
A Software Defined Wireless Networking for
Efficient Communication in Smart Cities

Akram Hakiri ∗†, Aniruddha Gokhale ‡, and Prithviraj Patil§
∗ Univ de Carthage, ISSAT Mateur, Tunisia

† Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France.
‡ISIS, Dept of EECS, Vanderbilt University, Nashville, TN, USA.
§ The Mathworks, Stateflow Semantics Group, Natick, MA, USA.

Corresponding author: hakiri@laas.fr

Abstract—Smart cities represent a rich dynamic environment
where multiple wireless mobile devices interconnect to each other
to communicate and share their data. The growing demand
and the diverse traffic patterns of these smart devices place an
increasing strain on the wireless networks. Routing data among
wireless routers becomes a challenging issue as traditional routing
algorithms, which are based on the Ad-Hoc and LAN flavors,
cannot fulfill the requirements of distributed communications in
Smart Cities. The routing decisions are taken based on local
knowledge of a wireless router about each of its neighbors to
reflect a partial visibility of the network. Such a local visibility
limits the ability of managing the huge number of wireless
smart devices in Smart Cities. An attractive and more realistic
alternative is the Software Defined Networking (SDN), which
offers a centralized up-to-date view of the entire network by
refactoring the wireless protocols into control and forwarding
decisions. However, many challenges must first be overcome to
realize this potential. Accordingly, this paper outlines important
challenging issues for building efficient wireless communication
in smart cities. In particular, we describe a novel network
architecture that integrates SDN and the Wireless Mesh Networks
(WMNs) to address these issues. Our approach proposes a
novel way of performing network virtualization, routing and
traffic engineering in SDN-based WMNs in smart cities thereby
improving the performance and the flexibility of the network.

Index Terms—Software Defined Network; Internet of Things;
Wireless Mesh Networks; Smart Cities.

I. INTRODUCTION

Urban centers across the world continue to grow steadily
as more than the half of the current world population are
living in urban areas and the number is forecast to further
increase by 2030 [1]. To help address various challenges due
to the increased urbanization, innovative smart cities projects,
such as VITAL [2] and Padova [3], have been adopted by
local governments and private companies to provide new
solutions, services and applications. To make such and future
solutions, and ultimately to make cities livable and sustain-
able, smart cities need to be supported and integrated by
an intelligent communication infrastructure that interconnects
everything wirelessly. Wireless Mesh Networks (WMNs) have
been considered as one of the most promising communication
technologies to form the backbone of smart cities.

WMNs often consist of mesh clients, mesh routers and
gateways. Mesh clients are mobile nodes such wireless camera,
traffic signal controller, and other wireless devices while

mesh routers forward data to and from gateways, which may
connect to the Internet. The coverage area of those radio
nodes working in a single network is called a mesh cloud.
Such a mesh cloud allows monitoring traffic activity in cities
and help to prevent traffic congestion. Traffic congestion is
one of the most significant problems in cities, as it increases
noise pollution and greenhouse emissions. Minimizing these
negative effects of vehicular traffic jams with new perspectives
on network traffic management will push the wireless mesh
network performance and its capabilities to their extremes.

In this regard, although several wireless protocols such
as AODV [4] (Ad hoc On Demand Distance Vector) and
OLSR [5] (Optimized Link State Routing Protocol) have been
investigated in the past decade, they were more influenced by
the Ad-Hoc and LAN flavors. Indeed, the functionalities of
the aforementioned routing approaches are limited and their
extensions to support the newer and high volume network
traffic patterns are very difficult. In particular, the routing
decisions are taken in a distributed way based on the local
knowledge of a mesh router about each of its neighbors to
reflect a partial visibility of the network. This local visibility
limits the ability of the WMN to perform traffic1 engineering
in distributed mesh clouds.

Additionally, the current routing protocols fail to provide
sufficient, fast-failover to reroute failed nodes or broken
links, and redistribute the orphaned clients among neighboring
nodes. Furthermore, as most of the traffic is assumed flowing
between the client nodes and the gateways, it is likely that
the gateway becomes a network bottleneck in WMNs. Thus,
selecting the best routes to the Internet in the mesh cloud
for different traffic classes is an essential ingredient for QoS
support. Besides, due to the link quality variation of the radio
channels induced by the mobility and the topology changes,
mesh cloud becomes more difficult to manage and configure.
Specifically, managing and upgrading routers is a complex
and error-prone task because nodes configuration should be
performed manually and individually at each router.

To deploy new smart city services over WMNs, we need
better manageability and flexibility in the network, which
we surmise is possible using Software Defined Networking
(SDN) [6]. SDN shows significant promise in meeting smart

1Unless otherwise stated, traffic refers to network traffic.

1

city needs by optimizing routing paths for information through
the network [7]. Despite the promise of SDN, the challenges
posed by smart city applications cannot be addressed by sim-
ply building SDN-based multipath routing algorithms. Rather,
SDN should provide access to distributed wireless sensors
that continuously monitor and control pollution, lighting,
and vehicular traffic jams. Recent trends in programmable
wireless networks reveal that SDN has been used to build
relays between home gateways and the Internet [8], simplify
the network management operations of the wireless access
points [9] and enhance the traffic orchestration [10] in virtual
access points.

Despite these advances, the aforementioned efforts used
SDN only in a single wireless access point, which make their
solutions unstable in a highly distributed wireless environment.
First, SDN itself does not provide any abstracted programming
interfaces for wireless communication. SDN was initially
introduced for wired networks such as cloud computing and
data centers to provide packet encapsulation and tunneling.
Second, the SDN requirements of centralized control and
simple router design contradict with the distributed routing
algorithms and sophisticated switch design of the wireless
network architecture. Third, the characteristics of wireless
channels, e.g., fading, interference, and broadcast require that
the SDN controller offer appropriate modules to support cen-
tralized interference management, node mobility, and topology
discovery. Fourth, as smart cities interconnect distributed mesh
clouds, it is not clear if a centralized SDN controller will
be able to manage the entire network, or multiple distributed
ones should coordinate their activities to perform router point
cooperation.

To address those challenges, we present a novel approach
that combines ideas from SDN with Wireless Mesh Network to
define a powerful and easy to deploy smart city network. Our
approach provides a novel way of performing routing, network
monitoring, and traffic engineering by using modified Open-
Flow protocol. It also supports both centralized and distributed
SDN control planes based on a bootstrapping mechanism that
decouples the orthogonal distributed systems concerns from
the primary issues related to the controller.

The remainder of this paper is organized as follows: Sec-
tion II compares related efforts to our proposed solution.
Section III introduces the architecture of a futuristic urban
scenario through a Smart Traffic Light System (STLS) and
briefly discusses the role of SDN in enabling such a scenario.
Section IV articulates some open issues related to the deploy-
ment of SDN-based wireless communication in such smart
cities system. Section V describes the architecture of our SDN-
enabled solution for efficient support of wireless networking in
smart cities and discusses the role of our approach in solving
the aforementioned challenging issues. Section VI evaluates
the framework along multiple dimensions including its per-
formance, overhead and load balancing properties. Finally,
Section VII provides concluding remarks describing potential
future directions and open research problems in this realm.

