Existing multicast protocols used
in group communications follow all or none semantics for
multicast users [11]. This forces users the choice of using
either multicast for all the senders and receivers or not using
it at all. It does not allow users to use selective multicast for a
few receivers or few senders while using unicast for remaining
ones. Thus, a solution like SDMC should be capable of allow-
ing applications to use multicast communication selectively as
per application needs.

2. Initial Latency and lazy initialization: In exist-
ing multicast protocols like IPMC, creation/destruction of
multicast senders/receivers immediately triggers the cre-
ation/update/deletion of multicast routing trees. This incurs
initial latency for the receivers especially for highly dynamic
subscriptionpublications and for larger sized multicast groups.
Thus, SDMC should be capable of reducing the overhead and
delay in the initial multicast routing tree creation without com-
promising receiver performance. This is achieved by delaying
the creation of multicast routing tree (lazy initialization) to a
later time when network and switch conditions are suitable for
it.

3. Reuse of overlapping multicast routing trees: Existing
multicast protocols make it impossible to reuse partial or
complete multicast routing trees due to the flat nature of
its multicast IDs. This approach makes scaling of multicast
very difficult due to the limited switch memory resources.
Consequently, SDMC should reuse the partially or completely
overlapping multicast routing trees. For example, if two (or
more) multicast IDs are having same (or almost the same)
receivers (or switches to which receivers are connected), they
should be able reuse the same multicast routing tree and hence
save valuable switch memory.

4. Adapt to network load: SDMC should be able to adapt
to changing network traffic by switching between unicast and
multicast. For example, if one (or more) link is under high
load due to unicast traffic, SDMC should be able to switch
that traffic to use multicast (if that traffic is part of group
communication).

5. Adapt to switch-Memory: In data centers, switches
come in various sizes and shapes. Depending on the speci-
fications of a particular switch, its switch memory, switching
speed, etc, may vary. Large data centers, especially those that
are in operation for long time, are likely to have heterogeneous
switches. Thus, SDMC should be able to adapt to the switch-
memory limitation scenario of the data center. 6. Consistent
and application-agnostic behavior: This consideration arises
due to the flexible and adaptive nature of our new multicast
protocol SDMC. Since, we allow the multicast protocol to
dynamically adapt between total multicast, partial multicast
or total unicast on network load, switch memory and appli-
cation requirements, a receiver may be switched from using
unicast to multicast and back to unicast during its life-cycle.
Hence, while switching between these configurations, SDMC
is required to provide a consistent performance to all senders
and receivers such that application remains unaware of these
switching.

B. SDMC Architecture

In this section, we describe the overall design of SDMC
describing how it meets the solution requirements outlined
above, and provide its implementation details. Figure 2 depicts
the SDMC architecture that supports SDN-based multicasting.
It contains SDN-enabled switches connected to form a SDN
network with the control plane managed by the SDN controller
(either centralized or distributed) and connected to a number of
host machines (physical or virtual) with the SDN middleware
(SDN Middleware) installed on them. The primary artifacts of
this architecture include:

OpenFlow enabled Switches: In a typical data center net-
work, a number of OpenFlow-enabled switches are connected
to form a network with topologies like mesh, tree or jellyfish.
Each switch contains an OpenFlow client to connect to the
SDN controller. Moreover, each switch has a fixed memory in
the form of a ternary content-addressable memory (TCAM),
which is used to store the OpenFlow rules for forwarding data
packets.

SDN controller: The data center network is managed by the
SDN controller. This SDN controller can either be centralized
or distributed. To avoid dealing with additional complexities
arising from the use of distributed controllers, for this paper,
we have used a centralized controller. We assume the SDN
controller is placed on a dedicated machine with dedicated out-
of-band connections to all the OpenFlow-enabled switches.
For the SDN controller, we have various choices like NOX,
POX, Floodlight, RYU, OpenDayLight etc.

SDMC as SDN-NetApp: The core logic of SDMC is im-
plemented as a SDN network application (SDN-NetApp). As
described previously, a network application forms the top layer

Switch

Host

SDN Middleware

Sender Receiver

Switch

Switch

Switch

Host

SDN Middleware

Sender Receiver

Host

SDN Middleware

Sender Receiver

Host

SDN Controller

SDMC Routing Monitoring Discovery

Fig. 2. SDMC Architecture

of the SDN architecture and runs in the context of the SDN
controller.

Other SDN Applications: As described above a major part of
SDMC is implemented as a SDN-NetApp in the control plane.
Beyond this, we also need other SDN applications (apart from
SDMC itself) for the execution of SDMC as described below.
Some of these applications are general-purpose (like routing)
but others (like host manager) are needed to be specifically
built for the SDMC type applications.

• Discovery: This SDN-NetApp provides the service of
automatic discovery of joining and leaving switches and
hosts. It can assist SDMC for finding out joining or
leaving recipients or senders of the multicast group.

• Topology: This SDN-NetApp provides the service of
topology creation out of the SDN network. It can be
asked to create different topologies involving the switches
and hosts. It does that by activating some links and de-
activating other links.

• Monitoring: This SDN-NetApp is used to monitor and
report various network properties like link bandwidth
utilization, switch memory utilization etc.

