
DREMS: A Model-Driven Distributed Secure
Information Architecture Platform for

Managed
Embedded Systems

Tihamer Levendovszky1, Abhishek Dubey1, William R. Otte1, Daniel
Balasubramanian1, Alessandro Coglio2, Sandor Nyako1, William Emfinger1,

Pranav Kumar1, Aniruddha Gokhale1, and Gabor Karsai1,
November 7, 2013 DRAFT

Abstract
Architecting software for a cloud computing platform built from mobile embedded devices incurs many
challenges not present in traditional cloud computing. Effective management of constrained resources,
application isolation without adversely affecting performance are both needed. This paper describes a
practical design- and run-time solution that incorporates modern software development practices and
technologies along with novel approaches to address the challenges. Conceivably, the patterns and
principles manifested in our system can serve as guidelines for current and future practitioners in this
field.

Index Terms
D.2.6.b Graphical environments, D.4.7.e Real-time systems and embedded systems, D.4.6.d
Information flow controls

I. THE EMERGING REALM OF MOBILE AND EMBEDDED CLOUD

COMPUTING
Mobile cloud computing infrastructures supporting the vision of Internet of Things (IoT) [1] provide
services beneficial to our society. For example, a cloud of smart phones can run software that shares the
sensing and computing resources of nearby devices, providing increased situational awareness in a
disaster zone. A cluster of small collaborating satellites can provide increased reliability at reduced
launch costs for scientific missions. For instance, NASA’s Edison Demonstration of SmallSat Networks, as
well as TanDEM-X, PROBA-3, and Prisma from the European Space Agency all use clusters of small
satellites.

1 ISIS/EECS, Vanderbilt University, Institute for Software-Integrated Systems,
Vanderbilt University, 1025 16th Ave S, Ste 102, Nashville, TN 37235, USA,
E-mail: {tihamer,dabhishe,wotte,daniel,snyako,emfinger,pkumar,gokhale,gabor}@isis.vanderbilt.edu

2 Kestrel Institute, 3260 Hillview Avenue
Palo Alto, CA 94304, E-mail: coglio@kestrel.edu

Unlike traditional computing clouds that draw a clear distinction between a cloud provider and user,
these roles will be interchangeable in the participating resources in mobile clouds [2]. Additionally, the
need to scale up on demand is often the motivation for using a traditional cloud, whereas a mobile
embedded cloud is motivated by the need for on-demand collaboration.

Table I presents associated requirements and challenges that are not fully addressed by existing cloud
computing platforms. This paper describes an architecture called Distributed REaltime Managed System
(DREMS) [3] that addresses these requirements. It consists of two main parts: (1) A design-time tool
suite for modeling, analysis, synthesis, integration, debugging, testing, and maintenance of application
software built from reusable components; (2) a run-time software platform for deploying, managing,
and operating application software on a network of embedded, mobile nodes.

TABLE I

SUMMARY OF ARCHITECTURAL DECISIONS IN DREMS

Requirement Design Principle Approach Section

1. Rapid application
development, software reuse

Component-based
software engineering

Novel component model Sec III

2. Multiple application
interaction Semantics

Separation of concerns Rich set of component
interaction ports with
operations scheduled
independently

Sec III

3. Managed concurrency and
synchronization for
robustness

Single-threaded
components

Concurrency managed by OS
and middleware, not
component business logic

Sec II
and
Sec III

4. Resource management
and application isolation with
performance guarantees

Spatial and temporal
separation

Applications are run in
isolated partitions

Sec II

5. Secure information flows Multi-level security with
multi-domain labels,
temporal/spatial
isolation,
Mandatory Access
Control

Architectural support for
separation, MLS (based on
label checking), and
constrained information flows

Sec IV

6. Managed and secure
application deployment and
configuration

Modeling and
automation

Model-driven middleware
services to provide secure
deployment and configuration

Sec V

7. Producible verified
systems

Catch defects early in the
development cycle

Model-based system design
and generative development

Sec V

The platform reduces the complexity and increases the robustness of software applications by providing
reusable technological building blocks in the form of an operating system, middleware, and application
management services (see Figure 1).

