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Abstract 
Architecting software for a cloud computing platform built from mobile embedded devices incurs many 
challenges not present in traditional cloud computing. Effective management of constrained resources, 
application isolation without adversely affecting performance are both needed. This paper describes a 
practical design- and run-time solution that incorporates modern software development practices and 
technologies along with novel approaches to address the challenges. Conceivably, the patterns and 
principles manifested in our system can serve as guidelines for current and future practitioners in this 
field. 
 
Index Terms 
D.2.6.b Graphical environments, D.4.7.e Real-time systems and embedded systems, D.4.6.d 
Information flow controls 
 

I. THE EMERGING REALM OF MOBILE AND EMBEDDED CLOUD 

COMPUTING 
Mobile cloud computing infrastructures supporting the vision of Internet of Things (IoT) [1] provide 
services beneficial to our society. For example, a cloud of smart phones can run software that shares the 
sensing and computing resources of nearby devices, providing increased situational awareness in a 
disaster zone. A cluster of small collaborating satellites can provide increased reliability at reduced 
launch costs for scientific missions. For instance, NASA’s Edison Demonstration of SmallSat Networks, as 
well as TanDEM-X, PROBA-3, and Prisma from the European Space Agency all use clusters of small 
satellites. 
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Unlike traditional computing clouds that draw a clear distinction between a cloud provider and user, 
these roles will be interchangeable in the participating resources in mobile clouds [2]. Additionally, the 
need to scale up on demand is often the motivation for using a traditional cloud, whereas a mobile 
embedded cloud is motivated by the need for on-demand collaboration. 
 
Table I presents associated requirements and challenges that are not fully addressed by existing cloud 
computing platforms. This paper describes an architecture called Distributed REaltime Managed System 
(DREMS) [3] that addresses these requirements. It consists of two main parts: (1) A design-time tool 
suite for modeling, analysis, synthesis, integration, debugging, testing, and maintenance of application 
software built from reusable components; (2) a run-time software platform for deploying, managing, 
and operating application software on a network of embedded, mobile nodes.  
 
TABLE I 

SUMMARY OF ARCHITECTURAL DECISIONS IN DREMS 

Requirement Design Principle Approach Section 

1. Rapid application 
development, software reuse 

Component-based 
software engineering 
 

Novel component model Sec III 
 

2. Multiple application 
interaction Semantics 
 

Separation of concerns Rich set of component 
interaction ports with 
operations scheduled 
independently 

Sec III 
 

3. Managed concurrency and 
synchronization for 
robustness 

Single-threaded 
components  

Concurrency managed by OS 
and middleware, not 
component business logic 

Sec II 
and 
Sec III 
 

4. Resource management 
and application isolation with 
performance guarantees 

Spatial and temporal 
separation 

Applications are run in 
isolated partitions 
 

Sec II 

5. Secure information flows Multi-level security with 
multi-domain labels, 
temporal/spatial  
isolation, 
Mandatory Access 
Control 

Architectural support for 
separation, MLS (based on 
label checking), and 
constrained information flows 

Sec IV 

6. Managed and secure 
application deployment and 
configuration 

Modeling and 
automation 

Model-driven middleware 
services to provide secure 
deployment and configuration 
 

Sec V 
 

7. Producible verified 
systems 

Catch defects early in the 
development cycle 

Model-based system design 
and generative development 

Sec V 

 
 
 



The platform reduces the complexity and increases the robustness of software applications by providing 
reusable technological building blocks in the form of an operating system, middleware, and application 
management services (see Figure 1). 

II. RUNTIME SOFTWARE PLATFORM: OS AND MIDDLEWARE 
 
DREMS provides a runtime platform for applications in the form of an operating system (OS) and 
middleware. The DREMS OS – a set of extensions to the Linux kernel – provides all the critical low-level 
services to support resource management (including spatial and temporal partitioning of the memory 
and the CPU), actor management (discussed below), secure information flows (labeled and managed, as 
discussed in next section), and fault tolerance. 
 
 

 
 
 
Fig. 1. DREMS architecture.  The top-right portion shows the internals of one node.  

 
 
Software applications running on DREMS are distributed. To facilitate isolation (Requirement 4), the 
components that make up an application are encapsulated in process-like containers called actors that 
run concurrently (on the same node) or in parallel (on different nodes). This is similar to the notion of 
concurrent communicating objects described in [4]. 
 