• Routing: The routing SDN-NetApp is used to find (uni-
cast) routes between two hosts using algorithms like
OSPF. SDMC uses the services of this SDN-NetApp to
build a dynamic multicast routing tree at run-time.

• Network Virtualizer: If the operational environment in-
volves a shared and multi-tenant SDN network, then we
need a network virtualizer to slice the single physical
SDN network into multiple SDN networks. For this work
though, we focus only on non-virtualized SDN networks.
Hence, we will not need a Network Virtualizer.

• Host Manager: This SDN-NetApp is used to keep track
of hosts connected to switches and to communicate with
them. This application is used by SDMC to commu-

nicate with the SDN middleware of the host machines
(explained next). This application is required since we
build a hybrid multicast protocol with the combination
of application-level multicast (or overlay multicast) and
native network-level-multicast.

Host machines with SDN Middleware: The SDMC function-
ality which deals with application-level multicast (or overlay
multicast) is implemented with the help of a middleware
(SDN Middleware) which runs on top of the host machine
connected to the SDN network. This SDN-NetApp can control
the host network by communicating with this middleware
using the Host-Manager service application of SDN. This
SDN middleware, which is installed on the host machine, is
capable of performing several tasks like translating an endpoint
listening on a multicast id into multiple unicast ids, switching
an endpoint from unicast to multicast or vice-versa without
application intervention, etc.

SDMC participants: The SDMC participants (senders and
receivers) run on top of the SDN middleware. The SDN
middleware hides the various complexities arising out of
dynamic, lazy and flexible SDMC (described below) from
these participants. Senders and receivers will send/listen only
on a SDMC ID, and not deal with (and even know of) whether
the underlying layers are using unicast or multicast or both.

C. Lazy Initialization

The initialization process of SDMC senders-receivers and
the SDMC routing tree creation uses a lazy approach to
reduce the initial latency incurred by the receivers in traditional
multicast and to allow flexibility in adapting dynamically
to the network load and switch memory (described later
in this section). SDMC exhibits this lazy approach in its
operation while switching to multicast communication from
the default unicast. This lazy approach manifests for three
different scenarios.

Sender

SDMC-ID

SDMC-ID

Sender

SDMC-ID

SDMC-ID Unicast ID 1

Sender

SDMC-ID

SDMC-ID Unicast ID 1 Unicast ID 2

Blocked
In

 Switch

Blocked
In

 Switch

Blocked
In

 Switch

Allowed
In

 Switch

Allowed
In

 Switch

Allowed
In

 Switch

Fig. 3. Initial SDMC Sender Setup

First, when a new receiver requests to listen on SDMC-ID,
it is not immediately added to the SDMC-ID as a multicast
receiver but is added as a unicast destination for all the
existing senders of that SDMC-ID, if any. Secondly, the
SDMC multicast routing tree for a new receiver is created
in the controller but is not installed (in the form of OpenFlow
rules) in the switches immediately. Finally, when a receiver
(or sender) leaves the SDMC-ID group, multicast tree is not
updated immediately. All these above decisions (i.e., 1. when
to add a receiver as a multicast destination; 2, when to install
multicast routing tree in switches; and 3, when to update the
multicast routing tree after a receiver leaves) are taken by the
SDMC holistically based on all other SDMC sender-receiver
status and on the network load and switch-memory utilization
instead of triggering them immediately.

Figure 3 shows the lazy initialization of a sender. It shows
the setup when two receivers subscribe to this sender. Even
though the sender has a multicast ID attached to it, receivers
are added as a unicast destination for reducing the start-up
latency. This makes the receiver receive packets immediately
since there is no need to create any multicast routing tree in
the switches. The corresponding behavior on the receiver side
apears in Figure 4.

D. Two-level SDMC-ID

To allow the reuse of multicast routing trees, the SDMC-
ID space is divided into two regions: application-level (or
external) and network-level (or internal). The SDMC partici-
pants will interact with only the external SDMC-IDs while the
network data path will deal with internal SDMC IDs. The SDN
middleware will be responsible for translating external SDMC
IDs to the appropriate internal SDMC IDs (and vice-versa).
The SDMC (SDN-NetApp) will direct the SDN middleware
about the use of appropriate translation and when to switch
between different SDMC IDs as described below. This two

level SDMC-ID structure allows SDMC to use the same mul-
ticast routing tree (with the internal SDMC ID) for overlapping
receivers of two different external SDMC IDs.

The decision about how to divide the address space into
external and internal SDMC IPs is left to the administrator
of the SDN network and can be configured at network set up
time via the SDN controller configuration parameters. Figure 1
shows the communication between different entities during
basic multicast and SDMC. The traditional multicast uses the
same multicast ID for all the communication. SDMC however
uses the external multicast for communication between appli-
cation endpoints (sender and receiver) and network endpoints
(switches or controller). However, for communication between
the controller and switches, respective internal multicast id is
used. Hence, the communication over line 1, 2 and 3 uses
external (or application-level) multicast id while over line 4
and 5 uses internal (or network-level) multicast id.