II. RELATED WORK

A new research direction is needed to make it possible
to deploy city-scale networks using SDN paradigm which
includes supporting bandwidth reservation, load balancing,
data security, etc. Wang et al. [7] proposed a SDN-based
Internet of Vehicles (IoV) architecture that optimizes Open-
Flow rules by introducing a compact flow rules. Sahoo et
al. [11] introduced a SDN-based traffic engineering approach
that solves the connectivity problems of vehicles in a smart
city. Authors in Bozkaya et al. [12] have demonstrated the
feasibility of combining SDN with wireless access in vehicular
environments. They proposed a flow and power management
model implemented into a SDN controller to enhance the
connectivity of the Road-Side Units (RSU). Similarly, Xu et
al. [13] proposed a cloud-based architecture to improve the
capacity and the performance of vehicular network. Truong
et al. [14] combined a SDN-based VANET and Fog Comput-
ing to offer delay-sensitive, location-awareness services, and
optimize the resource utilization.

SDN is applied to improve network management between
home gateway and the network edge in OpenRoad [8] by
providing hierarchical logical layers that distinguishes flow
layer for data forwarding. Likewise, a SDN-based lightweight
virtual access point is proposed in the Odin Framework [9] to
manage mobility and maintain client reachability by delegating
the hand-off to a virtual AP. Furthermore, a CloudMAC [15] is
introduced to offload the MAC layer processing to virtualized
APs in the cloud. CloudMAC uses the OpenFlow protocol to
forward MAC frames between virtualized APs in the cloud and
the physical Wi-Fi stations. Authors in [16] proposed different
design SDN approaches to accommodate dynamic conditions
such as mobility and unreliable wireless connectivity.

Chung et al. [17] proposed a Hybrid Wireless Mesh Protocol
(HWMP) defined in IEEE 802.11s to enable MAC layer based
routing in wireless mesh SDN networks. A similar approach
has been provided by Vagner et al. [18] that extended the
OpenFlow semantics by adding new messages and rules to
the OpenFlow protocol to include IEEE 802.11s MAC header.
However, the link layer multi-hop routing has two major
drawbacks: (i) limited number of nodes (i.e., maximum 32
nodes) are allowed in a single network, which presents a
scalability bottleneck in wireless networks; and (ii) the con-
flicting rules between 802.11s and OpenFlow introduce severe
performance degradation. Besides, Huawei et al. [10] proposed
a traffic orchestration architecture for WMNs based only on
OpenFlow for both IP data forwarding and SDN control
data signaling. Likewise, Donghaiet al. [19] presented the
OpenCoding framework, which implements network coding
functions at the data plane so that the SDN controller can
access them for both hop counting and path selection.

Dely et al. [20] proposed an out-of-band approach by
enabling a dual SSID in the same access point: one for
data forwarding and the other for the signaling of control
traffic. Likewise, authors in [21] proposed a hybrid OpenFlow
communication using a single SSID. It benefits from the dis-
tributed IP routing algorithms like OLSR for the propagation
of the control traffic and OpenFlow for data forwarding. A

2

centralized controller is used to forward data traffic, while the
OLSR protocol is used to install OpenFlow rules along with
IP forwarding strategy inside each SDN switch. In contrast to
out-of-band signaling, the authors in [22] proposed in-band
OpenFlow signaling where the centralized SDN controller
configures all wireless nodes throughout the end-to-end path
taken by the flow. However, such a configuration may become
a network bottleneck since it may increase the network load.

All these approaches use a SDN controller to carry the
signaling messages as well as the data packets across the
wireless network. Unlike these efforts, our approach uses
the SDN controller for the control traffic and IP-based data
forwarding to transmit data in hop-by-hop fashion.

III. SYNERGY BETWEEN SDN AND SMART CITIES

In this section, we describe a motivating urban scenario and
show how SDN wireless communication can play an effective
role in it. We first describe the network architecture of a Smart
Traffic Light System (STLS) envisioned for smart city. Then,
we discuss the value of SDN in enabling such a scenario.

A. Motivating Example

The STLS depicted in Figure 12 collects data from diverse
sensing devices, roadside equipment, and cameras to detect the
presence of vehicles, cyclists, and pedestrians. Pedestrians may
wear body-borne computers (wearable clothing) and their dogs
may wear a dog collar (circle (1) in the figure). Motorcyclists
can wear connected helmets and cyclists may ride smart
bicycles equipped with smart pedal for connecting to the STLS
as well as providing real-time location through a smartphone
(circle (2)). The STLS measures the distance and the speed of
approaching vehicles from every direction of an intersection
(circles (3)). It can also disseminate warnings to vehicles to
inform them about the possible crossing risks as well as the
possibility to change the routes in case of vehicular traffic
jams.

The STLS can be considered as a wireless mesh network
composed of distributed multi-hop wireless routers embedded
in the light boxes that relay into partial or full mesh topologies.
Those routers represent the SDN data plane that coordinate
the communication activity (circles (4)) among routers, issues
’slow down’ warning to vehicles at the risk of collision,
create a sequence of green lights by adapting traffic lights
to allow emergency vehicles to pass. Those vehicles are
equipped with On-Broad Units (OBUs) to connect to various
network interfaces, such as Global Positioning System (GPS),
radio transceivers for Wireless Access Vehicle Environment
(WAVE) [23], and Vehicular Ad-Hoc Network (VANET) [24]
(circle (5)) to communicate with each other and connect to
Road Side Units (RSUs) and mobile base stations. Each cluster
of RSUs can be considered as a cluster of SDN-enabled
wireless routers controlled by a SDN controller.

Besides, routers are connected to Internet gateways to
provide diverse services such as route planning, traffic alert
dissemination as well as mobile vehicular cloud services [25].
Finally, the access to the Internet (circle (6)) could be provided
either by diverse access technologies such as xSDL, satellite

Public Gateway

Mesh

Router

SDN Mesh

Router

VANET

2

3

4

Broadband Internet

(4G/5G)

5

1

RRRRRRRRRRRRRRRRRRouterrrrrrrrrrrrrrrrrr

1

Dog's Connected

Collar

Intelligent

Bicycle

Mesh

Router

Smart & wearable

Clothing

Road Side

Unit (RSU)

SSSSSSSSSSSSSSSD

RSU

SDN Controller

SDN Controller

6

Fig. 1: Overview of the Intelligent Smart Traffic Light System

or by heterogeneous and multi-technology connectivity, such
as 4G/5G cellular networks.

B. Role of SDN in the STLS Scenario

To enable a global view and control of the entire STLS
network, the SDN controller in Figure 12 implements routing
algorithms to control every wireless router in the data path. It
also connects to clusters of RSUs to enable forwarding local
road information to connected vehicles and perform emer-
gency services. By pushing the control plane in the controller,
we benefit from the simplicity of the implementation as well
as easier maintainenance and upgrades to the algorithms. The
controller embeds all the network intelligence and maintains
a global network-wide view of the routing devices and links
connecting them.