Actors are specialized OS processes; they have a persistent identity that allows their transparent 
migration between computing nodes. They also have strict limits on the resources that they can use. 
There are two main types of actors: application actors and platform actors. Application actors are built 
for specific applications, while platform actors provide system-level services. The OS guarantees 
performance isolation between actors of different applications (Requirement 4). This is done by (a) 
providing separate, protected address spaces per actor; (b) enforcing that a peripheral device can be 
accessed by only one actor at a time; and (c) facilitating temporal isolation between actors by the 
scheduler. The temporal isolation is provided via ARINC-653 [5] style partitions - periodically repeating 
fixed intervals of the CPU’s time exclusively assigned to a group of cooperating actors of the same 
application. The scheduler guarantees that actors in distinct temporal partitions cannot inadvertently 



interfere with each other via CPU usage. Readers are referred to [3] for further details on spatial and 
temporal isolation, both of which are standard mechanisms. 
 

III. COMPONENT MODEL: BUILDING BLOCKS FOR APPLICATION 

DEVELOPMENT 
To address Requirement 1, DREMS uses a component-oriented approach for application development 
[6]. It is accepted that component-based software development promotes rapid application 
development and reuse [7]. Components have identity, state, support various operations, and interact 
via ports. A DREMS component supports four basic types of communication ports providing a range of 
interaction semantics (Requirement 2): Facets that are collections of operations (interfaces) provided by 
a component and Receptacles that are collections of operation required. These two ports can be used to 
implement synchronous and asynchronous point to point interactions. In addition, Publisher and 
Subscriber ports provide a way for components to interact in a global data space defined over Topics. 
Conceptually this is similar to the OMG CORBA Component Model (CCM) [8]. 
 
However, there are some key differences. The DREMS component model provides ports for accessing 
I/O devices and timers. Ports are implemented using connectors [9] that enable the use of a variety of 
communication mechanisms, including CORBA and DDS. Furthermore, security using labeled 
communication (Section IV) is a fundamental part of all component interactions. Another key distinction 
is the threading model: DREMS meets Requirement 3 by enforcing that component activities are 
scheduled by the middleware as non-preemptible, single-threaded operations that necessitate no 
synchronization code from the developer. Note that components do run concurrently. 
 

IV. SECURE TRANSPORT: A SECURE ACTOR TO ACTOR COMMUNICATION 

CHANNEL 
DREMS provides a security architecture (Requirements 4 and 6) based on (1) spatial and temporal 
separation among the actors, (2) fine grained actor privileges that control what system services can be 
used by an actor, (3) ensuring that only one actor actively controls a device at a time, and (4) a novel 
communication mechanism among nodes called ‘secure transport’, which supports the exchange of 
messages among actors according to a Multi-Level Security (MLS) policy. The combination of separation 
and MLS guarantee, for example, that an erroneous or malicious actor cannot read information at a 
higher classification level than its own. 
 
To enforce these rules system wide, application actors are not permitted to either create new actors or 
configure secure transport – these activities are performed by the trusted platform actors. 
 

A. Endpoints and flows 
Actors interact only in controlled ways, which is especially important when they belong to different 
organizations (e.g. countries). To exchange messages, actors do not reference each other directly. They 
reference local endpoints through which messages are sent and received. An endpoint is analogous to a 
socket handle in traditional networking systems. Endpoints in different actors are connected by flows, 
i.e. “pipes” through which messages are transferred (Figure 2). A flow is a connectionless logical 
association between endpoints: unicast flows connect a source endpoint to a destination endpoint; 



multicast flows connect a source endpoint to multiple destination endpoints. Both endpoints and flows 
are created and assigned (only) by trusted platform actors. Performing message exchanges via 
endpoints and flows (instead of addressing actors directly) has the following advantages: 

 It supports fine-grain communication constraints: two actors can communicate only if there are 
suitable endpoints and flows. 

 It increases decoupling between senders and receivers, which only operate on their local 
endpoints, without explicit knowledge of the flows attached to those endpoints. For example, 
the flow connecting a client to a failed server can be switched over to an alternative server 
transparently to the client. 

 

B. Multi-Level Security (MLS) policy 
MLS [10] is a well-established concept. It is based on linearly ordered hierarchical classification levels 
(e.g. Unclassified < Confidential < Secret < Top Secret) and non-hierarchical need-to-know categories 
(e.g. mission identifiers). Each organization defines its own levels and categories, i.e. its own labeling 
domain. In typical systems, which operate in a single labeling domain, a label is a pair LC where L is a 
level and C is a set of zero or more categories, e.g. in the US domain, the label TS{x,y} consists of the 
level Top Secret and identifiers for missions X and Y. 
 