E. Network Link and Switch-memory monitoring

SDMC periodically keeps track of network links and their
utilization with the help of the monitoring network application.
It then populates the link utilization information against the
SDMC IDs which are using that link for the unicast for
a receiver as shown in Table I. Network link monitoring
and switch memory monitoring is also shown pictorially in
Figure 5.

SDMC also keeps track of the memory utilization of the
network switches with the help of the controller. Since the
controller installs rules in the switches, it knows exactly how
many OpenFlow rules are on each of the switches. Each
switch comes with the maximum number of OpenFlow rules
that it can accommodate. So we measure the switch-memory
utilization as the number of actual OpenFlow rules installed in
the switch against the maximum number of OpenFlow rules
allowed.

Receiver 1

SDMC-ID

SDMC-ID Unicast ID 1

Blocked
In

 Switch

Allowed
In

 Switch

Receiver 2

SDMC-ID

SDMC-ID Unicast ID 2

Blocked
In

 Switch

Allowed
In

 Switch

Fig. 4. Initial SDMC Receiver Setup

TABLE I
NETWORK LINK MONITORING

Link Switch Switch Utilization SDMC-ID Receiver
No. No. (Unicast)

L1 Switch-03 Switch-05 17% SDMC-ID-01 Rec-33
SDMC-ID-87 Recv-54

L2 Switch-20 Switch-11 32%
SDMC-ID-11 Rec-12
SDMC-ID-42 Recv-23
SDMC-ID-45 Recv-54

L3 Switch-31 Switch-21 31% SDMC-ID-03 Rec-13
SDMC-ID-85 Recv-53

L4 Switch-13 Switch-03 69%

SDMC-ID-21 Rec-21
SDMC-ID-52 Recv-67
SDMC-ID-74 Recv-42
SDMC-ID-24 Recv-45

L5 Switch-3 Switch-9 81% SDMC-ID-1 Rec-1

L6 Switch-15 Switch-21 70% SDMC-ID-11 Rec-11
SDMC-ID-32 Recv-28

For this work, we deal with OpenFlow version 1.0 rules for
all switches. However, as newer versions of the OpenFlow
standard are proposed, the controller should keep track of
different versions of the OpenFlow rule space for different
switches. This table (Table II) also keeps track of multicast
receivers and associated SDMC ids for each switch. Network
link monitoring and switch memory monitoring has been
shown pictorially in Figure 5.

F. SDMC Operation

We now describe the runtime operation of SDMC and
explain the sequence of activities executed by SDMC in
response to various events like sender join, receiver join,
sender leave, receive leave, etc.

Sender Join: When a participant (sender) wants to send data

on an application-level SDMC ID, Me,

• The sender sends a request to its SDN middleware. The
SDN middleware sends the request to the SDN NetApp.

• The SDN NetApp assigns an appropriate internal SDMC
ID M i to correspond to the requested application-level
SDMC ID, Me.

• It also installs an OpenFlow rule in the edge switch of
the sender to block all the traffic with the destination id
M i.

• Thereafter, the SDN middleware on the sender node
installs a translation rule for Me < − > M i in the
host so that (1) when sender sends packets on external
SDMC-ID Me, it gets translated to internal SDMC ID
M i and also (2) when any receiver receives the packet
with SDMC ID M i, it gets translated to application level

Switch-
S1

Switch-
S2

Link-L1

Host

Unicast Receiver
(Receiver-1 on

SDMC-ID-A)

Host
Sender NetworkNetwork

Switch-
S3 Host

Multicast Receiver
(Receiver-2 on

SDMC-ID-B)

Host

Sender
NetworkNetwork

Network Link Monitoring for L1
#Link Utilization = 17%
#Unicast Receivers:
 1. Receiver-1 on SDMC-ID-A
 2. ..

Switch Memory Monitoring for Switch-S3
#Memory Used/Available =10000/ 20000
#Multicast Receivers:
 1. Receiver-2 on SDMC-ID-B
 2. ..

Fig. 5. Network Link and Switch Memory Monitoring

TABLE II
NETWORK SWITCH MEMORY MONITORING

Switch Available Used SDMC-ID Receiver
No. Memory Memory (Multicast)

Switch-00 10000 9132 SDMC-ID-01 Rec-65
SDMC-ID-19 Recv-65

Switch-10 20000 1313
SDMC-ID-41 Rec-43
SDMC-ID-64 Recv-84
SDMC-ID-08 Recv-63

Switch-32 20000 14434 SDMC-ID-13 Rec-15
SDMC-ID-43 Recv-14

Switch-12 30000 15151

SDMC-ID-01 Rec-64
SDMC-ID-18 Recv-24
SDMC-ID-34 Recv-47
SDMC-ID-75 Recv-51

Switch-32 10000 3234 SDMC-ID-14 Rec-76
SDMC-ID-65 Recv-54

external SDMC ID Me.
• Additionally, it installs the following translation rule

Me− > (M i, U1, U2), where U1 and U2 are the unicast
destinations of the receivers of the application-level mul-
ticast id Me. This allows sender to start sending packets
using unicast.