At the SDN data plane, i.e., the wireless router, Open-
Flow [26], which is the dominant SDN technology, is used
to replace the hardware pipeline of the monolithic routers
in traditional networks by software pipelines based on flow
tables. These flow tables are composed of simple rules to
process packets, forward them to another table and finally
send them to an output queue or port. The SDN controller
can dynamically install OpenFlow rules in the data plane to
decide specific behaviors of the wireless routers and RSUs.
It also keeps an up-to-date network view of the vehicles and
enables forwarding data like road condition, traffic jam, and
road maps to vehicles.

Another complementary technology to SDN called called
Network Function Virtualization (NFV) [27] provides a pow-
erful way to run multiple virtual network partitions over
shared substrates that run concurrently. The network traffic
is thus separated between isolated substrates to avoid leak
among partitions. Through network virtualization, it becomes

3

possible to refactor networking functionalities by virtualizing
as many network functions as possible. NFV advocates the
virtualization of network functions as software modules that
can be assembled and/or chained to create new services.

Decoupling virtual network functions from the hardware
allows the network to be tweaked as smart cities requirements
change. Specifically, the network underling the STLS should
be able to retrieve, store and forward high levels of contextual
insight through real-time analytics conducted on extremely
large datasets if systems are to be able to problem-solve in
real-time; for example, automatically diverting traffic away
from a street where a traffic incident has taken place.

IV. NETWORKING CHALLENGES AND OPPORTUNITIES
FOR SMART CITIES

In this section we show how the diverse communication
patterns of the STLS scenario introduces a plethora of chal-
lenging issues along multiple dimensions, such as wireless
network virtualization, controller placement problem, traffic
monitoring, and traffic engineering. We also allude to potential
opportunities.

A. Wireless Network Virtualization

Smart clients in the STLS scenario in Figure 12 end up
repeatedly triggering the embedded controller for marshaling
and unmarshaling data. Consequently, the network overhead
will increase significantly which combined with the limited
computing capabilities and resources of the physical wire-
less router, will significantly degrade network performance.
Wireless router virtualization can increase network capacity
and allow high volume of traffic in the STLS scenario by
offloading the MAC layer processing to virtualized APs and
simplify network management operations. Running multiple
non-overlapping isolated wireless networks will provide air-
time fairness for multiple different groups of wireless smart
clients. Each virtual router will have its own radio configura-
tion, capabilities of advertisements, and a set of distinguished
services.

Wireless virtualization should be applied to both the in-
frastructure and spectrum sharing. Virtualizing the infrastruc-
ture means that processors, memory, network interfaces, and
wireless radio have to be virtualized. Since the spectrum is
a scarce resource, spectrum virtualization should bring the
potential to provide better utilization of wireless resources,
channel isolation, control signaling, QoS allocation, and mo-
bility management. Hence, each virtual router should have its
own radio configuration, capabilities for notifications, and set
of distinguished services. This is, however, a very difficult
task because using a large number of independent wireless
channels induces channel fading due to multi-path propagation
and shadow fading that affects wave propagation.

B. Efficient Routing

As the STLS network in Figure 12 brings together diverse
applications that use the wireless technologies, e.g. RSUs,
wearable computing clothes, connected helmets, and con-
nected vehicles, the design of routing protocols in such smart

city networks should be sensitive about how the network can
handle data as well as the speed and the processing capabilities
of the wireless routers. Another challenging issue stems from
enabling SDN routing in the presence of existing wireless
routing protocols. Although some approaches use the IEEE
802.11s MAC layer for routing the traffic in SDN-enabled
WMNs [18], the link layer multi-hop routing suffers from two
shortcomings. First, in MAC layer-based routing, a limited
number of wireless nodes (up until 32 nodes as a maximum)
are allowed in single network. Second, the conflicting rules
between 802.11s and OpenFlow introduce severe performance
degradation.

Unfortunately, there are many other interesting SDN oppor-
tunities that are not yet addressed to deal with rapid client
association and re-association, and predicting the network
traffic to keep all the flows between clients and the wireless
routers in the network. Despite the presence of several routing
protocols for IoT systems, such as LoWPAN and RPL, these
routing protocols must be made dynamically adaptive to any
change in the network devices over the time. Therefore, more
research efforts are required to address such routing issues.
Further, an important issue that needs to be addressed is the
cohabitation between existing wireless routing protocols and
SDN data forwarding to ensure interoperability, scalability and
reliability of IoT technologies in smart cities.

C. Distributed vs Centralized Network Control and Manage-
ment

In the STLS scenario of Figure 12, geographically dis-
tributed mesh routers should coordinate their activities to
provide a global network view and simplify their management
and configuration. Nonetheless, this task is complex and hard
to achieve because coordination mechanisms are necessary
at each router. Although SDN can bring the benefits of the
network centralization through the centralized controller, this
is however contrary to the distributed nature of wireless mesh
networks. First, the simplicity of the centralized controller can
come at a cost of network scalability, which could deteriorate
the network performance. Second, the centralized controller
presents a single point of failure, which could affect availabil-
ity of the network. Conversely, distributed controllers aim at
eliminating the single point of failure and scale up the network.
Despite the advantages of distributed SDN control to improve
the scalability and the robustness of networks, several key
challenges should be addressed to obtain a consistent and a
global optimal view of the entire network.

Accordingly, it is difficult to decide whether a single con-
troller will be able to manage distributed islands of wireless
devices or multiple controllers should coordinate their activi-
ties to perform cooperation between wireless mesh routers and
enable zone specific controllers. To derive the advantages of
both approaches, a new hybrid control plan can be developed
that benefits from the simplicity of the centralized management
and the scalability and resilience of the distributed model
coordination.

4

D. Wireless Monitoring

The wireless routers need to report their status as well
as route modifications after failure or congestion and send
them back to an SDN controller. The controller can take
its routing decisions based on the collected statistics and
faults to optimize the traffic engineering. However, diagnosing
the network performance and bottlenecks is a challenging
issue in wireless mesh networks. In particular, estimating
wireless channel status is hard because these status change
frequently due to fading, interference and multi-path selection.
Additionally, monitoring wireless channels without having
visibility into the traffic characteristics, the network topology,
and the link characterization, i.e., latency, load, and stability,
can disturb the consistency of wireless networks.

Accordingly, the design of any monitoring algorithm should
include software plugins that allow topology and neighbor
discovery. Such a monitoring tool should be able to retrieve
every wireless device’s configuration parameters, collect traffic
statistics, link utilization as well as modifying flow table to
update wireless routing strategy. It also needs to cover moni-
toring functionality such as flow display, topology discovery,
and check, process and monitor the data generation during the
network operations.

E. Traffic Engineering

Wireless routers and gateways in the STLS scenario de-
picted in Figure 12 should forward the incoming traffic either
between each other in case of mesh routers or to the Internet
when the traffic reaches the gateways. Nevertheless, both the
gateways and the routers can become a potential network
bottleneck due to their high traffic overload. In particular,
the concentration of traffic on the gateways, which act as
central points of attachment to the Internet, may increase the
network load on certain paths, which leads to saturation of the
links as well as generating buffers overflows. Moreover, traffic
overload in the routers affects the performance of the overall
mesh backbone if routing protocols are unable to provide
network offload. Although, increasing the number of wireless
routers can help to distribute load among them, mitigating
the problem by increasing the number of routers does not
necessarily increase the capacity of the network. Additionally,
traffic forwarding in the STLS scenario requires selecting
the best paths from smart cars towards their nearest routers.
However, the best path selection in such a scenario seems to be
NP-hard problem [28] so that heuristic algorithms should take
into account both wireless channels and routing algorithm.