II. RUNTIME SOFTWARE PLATFORM: OS AND MIDDLEWARE

DREMS provides a runtime platform for applications in the form of an operating system (OS) and
middleware. The DREMS OS – a set of extensions to the Linux kernel – provides all the critical low-level
services to support resource management (including spatial and temporal partitioning of the memory
and the CPU), actor management (discussed below), secure information flows (labeled and managed, as
discussed in next section), and fault tolerance.

Fig. 1. DREMS architecture. The top-right portion shows the internals of one node.

Software applications running on DREMS are distributed. To facilitate isolation (Requirement 4), the
components that make up an application are encapsulated in process-like containers called actors that
run concurrently (on the same node) or in parallel (on different nodes). This is similar to the notion of
concurrent communicating objects described in [4].

Actors are specialized OS processes; they have a persistent identity that allows their transparent
migration between computing nodes. They also have strict limits on the resources that they can use.
There are two main types of actors: application actors and platform actors. Application actors are built
for specific applications, while platform actors provide system-level services. The OS guarantees
performance isolation between actors of different applications (Requirement 4). This is done by (a)
providing separate, protected address spaces per actor; (b) enforcing that a peripheral device can be
accessed by only one actor at a time; and (c) facilitating temporal isolation between actors by the
scheduler. The temporal isolation is provided via ARINC-653 [5] style partitions - periodically repeating
fixed intervals of the CPU’s time exclusively assigned to a group of cooperating actors of the same
application. The scheduler guarantees that actors in distinct temporal partitions cannot inadvertently

interfere with each other via CPU usage. Readers are referred to [3] for further details on spatial and
temporal isolation, both of which are standard mechanisms.

III. COMPONENT MODEL: BUILDING BLOCKS FOR APPLICATION

DEVELOPMENT
To address Requirement 1, DREMS uses a component-oriented approach for application development
[6]. It is accepted that component-based software development promotes rapid application
development and reuse [7]. Components have identity, state, support various operations, and interact
via ports. A DREMS component supports four basic types of communication ports providing a range of
interaction semantics (Requirement 2): Facets that are collections of operations (interfaces) provided by
a component and Receptacles that are collections of operation required. These two ports can be used to
implement synchronous and asynchronous point to point interactions. In addition, Publisher and
Subscriber ports provide a way for components to interact in a global data space defined over Topics.
Conceptually this is similar to the OMG CORBA Component Model (CCM) [8].

However, there are some key differences. The DREMS component model provides ports for accessing
I/O devices and timers. Ports are implemented using connectors [9] that enable the use of a variety of
communication mechanisms, including CORBA and DDS. Furthermore, security using labeled
communication (Section IV) is a fundamental part of all component interactions. Another key distinction
is the threading model: DREMS meets Requirement 3 by enforcing that component activities are
scheduled by the middleware as non-preemptible, single-threaded operations that necessitate no
synchronization code from the developer. Note that components do run concurrently.

IV. SECURE TRANSPORT: A SECURE ACTOR TO ACTOR COMMUNICATION

CHANNEL
DREMS provides a security architecture (Requirements 4 and 6) based on (1) spatial and temporal
separation among the actors, (2) fine grained actor privileges that control what system services can be
used by an actor, (3) ensuring that only one actor actively controls a device at a time, and (4) a novel
communication mechanism among nodes called ‘secure transport’, which supports the exchange of
messages among actors according to a Multi-Level Security (MLS) policy. The combination of separation
and MLS guarantee, for example, that an erroneous or malicious actor cannot read information at a
higher classification level than its own.

To enforce these rules system wide, application actors are not permitted to either create new actors or
configure secure transport – these activities are performed by the trusted platform actors.