As seen from the above sequence of events, the joining of a
sender does not trigger the creation or update of the multicast
routing tree. This is possible because initially every sender
is made to use unicast only. Subsequently, depending on the
conditions of the network and the switch, the sender is asked
to switch between multicast and unicast. This is part of the

lazy initialization process of SDMC.
Receiver Join: When a participant (receiver) wants to listen

on an application-level SDMC ID, Me, the following steps
are performed:

• The receiver sends a request to its own SDN middleware
which forwards the request to the SDMC NetApp.

• The SDMC NetApp retrieves the respective internal
network-level SDMC-ID ,M i, if available otherwise cre-
ate a new one, and sends it to the receiver SDN-
Middleware.

• SDMC then installs an OpenFlow rule in the edge switch
of the receiver to block all the traffic with the destination

id M i.
• The SDN middleware on the receiver installs the two

translation rules Me < − > M i and Me < − > U1,
where the U1 is the unicast id of this receiver.

• The SDN middleware also gives preference to the Me <
− > U1 rule over Me < − > M i so that the first rule
gets matched. This makes the receiver to listen on the
unicast ID instead of multicast ID. This is part of the
lazy initialization of SDMC receivers.

• Meanwhile, the SDMC NetApp searches for all the
senders of M i and adds the unicast destination of U1

in their SDN middleware translation rules.
• It then requests the unicast routing paths for this receiver

to every sender of M i from the Routing NetApp. Based
on these routing paths, it then updates Table I and Table II
by adding a sender-receiver pair against each appropriate
network link and switch.

Similar to the joining of a sender, joining of a receiver also
does not trigger the creation or update of the multicast routing
tree. This is possible because initially every sender is made
to use unicast only. Later on, depending on the conditions
of the network and the switch, the receivers are asked to
switch between multicast and unicast. This is part of the lazy
initialization process of SDMC.

Adapting to network load: As discussed above, whenever
one or more links in the SDN network crosses a predefined
threshold load, the SDMC NetApp is notified by the Monitor-
ing NetApp. This is done because the SDMC NetApp registers
a listener event on the Monitoring NetApp to notify it in the
case of the link crossing a particular threshold. The threshold is
specified as a percentage of bandwidth utilization for a specific
amount of time, e.g., 90% bandwidth utilization for a link
for more than 30 consecutive seconds. The SDMC NetApp
logic periodically (e.g., once in 60 seconds etc.) attempts to
reduce the network load by switching relevant unicast receivers
to multicast receivers. It searches for the unicast receivers in
Table I against the overloaded link. The SDMC NetApp then
switches these receivers from unicast to multicast either one
by one or simultaneously. In the next subsection, we describe
the process to switch from unicast to multicast without losing
any packet or impacting the receiver’s performance.

Switching from unicast to multicast: This event is triggered
by the fluctuations in network link utilization as discussed
above. Figure 6 shows the sequence of events that take place
when a receiver is switched from unicast to multicast by the
SDMC. Thus, when SDMC wants to add receiver r1 to the
multicast for a particular sender s1, it will execute following
steps.

• SDMC will instruct the receiver r1 to listen on its
unicast id U1 along with multicast id M i. At this point,
receiver will not receive anything on its multicast id from
sender s1, since the core switches and edge switches
of sender/receiver are blocking the packets for multicast
destination M i.

• Then, it updates the multicast routing tree by adding

appropriate OpenFlow rules to reach receiver r1 from the
existing multicast routing tree of M i in the core switches.
At this point too, the receiver r1 will only receive packets
on unicast id since the edge switches of sender/receiver
are blocking the packets for multicast destination M i.

• Update multicast routing tree on the edge switch of sender
s1 by adding/enabling the OpenFlow rule for multicast
ID M i for receiver r1. This last step is not required if
one or more receiver, apart from r1, of sender s1 are
using multicast and are reached by the same switch from
the sender s1. This step is always required initially when
there are no existing multicast receivers for the sender
s1). At this point too, the receiver r1 will only receive
packets on unicast id since the edge switches of receiver
are blocking the packets for multicast destination M i.
However, now there will be duplicate packets sent by the
sender s1 in the network but without any receiver.

• SDMC now executes the following two tasks atomically:
(1) add an OpenFlow rule which blocks packets to the
unicast destination of the receiver r1 on the edge switch
of the sender s1; (2) update the multicast routing tree on
the edge switch of the receiver r1 by adding/enabling the
OpenFlow rule for multicast ID M i to reach the receiver
r1.

• The atomicity of the above two steps guarantees that no
packet will be lost and no packet will be received more
than once in the migration from unicast to multicast.
This, however, does not prevent the senders from sending
packets on both unicast and multicast IDs during the time
step 3 is started till the last time step in this sequence is
finished.

• Later, when the receiver starts to receive packets on its
multicast id, it will stop listening on its unicast id.

• The receiver then notifies SDMC that it is now listening
on only multicast ID, SDMC will then update a trans-
lation rule in the SDN middleware of s1 by removing
the unicast address of receiver r1 (u1) from its mapping,
i.e., Me− > (M i, U1, U2) becomes Me− > M i, U2. At
this point, the sender will stop sending packets to unicast
destination of receiver r1.

However, for efficiency, SDMC should not switch single
receiver-sender pairs from unicast to multicast but perform
bulk switching periodically.