V. SDN-ENABLED WIRELESS ARCHITECTURE

In this section we describe our SDN-enabled wireless ar-
chitecture to address the aforementioned challenges and avail
of the outlined opportunities.

A. Proposed Architecture

Figure 2 depicts the architecture of the blended SDN-OLSR
architecture. At the core of this design is the centralized
controller, i.e., the control plane, which communicates with

QoS

Monitoring Agent

Traffic Engineering

Mobility

Ryu

OpenvSwitch

Flow Tables

IP forwarding

OLSR deamon

M
o

n
ito

rin
g

 A
g

en
t

OpenFlow protocol

PHY1

CTR

L1

DATA

1

PHY2

CTR

L2

DATA

2

MAC Layer

br0br1br3

wlan0

wlan1

tap

Gatway

IP

backbone

S
D

N
 C

o
n

tr
o

lle
r

Mesh Router

Fig. 2: Architecture of the Joint SDN-IP solution

the underlying mesh routers using the OpenFlow protocol. The
controller includes several network modules:

• Topology discovery module: which uses the Link Layer
Discovery Protocol (LLDP) to perform automatic discov-
ery of joining and leaving mesh routers. The controller
broadcasts OpenFlow PACKET_OUT messages to all
connected routers, which in turn respond by sending ARP
messages to notify their liveliness.

• Routing Module: which implements the shortest path
algorithm to build the optimal routing strategy to route
packets across the mesh routers. It builds a network graph
of connected routers, removes a node from the graph
when a router leaves the network, and activates/deacti-
vates links to force packets to follow an optimal path.

• Monitoring module: which enables fine-grained control
and monitoring of the OpenFlow traffic. It also supervises
the path reservation and modification at run-time. This
module allows the controller to query a mesh router to
gather individual statistics.

• Traffic engineering module: which supports load bal-
ancing to offload mesh cloud devices in case of traffic
congestion. It also performs traffic redirection based on
the optimized routing strategy used in the routing module.

On the data plane, each mesh router forwards OpenFlow
messages using the OpenVSwitch soft router. OpenVSwitch
implements a software pipeline based on flow tables. These
flow tables are composed of simple rules to process packets,
forward them to another table and finally send them to an
output queue or port. Furthermore, the data plane includes
an IP-based forwarding daemon running the OLSR routing
protocol. OpenVSwitch bridges OpenFlow and OLSR using
virtual network interfaces, i.e., br0, br1, and br2., to exploit

5

the capacity of IP networks to route packets via the shortest
path. Additionally, to enable multiple virtual routers inside the
same physical node, the data plane implements two virtual
radio interfaces, i.e. PHY1 and PHY2 shown in Figure 2.
Using virtual radio interfaces allows efficient sharing of the
downlink bandwidth between multiple clients and airtime
fairness scheduling with the help of channel sharing.

The remainder of this section describes how our architecture
resolves the challenges described in Section IV.

B. Wireless Network Virtualization: Splitting Routers into Two
Virtual Ones

In order to support wireless virtualization, we slice each
physical router into two virtual routers; each has its own
virtual hardware resources and virtual radio interface. Hence,
each physical access point is split into two non-overlapping
virtual APs, i.e., ESSID 1 and ESSID 2. Each virtual ESSID
has its virtual wireless channel so that mobile clients can
switch between them seamlessly and can communicate using
the virtualized channels. Moreover, in order to separate the
control traffic, i.e., signaling, from the data traffic, each SSID
forwards the traffic independently from the other. The benefit
of splitting an AP into two virtual ones is twofold. First,
we provide an efficient downlink bandwidth sharing between
multiple smart clients due primarily to the efficient airtime
fairness scheduling with the help of channel sharing. Second,
we solve the challenges of uplink channel access for multi-
clients simultaneous transmission, and we enable high data
rates as well as low latency for those smart clients.

Additionally, allowing two virtualized access point inside
the same wireless router allows each virtual AP to deliver its
traffic indication map, i.e., broadcast Beacon messages, and
enables the synchronization of its clients with the wireless
network.These beacon frames are management frames used
in a mesh routers to keep alive all the clients attached to
a wireless router. To that end, each virtual router advertises
Beacon frames in the air so that smart clients can easily
and seamlessly associate and connect to it. Such an approach
allows the use of existing link layer protocols and while
changing the MAC settings simultaneously.

Furthermore, we enhanced the physical layer to transmit the
SNR (Signal to Noise Ratio) values, not only to the MAC layer
to improve packet delivery, but also we carried these values
to the SDN controller to allow the centralized management of
the radio interference so that packets are routed along the best
path based on the highest SNR values.

C. Efficient Routing: Composite Routing for Wireless Net-
works

To support efficient routing in SDN-enabled wireless
routers, we divide the routing functionalities into two layers
as shown in Figure 2. The upper layer supports SDN routing
by enabling the OpenFlow protocol for data forwarding. The
bottom layer uses IP-based forwarding with the OLSR routing
protocol. The former is responsible for communicating Open-
Flow policies with the SDN controller. The latter is responsible

for handling IP routing among OLSR interfaces inside the
mesh routers.

Figure 2 depicts the architecture of a SDN-enabled wireless
router for smart city network that implements both Open-
Flow and OLSR. To allow the controllers to reach all the
geographically distributed routers, we used an in-band con-
trol approach in a way to provide long distance wireless
connectivity among the wireless mesh backhaul. There are
two advantages of cohabitating IP-based routing and SDN
routing. On the one hand, the controller implements its own
routing algorithms for best path selection, and configures mesh
routers by adding/removing/updating OpenFlow rules. It also
can retrieve the current network states from the nearest mesh
router. On the other hand, packets can be routed according
to OLSR routing tables under the instruction of the controller
through OpenFlow.

Hence, OLSR reports every change in the topology graph,
such as adding/removing new mesh router and/or wireless link.
Each wireless router keeps a list of its neighbors – the so called
multi-points relays (MPR) selector list, builds periodically a
new refreshed routing table, and selects the newest shortest
path to all destinations. Thereafter, the controller retrieves the
topology information from its nearby mesh routers.

D. Centralized versus Distributed: the Controller Placement
Problem

To support a dense wireless communication in smart cities,
we propose a hybrid network controller that combines cen-
tralized and distributed SDN and attempts to gain the merits
of both. To that end, we leverage our prior work on the
’InitSDN’ framework as illustrated in Figure 3. InitSDN [29]
is a meta-controller layer based on the boot loading mecha-
nism adopted by operating systems. First, a single centralized
controller is deployed at the initialization phase to control and
manage the entire network. Then, in case of controller failure
or overhead, additional controllers are added at runtime as
required to balance the network performance. Additionally,
a set of coordination mechanisms are deployed between the
distributed controllers to ensure the network consistency. In
particular, these mechanisms include an election process that
allows electing the closest controller as a master. Such a hybrid
control strategy allows allocating and assigning the right traffic
to the right number of controllers, while making the network
more flexible, reliable, and fault-tolerant.