A. Endpoints and flows
Actors interact only in controlled ways, which is especially important when they belong to different
organizations (e.g. countries). To exchange messages, actors do not reference each other directly. They
reference local endpoints through which messages are sent and received. An endpoint is analogous to a
socket handle in traditional networking systems. Endpoints in different actors are connected by flows,
i.e. “pipes” through which messages are transferred (Figure 2). A flow is a connectionless logical
association between endpoints: unicast flows connect a source endpoint to a destination endpoint;

multicast flows connect a source endpoint to multiple destination endpoints. Both endpoints and flows
are created and assigned (only) by trusted platform actors. Performing message exchanges via
endpoints and flows (instead of addressing actors directly) has the following advantages:

 It supports fine-grain communication constraints: two actors can communicate only if there are
suitable endpoints and flows.

 It increases decoupling between senders and receivers, which only operate on their local
endpoints, without explicit knowledge of the flows attached to those endpoints. For example,
the flow connecting a client to a failed server can be switched over to an alternative server
transparently to the client.

B. Multi-Level Security (MLS) policy
MLS [10] is a well-established concept. It is based on linearly ordered hierarchical classification levels
(e.g. Unclassified < Confidential < Secret < Top Secret) and non-hierarchical need-to-know categories
(e.g. mission identifiers). Each organization defines its own levels and categories, i.e. its own labeling
domain. In typical systems, which operate in a single labeling domain, a label is a pair LC where L is a
level and C is a set of zero or more categories, e.g. in the US domain, the label TS{x,y} consists of the
level Top Secret and identifiers for missions X and Y.

Fig. 2. Transfer of a message via secure transport. The message goes through a flow that

connects an endpoint of the sending actor to an endpoint of the receiving actor. The

rules on labels and label sets of actors, endpoints, and messages, guarantee the

satisfaction of the MLS policy. The MLS rules are illustrated using Venn diagr ams.

To support communication among actors from different organizations that can share the common
embedded system infrastructure, DREMS uses the novel concept of multi-domain labels [11]. A multi-

domain label has the form [𝐷1]𝐿1𝐶1 … [𝐷𝑝]𝐿𝑝𝐶𝑝, where 𝐷1, … , 𝐷𝑝 are 𝑝 ≥ 1, distinct (identifiers of)

domains and each 𝐿𝑖𝐶𝑖 is a label (as defined in single-domain systems) in domain 𝐷𝑖. For example, the
label [US]TS{x}[NATO]CTS{x} is used for data that is both US Top Secret and NATO Cosmic Top Secret for
joint mission X.

The DREMS secure transport security policy follows the standard MLS requirement [10] that information
can only flow “up”, according to the dominance relation. For example, a principal with Top Secret
clearance can read Unclassified messages but not vice versa. Data exchanged among different
organizations carries labels with levels and categories from all the organizations’ domains. Formally, a
label ℒ dominates a label ℒ′, written ℒ ⊒ ℒ′, if and only if ℒ has at least all the domains of ℒ′ (and
possibly others) and, for each common domain, the level L in ℒ is at least as high as the level L’ in ℒ′ (i.e.
L ≥ L’) and the category set C in ℒ contains the category set C’ in ℒ′ (i.e. C ⊇ C’).

Each actor has an immutable set of labels, which describe the clearance of the actor, i.e. which
information the actor is allowed to read and write. The label set is assigned to the actor by (only) trusted
platform actors.

Each endpoint EA also has an immutable set of labels ℒ̃𝐸𝐴
, which must be contained in the label set ℒ̃𝐴 of

the (unique) actor A that owns the endpoint (i.e. ℒ̃𝐸𝐴
⊆ ℒ̃𝐴). The label set is assigned to the endpoint by

(only) trusted platform actors.

Each message sent via secure transport has an immutable label, which describes the sensitivity of the
message. The label is assigned by the actor that creates and sends the message. An actor A can send a

message M with label ℒ𝑀 through an endpoint EA with label set ℒ̃𝐸𝐴
 if and only if ℒ𝑀 𝜖 ℒ̃𝐸𝐴

.