Adapting to switch-memory utilization: Similar to network
load monitoring, the Monitoring NetApp monitors the network
switch memory utilization too. Hence, whenever a memory
utilization of a SDN switch in the SDN network crosses the
threshold limit, the SDMC NetApp is notified by the Mon-
itoring NetApp. This is done after SDMC-NetApp registers
a listener event on the Monitoring NetApp to notify it in
the case of switch memory utilization crosses a particular
threshold. This threshold is specified either in the percentage
of memory utilization of a switch or number of OpenFlow
rules installed on the switch for the SDMC. In this work, we
take the latter approach of counting the switch-memory in the

Allow SDMC-ID in Edge
Switch Of Sender

Create SDMC multicast tree in
core switches

Allow SDMC-ID in Edge
Switch Of Receiver and block

Unicast ID1 from sender

Block Unicast ID 1 in Sender
Host

Receiver 1

SDMC-ID

SDMC-ID Unicast ID 1

Blocked
In

 Switch

Allowed
In

 Switch

Sender

SDMC-ID

SDMC-ID Unicast ID 1 Unicast ID 2

Allowed
In

 Switch

Allowed
In

 Switch

Allowed
In

 Switch

Sender

SDMC-ID

SDMC-ID Unicast ID 1 Unicast ID 2

Allowed
In

 Switch

Allowed
In

 Switch

Blocked
In

 Switch

Receiver Starts Listening on
SDMC-ID

Fig. 6. Adapting to Network Load

Allow Unicast ID 1 in Edge Switch Of
Sender

Update/remove SDMC multicast tree
in core switches

Allow Unicast ID 1 from sender in
Edge Switch Of Receiver and block

SDMC-ID

Block SDMC-iD in Sender Host

Sender

SDMC-ID

SDMC-ID Unicast ID 1 Unicast ID 2

Allowed
In

 Switch

Allowed
In

 Switch

Allowed
In

 Switch

Sender

SDMC-ID

SDMC-ID Unicast ID 1 Unicast ID 2

Allowed
In

 Switch

Blocked
In

 Switch

Allowed
In

 Switch

Receiver 1

SDMC-ID

SDMC-ID Unicast ID 1

Allowed
In

 Switch

Blocked
In

 Switch

Receiver Starts Listening on
Unicast ID

Fig. 7. Adapting to Switch Memory Utilization

form of number of OpenFlow rules. The reasoning behind this
approach is that it specifically measures the switch memory
utilized for the SDMC and not other SDN network applications
like unicast routing or load balancing, etc. The SDMC NetApp
logic periodically (e.g. once in 60 seconds) tries to decrease
the memory utilization of the switch by switching relevant
multicast receivers to use unicast communication. To do that,
it searches for the multicast receivers in Table II against
the overloaded switch. SDMC-NetApp then switches these
receivers from multicast to unicast either one by one or
simultaneously. In the next subsection, we describe the process
to switch from multicast to unicast without losing any packet
or impacting the receiver’s performance.

Switching from multicast to unicast: This event is triggered

by the changes in switch memory utilization as discussed
above. Figure 7 shows the sequence of events that happen
during receiver is switched from multicast to unicast by the
SDMC. So, when SDMC wants to remove the receiver r1 from
the multicast for a particular sender s1, the following steps will
be followed:

• SDMC will instruct the receiver r1 to listen on its unicast
id U1 along with multicast id M i. At this point, receiver
will not receive anything on its unicast id from sender s1,
since core switches and edge switches of sender/receiver
are blocking the packets for multicast destination M i and
sender is not sending any packet on the unicast id of the
receiver.

• SDMC will then update a translation rule in the SDN-

Middleware of sender s1 by adding the unicast address
of receiver r1 (u1) in its mapping. i.e. Me− > (M i, U2).
becomes Me− > M i, U1, U2. At this point, sender will
start to send on both the unicast and multicast. But, at
this point too, receiver will not receive anything on its
unicast id from sender s1, since core switches and edge
switches of sender/receiver are blocking the packets for
multicast destination M i.

• Now, SDMC updates the multicast routing tree for mul-
ticast id M i, on the core switches by disabling/removing
OF rules which to reach receiver r1 for multicast id.
At this point too, receiver will not receive anything on
its unicast id from sender s1, since edge switches of
sender/receiver are blocking the packets for multicast
destination M i.

• SDMC now executes following two tasks atomically: (1)
remove the OF rule on the edge switch of sender s1 which
blocks packets to the unicast destination of receiver r1;
and (2) update multicast routing tree on the edge switch of
sender s1 by disabling/removing OF rule to reach receiver
r1.

• The atomicity of the above step guarantees that no packet
will be lost and no packet will be received more than once
in the migration from multicast to unicast. This, however,
does not prevent senders from sending packets on both
unicast and multicast IDs during the time step 3 is started
till the time previous step in this sequence is finished.

• Later, when receiver starts to receive packets on its
unicast id, it will stop listening on its multicast id.

• The receiver then notifies SDMC that it is now listening
on only unicast ID, SDMC will then update the multicast
routing tree on the edge switch of the receiver r1 such
that packets for destination M i will not reach receiver r1.

However, for efficiency SDMC should not switch single
receivers-sender pair from multicast to unicast but perform
bulk switching periodically.