 

 
 
Fig. 2. Transfer of a message via secure transport. The message goes through a flow that 

connects an endpoint of the sending actor to an endpoint of the receiving actor. The 

rules on labels and label sets of actors, endpoints, and messages, guarantee the  

satisfaction of the MLS policy. The MLS rules are illustrated using Venn diagr ams. 

 
 
To support communication among actors from different organizations that can share the common 
embedded system infrastructure, DREMS uses the novel concept of multi-domain labels [11]. A multi-

domain label has the form [𝐷1]𝐿1𝐶1 … [𝐷𝑝]𝐿𝑝𝐶𝑝, where 𝐷1, … , 𝐷𝑝 are 𝑝 ≥  1, distinct (identifiers of) 



domains and each 𝐿𝑖𝐶𝑖 is a label (as defined in single-domain systems) in domain 𝐷𝑖. For example, the 
label [US]TS{x}[NATO]CTS{x} is used for data that is both US Top Secret and NATO Cosmic Top Secret for 
joint mission X. 
 
The DREMS secure transport security policy follows the standard MLS requirement [10] that information 
can only flow “up”, according to the dominance relation. For example, a principal with Top Secret 
clearance can read Unclassified messages but not vice versa. Data exchanged among different 
organizations carries labels with levels and categories from all the organizations’ domains. Formally, a 
label  ℒ dominates a label ℒ′, written ℒ ⊒ ℒ′, if and only if ℒ has at least all the domains of ℒ′ (and 
possibly others) and, for each common domain, the level L in ℒ is at least as high as the level L’ in ℒ′ (i.e. 
L ≥ L’) and the category set C in ℒ contains the category set C’ in ℒ′ (i.e. C ⊇ C’). 
 
Each actor has an immutable set of labels, which describe the clearance of the actor, i.e. which 
information the actor is allowed to read and write. The label set is assigned to the actor by (only) trusted 
platform actors. 
 

Each endpoint EA also has an immutable set of labels ℒ̃𝐸𝐴
, which must be contained in the label set ℒ̃𝐴 of 

the (unique) actor A that owns the endpoint (i.e. ℒ̃𝐸𝐴
⊆ ℒ̃𝐴). The label set is assigned to the endpoint by 

(only) trusted platform actors. 
 
Each message sent via secure transport has an immutable label, which describes the sensitivity of the 
message. The label is assigned by the actor that creates and sends the message. An actor A can send a 

message M with label ℒ𝑀 through an endpoint EA with label set ℒ̃𝐸𝐴
 if and only if ℒ𝑀 𝜖 ℒ̃𝐸𝐴

. 

 
Figure 2 shows all of these MLS rules. These rules follow the standard MLS policy [10], adapted to secure 
transport. When actor A attempts to send message M with label ℒ𝑀 through endpoint EA, the secure 

transport checks that ℒ𝑀 𝜖 ℒ̃𝐸𝐴
. When M is received through endpoint EB of actor B, the secure 

transport checks that ℒ ⊒ ℒ𝑀 for some label ℒ 𝜖 ℒ̃𝐸𝐵
. 

 

C. Networks 
When a flow connects endpoints on different nodes, secure transport uses IPv6 [12] to transfer 
messages across the network, which may involve various wireless networking devices. Without proper 
protection, messages traveling through the network could be seen or modified, defeating the MLS 
policy. IPsec [13] and other measures are used to protect the confidentiality of messages (and their 
labels). 
 

V. MODEL-DRIVEN APPLICATION DEVELOPMENT, INTEGRATION, AND 

DEPLOYMENT 
To simplify development and promote producible and verified systems (Requirement 7), we have 
developed a model-based framework for DREMS for developing and integrating applications. This 
approach uses models to represent the software, the hardware platform, and the mapping between the 
two. The validation of well-formedness constraints over the models makes the early detection of 
integration errors possible. Code generators then translate the validated high-level models into low-
level artifacts, such as program code and deployment plans to configure the system. 