InitSDN divides the wireless network into two slices: a
date slice to control the traffic exchanged between users
applications and a control slice for managing the controllers.
It allows selecting the optimum initial topology of the control
slice, i.e., the number of controllers, based on the current
network conditions, i.e., network overhead, failure, etc.

E. Wireless Monitoring: Monitoring the Routers with Open-
Flow

To enable fine-grained control and monitoring of the traffic
in SDN-enabled smart cities, the controller implements a mon-
itoring agent as shown in Figure 2. It uses OpenFlow messages
to supervise the path reservation, modification and installation.

6

InitSDN Meta-Control layer
H

ie
r
a

rc
h

ic
a

l

c
o

n
tr

o
ll

e
r
s

Elected Controller

Slaves controllers

Meta-control Traffic

Data Traffic

Control Traffic

Centralized

Controller

Backup

Controller

coordination

mechanisms

Fig. 3: InitSDN Hybrid Control Plane for the STLS

In particular, the monitoring agent uses two types of mes-
sages illustrated in Figure 4 to gather statistics from mesh
routers: STATISTICS messages and FlowRemoved messages.
The monitoring agent sends a FlowStatsRequest message to
the wireless router to query individual flow statistics. The
router replies with FlowStatsReply to respond to that request.
Additionally, when a flow timeout expires in the switch or
flow entries are deleted, the switch notifies the monitoring
agent with FlowRemoved message. This message includes the
duration, and packet and byte counts of a recently removed
flow. This information is used to monitor the delay between
the controller and its corresponding router.

F
lo

w
S

tatR
e
q

F
lo

w
S

ta
tR

e
p

1
2

Wireless

Router

SDN controller

FlowRemoved message includes the

duration, packet and byte counts of a

recently removed flow.

The controller queries the

switch to retrieve the Flow

Statistics.

F
lo

w
R

e
m

o
v

e
d

Fig. 4: Retrieving Traffic Statistics by the Monitoring Agent

F. Traffic Engineering: Adding Support for Load Balancing

To address the network overflow issues, we introduce at the
controller side a traffic-engineering algorithm that performs
load balancing as depicted in Figure 2. Figure 5 depicts the
principle of the load balancing approach: the SDN controller
connecting the edge routers of the mesh clouds tries to
establish a routing path between mesh cloud 1 and mesh cloud
across the link a© connecting router 1 and router 4. Links a,

b, c, d, e, and f establish the communication paths across the
mesh clouds in the STLS.

SDN

controller

router 4

a

b

c

d

router 2

router 1

 router 3

e

f

b

GPS

Connected

Car

STLS

Fig. 5: Load Balancing in the STLS network

As soon as the link becomes a bottleneck, i.e., congestion,
connection loss, interference, etc, the load-balancing algorithm
is activated in the controller side. Thereafter, the controller can
easily decide on switching the data to the next best available
path as illustrated by the bow in Figure 5. Algorithm 1 shows
the load balancing algorithm to select the optimal path. It
calculates the new rules, i.e., the MAC and IP addresses, of the
new path towards the new mesh routers, i.e., b©, f© and c©,
d© as shown in Figure 5. Once the new path is established
end-to-end by sending FlowMod messages, the controller
floods all ports towards the selected virtual router, open the
client’s connection to enable packets reaching their destination,
and simultaneously continue discovering and monitoring the
network topology. The controller calculates the new optimal
path based on the graph topology, which includes all available
routers < as well as the links ℵ connecting them. Then, it
installs new OpenFlow rules to program the flow entries inside
the software pipeline in each router.

Table I depicts the flow entries that the controller can
program before traffic congestion and after triggering the load
balancer algorithm. At startup time, the controller has already
installed the data path between router 1 with ID dpID1 and
router 4 with ID dpID4. When router 1 receives incoming
packets in its virtual port, i.e., ingress-Port: virtual port 1, the
headers of those packets are inspected to check whether they
match the OpenFlow rules in the flow entries. The action sets
are provided through the physical port of router 1, i.e., output:
To port router 4 and the destination of packets from router 1
is the next nearest hop, i.e., the router 4. Thus, packets from
router 1 should encapsulate in their headers the IP and MAC
destination addresses of router 4. Hence, the flow entries are
injected by the controller to allow forwarding data to router 4
using both its IP, i.e., SetDestIP: IP router 4, and its MAC,
i.e., SetDestMAC: MAC router 4, destination addresses.

Upon the failure of radio link a, the controller installs new
OpenFlow rules to redirect the flow from router 1 to router
4 through router 2. Since the new available forwarding path

7

Algorithm 1: Load Balancing Algorithm
Data: Th, <,ℵ
Result: Rerouting traffic to the optimal path

1 installDefaultFlowRules(<);
2 while Listening to LLDP packets do
3 if TrafficCongestion(Th) then
4 calculateNewOFRules(<,ℵ);
5 FloodPackets(<);
6 calculateOptimalPath(source, destination,<,ℵ);
7 if isBestPATH then
8 InstallnewOFRules(<);
9 else

10 goto:
11 calculateNewOFRules(<,ℵ);
12 end
13 else
14 monitoring();
15 end
16 end

OF Before After
OpenFlow router1: dpID1 router1: dpID1
rules router4: dpID4 router2: dpID2

ingress-Port: virtual port 1 router4: dpID4
ingressPort: virtual port 1
ingressPort: virtual port 2

OpenFlow SetDestIP: IP router 4 setDestIP: IP router 2
entries SetDestMAC: MAC router 4 SetDestMAC: MAC router2

output: To port router 4 output: To port router 2
setDestIP: IP router 4
SetDestMAC: MAC router4
output: Port router 4

TABLE I: Flow entries the controller install in the routers

should pass through router 2, the controller should program
routers 2 and 4 with the new flow entries as described in the
“After” column of Table I.

VI. EVALUATING THE BLENDED SDN-OLSR
ARCHITECTURE

This section describes our proposed architecture that blends
SDN and OLSR. Our evaluations center around measuring
the performance, evaluating the claims on the architecture’s
properties, and the overhead, if any, that is imposed by the
overall design and its architectural elements.

A. Testbed Settings

To evaluate our architecture along the different dimensions,
we have developed a prototype with NS-3 simulator [30]
and Mininet [31] SDN emulator. Mininet is the reference
SDN simulator which provides a simple and inexpensive net-
work testbed for developing OpenFlow applications. However,
Mininet does not support a realistic wireless protocol stack to
enable mesh networks. Therefore, we extended it with the NS-
3 simulator. The latter natively supports IP forwarding proto-
cols such as OSLR and AODV. We leveraged the TapBridge
functionality in NS-3 to integrate NS3 with Mininet so that

our SDN-enabled mesh routers support both OpenFlow-based
OpenVSwitch routing at the upper layer as well as OLSR
protocol as a default IP routing protocol.

At the controller side, we enhanced the Ryu SDN controller
to support our approach described in Section V. For example,
the monitoring agent is used to supervise the network topology
changes and discover any failure event in the mesh cloud using
a web-based interface. Additionally, the traffic engineering
module includes the load balancing algorithm to offload the
mesh routers in case of buffer overflow. Furthermore, to
support network virtualization, the Ryu controller can coop-
erate with OpenStack using the Quantum Ryu plugin 2 to
support Mobile Cloud communication. The extension can be
easily integrated into OpenStack++ [32] platform for enabling
mobile Cloudlets.