Receiver Leave: When a receiver wants to leave the multi-
cast group, its SDN middleware notifies the SDMC with “Re-
ceiver_Leave” notification. SDMC first checks if the receiver
is using unicast or multicast. If the receiver is on unicast mode,
then SDMC only needs to remove it from the translation rule
of its senders. However, if receiver is using multicast, then
SDMC needs to update the routing tree. However, SDMC does
not need to do this action immediately. But, it only removes
that OpenFlow rule from the edge-switch of the receiver which
forwards dest=M i packets to this receivers. The remaining
multicast routing tree is cleaned up during the next periodical
switch-memory monitoring event. So, if the same receiver
(or another receiver connected to the same switch or another
receiver which can be reached via the same switch) joins again
(before cleanup), SDMC takes lesser time in updating the
multicast routing tree for it.

Sender Leave: When a sender receiver wants to leave the
multicast group, its SDN middleware notifies the SDMC with
“Sender_Leave” notification. SDMC then adds the OpenFlow
rule in the edge switch of the sender to block the traffic from

the sender s1. At this point, there will be no traffic from the
sender in the network. Then, SDMC asks the SDN middleware
of the sender to delete the sender. SDMC defers the removal
of multicast routing tree of the M i used by sender to later
time.

IV. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of SDMC and
compare it against that of unicast and traditional multicast
using IPMC for various performance metrics like average
latency for receivers, switch memory utilization efficiency,
network load-awareness and packet loss. As described in the
design considerations, SDMC is hybrid and flexible in the
sense that it tries to combine the benefits of both unicast
and multicast at run-time. Hence, we compare SDMC with
unicast and multicast (IPMC) and illustrate how overall SDMC
performs better than both the approaches.

A. Average Initialization Setup Time

a) Rationale: In group-base communication, multicast
service mode needs an initialization setup time to enable
receivers join the group and perform their membership. There-
fore, we measure the performance of our approach against
the generic IP multicast service in term of initialization setup
time for the receivers. As the size of the multicast group
increases, multicast protocols should be able to refreshes
group membership periodically. The receiver-initiated group
membership allows better management of the leaf nodes. As an
increasing number of senders/receivers can join and/or leave
the group membership, the size the multicast group becomes
complex and the initialization setup time may increase. In
traditional IP multicast, the update time of the routing tree
may increase to allow receivers detecting transmissions from
a specific sender. In our SDN-enabled multicast, the receivers
can use unicast service in order to reduce the setup latency,
then they can switch to multicast.

b) Analysis: Figure 8 shows the receiver-initiated setup
time in terms of group membership size. The Figure compares
our SDN-enabled the traditional multicast service and the
unicast service as well. I also shows the initialization setup
time against the increasing number of senders. i.e, this number
is increased from one to 20. We also performed the measure-
ments for three different network topologies in data center
networks, i.e., tree, mesh, and jellyfish topologies as well.
A close inspection to Figure 8 shows that our SDN-enabled
multicast performs better latency in comparison to traditional
IP multicast. In particular, in all cases the average initialization
latency perform up to 50% better results then IP multicast.
We claim that our approach allows creating the routing tree
in the centralized controller before being populated to the
receivers. As the controller have a global knowledge of all the
joining/leaving nodes, it programs the switches by injecting
OpenFlow rules, which allow receivers to join the that tree.
This approach is different from traditional IP multicast, which
requires a receiver NACK process initiation to detect a specific
sender. Accordingly, the evaluation of the initialization latency

Fig. 8. Receiver Initialization Setup Time

confirms our claims on ensuring better latency performance
compared to traditional IP multicast.

Additionally, we measured the initialization setup time for
different network topologies in DCNs. Figure 9 the setup delay
for the most common data center network topologies, i.e.,
jellyfish, tree, flat-tree, and random topologies. A close inspec-
tion of this shows that our SDN-enabled multicast performs
better setup latency compared to traditional multicast in the
four DCN topologies. Again, the evaluation results confirms
the efficiency of our SDN-enabled multicast compared to
traditional IP multicast.

B. Adaptiveness to the Network Load

a) Rationale: In traditional unicast communication,
when a sender needs to transmit data to multiple receivers,
it has to duplicate the same packets for every receiver. Tra-
ditional IP multicast solved this issue by enabling sending
only one copy of those packets towards all the receivers, as
a way to improve the network performance and reduce the
load. In order to evaluate the adaptiveness of our SDN-enabled
multicast to this situation, we performed several measurements
in four different data center network topologies, i.e., jellyfish,
mesh, tree, and random topologies.

b) Analysis: Figure 10 illustrates the latency required by
receivers to receive a packet from the sender. It also compares
this time delay against the traditional IP multicast as well as
the unicast service. A close inspection of Figure 10 shows
that the average end-to-end latency experienced by our SDN-
enabled multicast performs better results compared to both

traditional multicast and unicast services. Indeed, our SDN-
enabled solution adapts itself to the network load. This because
our approach aimed at making the tradeoff between unicast
and multicast, so that when a the network load becomes critical
and high data loss could be expected it switches some of
the receivers to unicast communication, while keeping their
packets reachable. Hence, our SDN-enabled multicast can
successfully adapt the transmission rate using the automatic
adaptiveness approach managed by the SDN controller, and
therefore adapt itself to the network load.