System integration and deployment (Requirement 6) are also simplified with this approach. Once 
individual application models are combined, the global system configuration can be generated the same 
way as a single application configuration. Global system properties, such as timing, can be checked using 
the integrated models. The graphical modeling language as a technique, along with reusability via 
templates in the modeling language, also addresses rapid application development (Requirement 1). 
 
Parts A and B of Figure 3 summarize the model-driven development process. During steps 1 and 2, data 
types are created and used to define the structure and interfaces of individual software components. 
Multiple implementations of the same component type can co-exist, providing the application developer 
with alternative implementations. The behavioral logic of the components is entered in step 3 that 
utilizes model-generated skeleton files. Once a component has been implemented, it can be reused 
across different applications across different projects. Applications are defined by wiring instances of 
different components together (step 4). 
 
After all applications are modeled, the system integrator performs steps 5 through 7 (described in part B 
of Figure 3). Well-formedness (Requirement 7) is ensured by a design constraint checker that analyzes 
the models and reports violations, including details about the constraints violated and the modeling 
elements involved. 
 
The deployment plan describes all aspects of the application, including the binary libraries required for 
each component and the meta-data describing those libraries, the secure transport configuration, and 
the component interactions. This plan is provided to the runtime platform’s deployment and 
configuration service that is responsible for deploying and activating the application on the distributed 
platform (see example in part C of Figure 3). 
 

VI. EXAMPLE 
To demonstrate the DREMS, a complex, multi-node experiment was conducted on a testbed of fanless 
computing nodes, each containing an Intel Atom N270 clocked at 1.6 GHz and with 1 GB of RAM. The 
nodes are connected via a private subnet which has a network control node running dummynet [14], 
allowing full control of the bandwidth, latency, and packet loss on any network link (see bottom of 
Figure 3). 
On this testbed, a cluster of three satellites was emulated, each running a copy of a cluster flight control 
application (CFA). CFA consists of three actors replicated on each satellite: OrbitalMaintenance, 
ModuleProxy, and CommandProxy. ModuleProxy connects to the Orbiter space flight simulator [15], 
which simulates the satellite hardware and orbital behavior. CommandProxy receives commands from 
the ground network. OrbitMaintenance keeps track of every satellite’s position and updates the cluster 
with its current position. 
 
Each node publishes a state vector describing its position and subscribes to the state vectors of all other 
satellites. Individual state vectors are periodically updated on each satellite through an AMI interface 
from ModuleProxy to OrbitMaintenance. This interaction represents the flight hardware periodically 
updating the control software with a new satellite state. The connection between Orbiter and 
ModuleProxy facilitates periodically getting position data from the satellite sensors. 
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Fig. 3. Application development (A), system integration (B), and deployment on a three -

node cluster of embedded processors.  The simulator image shows three satellites, while 

the other display shows the deployment model of the experiment (C).  



 
 
 
When OrbitMaintenance receives a command from CommandProxy, it publishes the command as a 
Satellite_Command topic. The OrbitMaintenance actor on each satellite subscribes to the 
Satellite_Command topic, and upon reception of the topic, instructs the satellite thrusters to fire (via an 
AMI call to ModuleProxy), which activates the satellite thruster in the simulation. 
 
Despite the complexity of the application, only 405 total lines of code (0.41% of the application code) 
were written by hand between the four components. The other 99.59% is generated code that governs 
all communications, timing, and interactions. 
 

VII. DISCUSSION 
There certainly exist state-of-the-art development environments and run-time platforms that address 
some of the needs discussed earlier. There are model-based development environments for embedded 
systems (e.g., Mathworks’s toolsuites, IBM’s UML tools, etc.), there are various real-time operating 
system products with sophisticated development toolchains (e.g., Integrity by Green Hills), and there are 
systems that support Multi-Level Security (e.g., SELinux). However, to the best of our knowledge we are 
not aware of any single development environment and run-time platform that holistically provides all 
these capabilities in one package. 
 
In our experiments, we found that emerging cloud paradigms for mobile devices can be supported 
through a managed runtime platform with integrated support for multi-level security and advanced 
component models. A model-based development environment that abstracts the runtime platform and 
automatically generates the required interface code eases the burden of developing applications for a 
new platform. 

Sidebar 1: Further Reading 
DREMS page at ISIS: http://www.isis.vanderbilt.edu/DREMS 
F6 Project Page at Kestrel Institute: http://www.kestrel.edu/home/projects/f6/ 
Generic Modeling Environment project page: http://www.isis.vanderbilt.edu/Projects/gme 
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