In-band OpenFlow

Communication

OLSR control data

Server Ryu

Smart device

(client)

In
te

r
n

e
t

WiFi (300 Mbps)

Ethernet

1Gb/s

Mesh

router

Fig. 6: Experimental setup for the wireless mesh network

To evaluate the proposed solution, we consider the experi-
mental setup depicted in Figure 6. We consider the mesh client
as an autonomous car which communicates using its radio
interfaces with the Cloudlet server across multi-hop routers.
This smart car can also communication with the gateway,
which acts as the access point to the Internet. To be able to
reach its destination, i.e., the Cloudlet server or the Internet,
the Ryu controller should be able to install OpenFlow roles to
its neighbor router.

B. Evaluating Throughput Performance
a) Rationale: To evaluate the throughput performance

and robustness of our proposed architecture, we consider a
UDP traffic between end hosts and the packet size is set to
1,500 bytes. We also consider that each wireless node uses the
802.11b standard to exchange data at a transmission rate of 1
Mbps. In such a full mesh topology, we consider all routers
connected to each other and the measurements of the data
traffic is taken by the average of different packets’ forwarding
sections. To evaluate the impact of using OLSR forwarding
and OpenFlow, the routers are placed in different locations
and traffic monitoring is performed at the controller side.

2https://github.com/osrg/ryu/wiki/OpenStack

8

https://github.com/osrg/ryu/wiki/OpenStack

0
1 30 50 70 90 110 130 150

Time (s)

0

200

400

600

800

1000

1200

1 30 50 70 90 110 130 150 170

T
h

ro
u

g
h

p
u

t
(k

B
/s

)

Time (s)

Throughput (kB/s)

Fig. 7: UDP Throughput

We assume that the controller has already pushed down
and installed the flow rules in the OpenFlow tables of the
underlying routers. Hence, the incoming packets in a given
ingress port of a router are directly forwarded to its physical
output port to enable the packets to reach the next wireless
hop.

b) Analysis: Figure 7 shows the throughput measured
with the Iperf measurement tool on the client side. We repeated
the experiments multiple times to ensure the consistency of
the results. In each run, there are three different traffic types:
(i) the OpenFlow control traffic, (ii) the OLSR forwarding
traffic; and (iii) the UDP/IP data traffic exchanged between
end users. The average throughput is close to 850 KB/s while
the maximum expected throughput is bounded by 988 KB/s
at time 30 seconds. There are many reasons that may lead to
the decrease of the throughput: data plane to control plane
encapsulation, thread priorities, CPU interrupts, amount of
OLSR traffic and OpenFlow control data exchanged across
the network. The average throughput drops closer to 850
KB/s, which we consider as an acceptable value for such
an unreliable traffic. The evaluation data confirms our claims
on ensuring the fairness of the global optimization of our
approach.

C. Evaluating the Average Relative Error

a) Rationale: In order to provide in-depth inspection
of the average relative error in the throughput described in
Section VI-B, we estimated the per-flow packet loss by polling
the flow statistics in the edge routers assuming a relationship
between the link packet loss and the throughput. The packet
loss can be obtained by calculating the difference between the
average throughput in the edge router on the client side and
the edge router on the server side.

b) Analysis: The packet loss measurements depicted in
Figure 8 show that the average error is close to 10%. The
average packet loss is calculated by subtracting the difference
of packet counters in edge routers between the client and the
server. These measurements give a sufficient estimate about
service degradation. The current version of the OpenFlow
specification does not include any QoS service differentiation
to enable per-class packet classification, scheduling and for-
warding. Thus, traffic prioritization is not applied to protect
packets against any computing flows. Nevertheless, the packet
error in our experiments does not drastically degrade the per-
formance of the communication because 85% or more of the
traffic is sent to the corresponding destination. The observed

degradation is due mainly to the additional processing and
overhead required by OpenFlow to forward packets between
different wireless hops. A close inspection of these results
shows that our solution is successfully able to to support SDN-
based communication in the smart cities scenarios.

0%

5%

10%

15%

20%

Time 20 40 60 80 100 120 140 160

P
a

ck
et

 L
o

ss
 (

%
)

Time (s)

Packet loss (%)

Fig. 8: Packet Loss

D. Evaluating the End-to-end Delay

a) Rationale: We consider the end-to-end delay as the
time duration from a packet to be sent from the source mesh
client until it is received by the destination server which
executes the services. We conducted this experiment multiple
times and kept the average latency. The measurement of one-
way delay is not straightforward because packets experience
different network delays including processing delay, queuing
delay, transmission and propagation delays. Thus, we have cal-
culated the Round Trip Time (RTT), which then estimates the
one-way latency by assuming half of the RTT. Additionally,
we calculated the delay required for a packet to be sent by the
controller until it is received its close for router.

b) Analysis: Figure 9 depicts the latency between the
SDN controller and its corresponding router as well as the
end-to-end latency between the client and the gateway. At
the startup phase, the controller-router delay is close to 10
milliseconds and decreases close to 3 milliseconds after the
controller installed new OpenFlow rules into the router. At this
time only the OpenFlow keepalive messages are exchanged to
check whether an idle control connection occurs to indicate a
loss of controller-switch connectivity. At time 40 seconds, a
new mobile client joins the network, but its forwarding rules
are still unknown for both the controller and the switch. Thus,
they start exchanging messages to setup new forwarding rules
for packets belonging to that client. The same behavior occurs
at time 130 seconds. In all those cases, the controller-router
latency remains bounded to 12 ms during the setup phases
and close to 3 ms otherwise. Therefore, the controller-router
latency does not present a network bottleneck.

The end-to-end latency between remote hosts is shown in
Figure 9. In the regular case where no setup traffic is injected
into the network, the delay is close to 30 ms. It becomes close
to 38 ms each time new OpenFlow rules are being negotiated
between the controller and the switches. In both cases, the
latency remains bounded to 40 ms so we consider this value
acceptable in the presence of the controller regular operations.

9

0

5

10

15

10 30 50 70 90 110 130 150 170

Ji
tt

er
 (

m
s)

Time (s)

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120

End-to-End Latency

0

20

40

60

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

D
el

ay
 (

m
s)

Time

Controller-…

0
5

10
15
20
25
30
35
40
45

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

D
el

ay
 (

m
s)

Time (s)

Controller-Router Latency End-to-End Latency

Fig. 9: delay

E. Evaluating the Router overhead

a) Rationale: We consider the performance overhead in
each mesh router when using OLSR IP routing along with
the OpenFlow forwarding. Each gateway is connected to the
Internet and announces the default route, i.e. 0.0.0.0/0, through
OLSR, which inserts this default route in the routing table
of each router. Moreover, each router can carry OpenFlow
messages using OpenVSwitch, which is bridged to the IP
forwarding using the br network interfaces as shown in Fig-
ure 2. This scenario makes it possible to perform flow-based
forwarding operations using OpenFlow while still routing
those flows between different mesh routers using OLSR to
better exploit the capacity of IP networks to route packets to
the shortest path between the source and destination.

b) Analysis: Figure 10 depicts the total traffic rates
generated by OLSR and OpenFlow. After the initiation phase,
OpenFlow creates control traffic at time 30 seconds when new
rules are installed by the SDN controller into its corresponding
router. As expected, the OpenFlow traffic increases as the
installation of new rules is performed, while the OLSR traffic
remains the same. The additional control traffic introduced
by OpenFlow is about 9 KBytes/s and the total traffic is 6
times higher compared to a case when OLSR is used as a
routing protocol. At time 46 seconds, the OpenFlow control
traffic decreases as all the new OpenFlow rules are installed
in the router and the controller has no new flow entries
to inject into it. Compared to OLSR flow, OpenFlow adds
some extra control flow at the new rules installation phase,
but this quantity is relatively low compared to the overall
throughput. Therefore, both OpenFlow control flow and OLSR
IP forwarding flows do not contribute to the network overhead.