C. Adaptiveness to Switch-Memory Utilization

a) Rationale: There are three critical areas that are
related to the performance of the communication in data
center networks: the CPU usage, the memory utilization and
the switching capacity. CPU load is usually impacted by the
control functions to perform connection creation, tear down,
layer 2 functions such spanning tree, and more. As the control
functions are now removed from switches to the external SDN
controller, which run on high performance general purpose
computer, CPU load is not a concern in our case. However,
the forwarding operations come with the cost of increasing
the switch-memory utilization which could be critical issue
in data center networks. In particular, memories and queuing
buffers hold packets and connection state information of the
traffic transiting across the switch. Therefore, there is need
to maintain the memory utilization decreasing as much as
possible to avoid buffer overflow. Furthermore, the switch
capacity can help in estimating how much transit traffic data as

Fig. 9. Receiver Latency for different network topology and size

well as control messages could be forwarded among multiple
ports concurrently. Hence, the switch capacity is a important
factor to estimate the network load in terms of the overall
bandwidth a switch is able to support.

Accordingly, any routing algorithm design should take into
account the performance requirements of the memory utiliza-
tion as well as the network load to avoid drastic problems. We
therefore evaluate our approach in designing the SDN-enabled
multicast in terms of switch-memory utilization and compare
it against traditional IP multicast and unicast service as well.

b) Analysis: To evaluate the effectiveness of our ap-
proach in avoiding the buffers overflow, Figure 10a depicts the
switch-memory utilization in cases of IP multicast and unicast
services and our SDN-enabled multicast. Indeed, our approach
performs better memory utilization in terms of number of
OpenFlow rules that can be hold in the buffers compared
to traditional IP multicast. This mainly due to the fact that
OpenFlow rules are injected by the SDN controller only
when missing packets or unrecognized packets transit through
the switch. Thereafter, the switch will send a request to the
controller to ask for new . rules the controller could inject
to help the switch forwarding packet to their destination. This
approach is different from traditional multicast which performs
stateful packet forwarding, because it needs to maintain the
same state across all the transit switches. Our results, show that
our approach succeeded better memory utilization compared
to IP multicast.

Furthermore, in order to evaluate the performance of the
SDN-enabled multicast against the IP multicast in terms of
network load, Figure 10b shows the bandwidth utilization in
both cases. The average performance of both the IP multicast

and SDN-enabled multicast is close to 40% of the bandwidth.
Both approaches succeeded in avoiding network overhead.

D. Evaluating the Packet Loss

a) Rationale: In order to provide in depth inspection
of the average relative error of the throughput described in
Section IV-C, we evaluate the packet loss and study its impact
in affecting the network’s application behavior. Packet loss can
occur when the traffic transmitted to the receivers across a
particular link exceeds the capacity of that link. Additionally,
another source of packet loss is that too short-lived burst of
traffic may occur and deteriorate the network performance for
a short time. By characterizing the link utilization through the
packet loss we can better investigate the bottlenecks of our
SDN-enabled multicast approach.

b) Analysis: To evaluate the link utilization, Figure 11
illustrates the packet loss for the IP multicast and unicast
services and compare them to our approach in SDN-enabled
multicast. This Figure shows that our approach present an
average of 4% of loss, which is little better than the traditional
multicast that experiences and average of 6% of packet loss.
Indeed, the current version of the OpenFlow does not include
any QoS service differentiation, such as the DSCP fields in
DiffServ approach, to enable per-class packet classification,
scheduling and forwarding. Thus, traffic prioritization is not
applied to protect packets against any computing flows. Never-
theless, the packet error in our experiments does not drastically
degrade the performance of the communication because 96%
of the packets are sent send their corresponding destination.
Those results show that our SDN-enabled multicast can suc-
cessfully support the group communication in data center

(a) Switch-Memory Utilization (b) Network Load

Fig. 10. Adaptiveness of SDN-enabled Multicast to the Network Load and the Switch-Memory utilization

networks.

V. CONCLUSIONS

Data center networks (DCNs) rely heavily on the use of
group communication for various tasks. Although the tra-
ditional multicast protocol has been used in several cloud
environments, however, it became clear that it suffers from
its lack of support for efficient and scalable group com-
munication. The introduction of intelligence in the network
through the software-defined network (SDN) paradigm allows
creating new flexible group communication solutions that
solve the dynamic group membership problem in data center
environments. This paper presents the design, implementa-
tion and evaluation of a SDN-enabled multicast solution for
flexible, network load-aware, switch memory-efficient group
communications for DCNs. Our approach uses a combination
of unicast and software-defined multicast, and dynamically
adapts by switches between them while remaining agnostic
to the applications yet providing superior performance over
individual cases. Experimental evaluation of the proposed so-
lution shows that our approach performs better than traditional
multicast in terms of initial receiver latency, network load-
awareness, and switch-memory utilization efficiency.

The following lessons were learned conducting this re-
search, which highlights the current limitations of the work
while simultaneously highlighting opportunities for further
research in this area.

• Reliable SDN-enabled Multicast for DCNs: Our SDN-
enabled multicast holds promise to reduce packet loss
compared to traditional IP multicast. It also showed
better performance in terms of initial receiver latency and
network load-awareness as well. With increasing number
of routers that will support our SDN-enabled multicast
in the DCNs, packets will be transmitted across multiple
available paths to support an acceptable level of fidelity.
We argue that supporting multi-path data dissemination in
DCNs need more sophisticated reliable multicast support
to alternate paths to minimize both tree and recovery
costs [12]. Such an approach could use the fast-failover
group feature of the current OpenFlow for better resource
management and efficient group communication [13]. We
believe that extending our current work on SDN-enabled
group communication by supporting reliable multicast
communication will allow efficient resource utilization,
will help in handling link failure, and provide more
efficient routes.

• Secure SDN-enabled Multicast Key Management: Al-
though our proposed SDN-enabled Multicast is a promis-
ing approach to improve network performance required
for simultaneous group communication, supporting group
communication in DCNs poses new demands on security.
In particular, because of the programmable aspect of
the SDN-enabled multicast, it becomes exposed to an
increasing number of DDoS, malware attacks, spam and

Fig. 11. The Packet Loss of the SDN-enabled multicast

phishing activities. Those attacks will be propagated si-
multaneously to the multicast groups. As security policies
are minimally specified in SDN, those policies require
downtime to orchestrate a topology and reconfigure the
overall network to enforce multiple security services.
Accordingly, we believe that more enhanced services
should be added to enforce the trustworthiness in SDN-
enabled multicast [14]. Such a security enforcement ser-
vice should involve more sophisticated encryption and
authentication mechanisms based on key/ID manage-
ment [15] to prevent hackers and recover packets from
failure. These form additional dimensions of future work.

REFERENCES

[1] D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang, “Scalable data center
multicast using multi-class bloom filter,” in Network Protocols (ICNP),
2011 19th IEEE International Conference on. IEEE, 2011, pp. 266–
275.

[2] M. McBride and H. Lui, “Multicast in the data center overview,” Internet
Engineering Task Force, Jun 2012.

[3] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[4] P. Pan and T. Nadeau, “Software-defined network (sdn) problem state-
ment and use cases for data center applications,” Tech. Rep. 00, 2013.

[5] D. Li, M. Xu, M.-c. Zhao, C. Guo, Y. Zhang, and M.-y. Wu, “Rdcm:
Reliable data center multicast,” in INFOCOM, 2011 Proceedings IEEE.
IEEE, 2011, pp. 56–60.

[6] M. Imase and B. M. Waxman, “Dynamic steiner tree problem,” SIAM
Journal on Discrete Mathematics, vol. 4, no. 3, pp. 369–384, 1991.

[7] Y. Yu, Q. Zhen, L. Xin, and C. Shanzhi, “Ofm: A novel multicast
mechanism based on openflow.” Advances in Information Sciences &
Service Sciences, vol. 4, no. 9, 2012.

[8] A. Iyer, P. Kumar, and V. Mann, “Avalanche: Data center multicast using
software defined networking,” in Communication Systems and Networks
(COMSNETS), 2014 Sixth International Conference on. IEEE, 2014,
pp. 1–8.

[9] L. Hong, D. Zhang, H. Guo, X. Hong, and J. Wu, “Openflow-based
multicast in ip-over-lobs networks: A proof-of-concept demonstration,”
in 2012 17th Opto-Electronics and Communications Conference, 2013.

[10] C. A. Marcondes, T. P. Santos, A. P. Godoy, C. C. Viel, and C. A.
Teixeira, “Castflow: Clean-slate multicast approach using in-advance
path processing in programmable networks,” in Computers and Commu-
nications (ISCC), 2012 IEEE Symposium on. IEEE, 2012, pp. 000 094–
000 101.

[11] Y. Nakagawa, K. Hyoudou, and T. Shimizu, “A management method of
ip multicast in overlay networks using openflow,” in Proceedings of the
first workshop on Hot topics in software defined networks, ser. HotSDN
’12, 2012, pp. 91–96.

[12] S.-H. Shen, L.-H. Huang, D.-N. Yang, and W.-T. Chen, “Reliable
multicast routing for software-defined networks,” in Computer Com-
munications (INFOCOM), 2015 IEEE Conference on, April 2015, pp.
181–189.

[13] T. Pfeiffenberger, J. L. Du, P. Bittencourt Arruda, and A. Anzaloni,
“Reliable and flexible communications for power systems: Fault-tolerant
multicast with sdn/openflow,” in New Technologies, Mobility and Secu-
rity (NTMS), 2015 7th International Conference on, July 2015, pp. 1–6.

[14] N. Roy and D. Das, “Application of multicast tree concept to cloud
security with optimization algorithm for node search technique,” in Elec-
trical, Electronics, Signals, Communication and Optimization (EESCO),
2015 International Conference on, Jan 2015, pp. 1–6.

[15] K. Sriprasadh, Saicharansrinivasan, O. Pandithurai, and A. Saravanan,
“A novel method to secure cloud computing through multicast key
management,” in Information Communication and Embedded Systems
(ICICES), 2013 International Conference on, Feb 2013, pp. 305–311.