Fig. 10: Network overhead

F. Evaluating the controller overhead

a) Rationale: To evaluate the controller overhead, we
measured the amount of control data exchanged between
the controller and the underlying routers. We also compared
this traffic to data traffic exchanges when the controller
installed the new flow entries in the routers’ flow tables.
These experiments are conducted five times and the average
values are taken for the evaluation. The captured controller
traffic includes three different matching actions: OpenFlow
packets, Ethernet packets (i.e., ARP) and data packets (i.e.,
TCP packets). The controller traffic through routers is captured
using Wireshark and analysis are performed with Tcpdump
packet analyzer.

b) Analysis: Figure 11 shows the control traffic overhead
along with the data traffic through a router. The control Open-
Flow traffic is close to 35% of the overall traffic exchanged
in the wireless network, the data traffic close to 80%, and
the Ethernet traffic, i.e., ARP traffic, is close to 20%. The
initialization phase requires exchanging layer 2 ARP data to
perform host reachability between remote hosts.

0

20

40

60

80

OpenFlow TCP ARP

T
ra

ff
ic

 o
v
er

h
ea

d

(%
)

Fig. 11: Controller overhead

Indeed, the first hosts send ARP requests across the net-
works, which generate broadcast of PACKET_OUT messages
to all nodes in the network. The routers will examine these
requests to know the source port mapping. Then, ARP re-
sponses come back with all Ethernet addresses known to the
controller, i.e., the source MAC address will be associated with
the port. The controller can now flood Flow_Mod messages
on all ports of the underlying router. Due to broadcasting
OpenFlow messages the control overhead is almost two times
the Ethernet traffic, which is minimal when compared to
the TCP data traffic. Therefore, the control traffic does not
contribute significant overhead.

G. Evaluating the Load Balancing

a) Rationale: OpenFlow allows setting up of flow paths
by inserting flow entries at the controller. Each connected
node to the controller is considered as a mesh router so that
any incoming flow that matches the OpenFlow flow rules is
redirected by the controller based on the OpenFlow actions.
Redirecting flows between routers is essential to enable traffic
engineering in mesh networks. It allows offloading certain
path to allow fairness among different flows. Recall that all
routers are OpenFlow-enabled and each has an OLSR instance
to allow IP-based data forwarding and routing table updates.
To evaluate the performance of the load balancing approach,

10

we inject after 40 seconds a competing flow into router 4
to simulate network congestion and introduce a performance
degradation in this node.

b) Analysis: Figure 13 shows the throughout observed
in router 4. Due to buffer overflow, router 4 starts dropping
packets so that the throughput decreased from 800 kB/s to
200 kB/s and a significant packet losses is observed. At time
50 seconds, the load balancing algorithm at the controller
is activated to redirect the traffic from radio link a to radio
links b and f. The topology discovery module at the controller
discovered the disconnection of the wireless radio between
routers 1 and 2, checks the new available path based on the
graph its has and selects router 2 as new shortest path to
destination.

Série1

0

200

400

600

800

1000

10 50 90 130 170

Th
ro

u
gh

p
u

t
(K

b
/s

)

Time

Load Balancing

Fig. 12: TCP Throughput

The new path is extracted from the routing table updated
regularly by the OLSR protocol. Then, the controller needs to
remove the old OpenFlow rules in router 1, i.e., those used for
sending the traffic across link a, pushing down and installs new
forwarding rules as described in column 3 of Table I. The IP
and MAC addresses of router 2 are added in the new rules. The
bow in Figure 5 shows the new path selected by the controller
by installing new OpenFlow rules in node 1.

A close inspection of Figure 13 shows that the controller
is able to make traffic adjustment using the load balancing
algorithm. The traffic is balanced among the new wireless links
after establishing the new data path. Furthermore, we find the
delay required by the controller for deciding the new available
path and forwarding data is close to 6 milliseconds. Therefore,
the controller-router communication does not degrade the per-
formance of the network during the traffic engineering process.
The redirection delay is composed of the delay required to
drop the old rules from routers and pushing down the new rules
in the flow tables of each router. Our results shows that our
approach to provide traffic engineering in wireless networks
succeeds in redirecting packets to the new selected path when
multiple wireless hops are available in the network.

VII. CONCLUSIONS

This paper described several important challenging issues
that need to be tackled for efficient support of wireless commu-
nication in Smart Cities. To address these challenges and avail
of the opportunities, we introduced a novel architecture based
on a symbiotic relationship between wireless mesh networks
(WMNs) and software defined networking (SDN) that enables
agile and flexible communication.

The following is a summary of the insights we gained from
this research and directions for future work.

Bringing the cloud computation to the network edge:
The proposed architecture provides new opportunities to build
vehicular cloud services for data collection and analytics by
forwarding all the traffic data to the network core through
the Internet gateways. Nonetheless, sending data to remote
cloud servers consumes higher bandwidth and introduces extra
latency for real-time applications like video streaming inside
the cars. We believe that with the emergence of self-driving
vehicles, real-time data processing, and safety information and
storage for clusters of RSUs should be provided at the road
side using mobile Cloudlets and Fog devices to offer low-
latency, context- and location-awareness to fulfill the future
needs of smart cities.

Cross-Layer design and optimization: The proposed ap-
proach allows splitting the wireless data plane into several
separate channels to improve the QoS. Although SDN allows
the programmability of the data plane, current wireless devises
employ diverse modulation protocols to comply with a specific
radio interface, which limits their flexibility and versatility
to respond to the increasing demands on bandwidth and
frequency spectrum resources. We believe that the coexistence
of SDN and the Software Defined Radio (SDR) could unify
the network resource management and the radio resource
management. We can rethink on how a cross-layering design
could interoperate both SDN and SDR for better spectrum
utilization and channel interactions, which forms additional
dimensions of our future work.

ACKNOWLEDGMENT

This work was supported in part by the Fulbright Visiting
Scholars Program and NSF CNS US Ignite 1531079. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of NSF or the Fulbright program.

REFERENCES

[1] U. Nations, “World population prospects: The 2015 revision, methodol-
ogy of the united nations population estimates and projections.”

[2] A. Gyrard and M. Serrano, “Connected smart cities: Interoperability
with seg 3.0 for the internet of things,” in 2016 30th International
Conference on Advanced Information Networking and Applications
Workshops (WAINA), March 2016, pp. 796–802.

[3] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1,
pp. 22–32, 2014.

[4] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand
Distance Vector (AODV) Routing,” RFC 3561 (Experimental),
Internet Engineering Task Force, Jul. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3561.txt

[5] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626 (Experimental), Internet Engineering Task Force,
Oct. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3626.txt

[6] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A Survey of Software-Defined Networking: Past, Present, and Future
of Programmable Networks,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, 2014.

[7] X. Wang, C. Wang, J. Zhang, M. Zhou, and C. Jiang, “Improved
rule installation for real-time query service in software-defined internet
of vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. PP, no. 99, pp. 1–11, 2016.

11

http://www.ietf.org/rfc/rfc3561.txt
http://www.ietf.org/rfc/rfc3626.txt

[8] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “Openroads: empowering research in
mobile networks,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1,
pp. 125–126, 2010.

[9] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and
R. Merz, “Programmatic orchestration of wifi networks,” in 2014
USENIX Annual Technical Conference (USENIX ATC 14). USENIX
Association, 2014.

[10] H. Huang, P. Li, S. Guo, and W. Zhuang, “Software-defined wireless
mesh networks: architecture and traffic orchestration,” Network, IEEE,
vol. 29, no. 4, pp. 24–30, July 2015.

[11] P. K. Sahoo and Y. Yunhasnawa, “Ferrying vehicular data in cloud
through software defined networking,” in 2016 IEEE 12th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), Oct 2016, pp. 1–8.

[12] E. Bozkaya and B. Canberk, “Qoe-based flow management in software
defined vehicular networks,” in 2015 IEEE Globecom Workshops (GC
Wkshps), 2015, pp. 1–6.

[13] K. Xu, R. Izard, F. Yang, K. C. Wang, and J. Martin, “Cloud-based hand-
off as a service for heterogeneous vehicular networks with openflow,”
in 2013 Second GENI Research and Educational Experiment Workshop,
March 2013, pp. 45–49.

[14] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined
networking-based vehicular adhoc network with fog computing,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), May 2015, pp. 1202–1207.

[15] P. Dely, J. Vestin, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo,
“Cloudmac: An openflow based architecture for 802.11 mac layer
processing in the cloud,” in Globecom Workshops (GC Wkshps), 2012
IEEE, Dec 2012, pp. 186–191.

[16] I. Ku, Y. Lu, and M. Gerla, “Software-Defined Mobile Cloud: Architec-
ture, services and use cases,” in International Wireless Communications
and Mobile Computing Conference, IWCMC 2014, Nicosia, Cyprus,
August 4-8, 2014, 2014, pp. 1–6.

[17] J. Chung, G. Gonzalez, I. Armuelles, T. Robles, R. Alcarria, and
A. Morales, “Experiences and challenges in deploying openflow over
a real wireless mesh network,” in Communications (LATINCOM), 2012
IEEE Latin-America Conference on, Nov 2012, pp. 1–5.

[18] V. Nascimento, M. Moraes, R. Gomes, B. Pinheiro, A. Abelem,
V. Borges, K. Cardoso, and E. Cerqueira, “Filling the gap between
Software Defined Networking and Wireless Mesh Networks,” in Network
and Service Management (CNSM), 2014 10th International Conference
on, Nov 2014, pp. 451–454.

[19] D. Zhu, X. Yang, P. Zhao, and W. Yu, “Towards effective intra-flow
network coding in software defined wireless mesh networks,” in Com-

puter Communication and Networks (ICCCN), 2015 24th International
Conference on, Aug 2015, pp. 1–8.

[20] P. Dely, A. Kassler, and N. Bayer, “Openflow for wireless mesh
networks,” in Computer Communications and Networks (ICCCN), 2011
Proceedings of 20th International Conference on, July 2011, pp. 1–6.

[21] A. Detti, C. Pisa, S. Salsano, and N. Blefari-Melazzi, “Wireless mesh
software defined networks (wmsdn),” in Wireless and Mobile Computing,
Networking and Communications (WiMob), 2013 IEEE 9th International
Conference on, Oct 2013, pp. 89–95.

[22] I. Brito, S. Gramacho, I. Ferreira, M. Nazare, L. Sampaio, and
G. Figueiredo, “Openwimesh: A framework for software defined wire-
less mesh networks,” in Computer Networks and Distributed Systems
(SBRC), 2014 Brazilian Symposium on, May 2014, pp. 199–206.

[23] “IEEE Approved Draft Standard for Wireless Access in Vehicular
Environments (WAVE) - Networking Services,” IEEE P1609.3v3/D6,
November 2015, pp. 1–162, Jan 2016.

[24] K. M. Alam, M. Saini, and A. E. Saddik, “Toward Social Internet of
Vehicles: Concept, Architecture, and Applications,” IEEE Access, vol. 3,
pp. 343–357, 2015.

[25] M. F. Feteiha and H. S. Hassanein, “Enabling Cooperative Relaying
VANET Clouds Over LTE-A Networks,” IEEE Transactions on Vehic-
ular Technology, vol. 64, no. 4, pp. 1468–1479, April 2015.

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[27] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “To-
ward a software-based network: integrating software defined networking
and network function virtualization,” IEEE Network, vol. 29, no. 3, pp.
36–41, May 2015.

[28] B. Mumey, J. Tang, I. Judson, and D. Stevens, “On Routing and Channel
Selection in Cognitive Radio Mesh Networks,” Vehicular Technology,
IEEE Transactions on, vol. 61, no. 9, pp. 4118–4128, Nov 2012.

[29] P. Patil, A. Gokhale, and A. Hakiri, “Bootstrapping Software Defined
Network for flexible and dynamic control plane management,” in Pro-
ceedings of the 2015 1st IEEE Conference on Network Softwarization
(NetSoft), April 2015, pp. 1–5.

[30] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “Ns-3 project
goals,” in Proceeding from the 2006 Workshop on Ns-2: The IP Network
Simulator, ser. WNS2 ’06, 2006.

[31] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX,
2010.

[32] K. Ha and M. Satyanarayanan, “Openstack++ for cloudlet deployment,”
pp. 1–24, Aug.

12

	Introduction
	Related Work
	Synergy Between SDN and Smart Cities
	Motivating Example
	Role of SDN in the STLS Scenario

	Networking Challenges and Opportunities for Smart Cities
	Wireless Network Virtualization
	Efficient Routing
	Distributed vs Centralized Network Control and Management
	Wireless Monitoring
	Traffic Engineering

	SDN-Enabled Wireless Architecture
	Proposed Architecture
	Wireless Network Virtualization: Splitting Routers into Two Virtual Ones
	Efficient Routing: Composite Routing for Wireless Networks
	Centralized versus Distributed: the Controller Placement Problem
	Wireless Monitoring: Monitoring the Routers with OpenFlow
	Traffic Engineering: Adding Support for Load Balancing

	Evaluating the Blended SDN-OLSR Architecture
	Testbed Settings
	Evaluating Throughput Performance
	Evaluating the Average Relative Error
	Evaluating the End-to-end Delay
	Evaluating the Router overhead
	Evaluating the controller overhead
	Evaluating the Load Balancing

	Conclusions
	References