Figure 2 shows all of these MLS rules. These rules follow the standard MLS policy [10], adapted to secure
transport. When actor A attempts to send message M with label ℒ𝑀 through endpoint EA, the secure

transport checks that ℒ𝑀 𝜖 ℒ̃𝐸𝐴
. When M is received through endpoint EB of actor B, the secure

transport checks that ℒ ⊒ ℒ𝑀 for some label ℒ 𝜖 ℒ̃𝐸𝐵
.

C. Networks
When a flow connects endpoints on different nodes, secure transport uses IPv6 [12] to transfer
messages across the network, which may involve various wireless networking devices. Without proper
protection, messages traveling through the network could be seen or modified, defeating the MLS
policy. IPsec [13] and other measures are used to protect the confidentiality of messages (and their
labels).

V. MODEL-DRIVEN APPLICATION DEVELOPMENT, INTEGRATION, AND

DEPLOYMENT
To simplify development and promote producible and verified systems (Requirement 7), we have
developed a model-based framework for DREMS for developing and integrating applications. This
approach uses models to represent the software, the hardware platform, and the mapping between the
two. The validation of well-formedness constraints over the models makes the early detection of
integration errors possible. Code generators then translate the validated high-level models into low-
level artifacts, such as program code and deployment plans to configure the system.

System integration and deployment (Requirement 6) are also simplified with this approach. Once
individual application models are combined, the global system configuration can be generated the same
way as a single application configuration. Global system properties, such as timing, can be checked using
the integrated models. The graphical modeling language as a technique, along with reusability via
templates in the modeling language, also addresses rapid application development (Requirement 1).

Parts A and B of Figure 3 summarize the model-driven development process. During steps 1 and 2, data
types are created and used to define the structure and interfaces of individual software components.
Multiple implementations of the same component type can co-exist, providing the application developer
with alternative implementations. The behavioral logic of the components is entered in step 3 that
utilizes model-generated skeleton files. Once a component has been implemented, it can be reused
across different applications across different projects. Applications are defined by wiring instances of
different components together (step 4).

After all applications are modeled, the system integrator performs steps 5 through 7 (described in part B
of Figure 3). Well-formedness (Requirement 7) is ensured by a design constraint checker that analyzes
the models and reports violations, including details about the constraints violated and the modeling
elements involved.

The deployment plan describes all aspects of the application, including the binary libraries required for
each component and the meta-data describing those libraries, the secure transport configuration, and
the component interactions. This plan is provided to the runtime platform’s deployment and
configuration service that is responsible for deploying and activating the application on the distributed
platform (see example in part C of Figure 3).

VI. EXAMPLE
To demonstrate the DREMS, a complex, multi-node experiment was conducted on a testbed of fanless
computing nodes, each containing an Intel Atom N270 clocked at 1.6 GHz and with 1 GB of RAM. The
nodes are connected via a private subnet which has a network control node running dummynet [14],
allowing full control of the bandwidth, latency, and packet loss on any network link (see bottom of
Figure 3).
On this testbed, a cluster of three satellites was emulated, each running a copy of a cluster flight control
application (CFA). CFA consists of three actors replicated on each satellite: OrbitalMaintenance,
ModuleProxy, and CommandProxy. ModuleProxy connects to the Orbiter space flight simulator [15],
which simulates the satellite hardware and orbital behavior. CommandProxy receives commands from
the ground network. OrbitMaintenance keeps track of every satellite’s position and updates the cluster
with its current position.

Each node publishes a state vector describing its position and subscribes to the state vectors of all other
satellites. Individual state vectors are periodically updated on each satellite through an AMI interface
from ModuleProxy to OrbitMaintenance. This interaction represents the flight hardware periodically
updating the control software with a new satellite state. The connection between Orbiter and
ModuleProxy facilitates periodically getting position data from the satellite sensors.

Component

Component Application 1 Application 2

Scheduler Abstractions (Temporal Partition Groups)

Hardware
Node

Hardware
Node

1. Data types are defined or imported from a library.

Component

Component

Component

Component

Component

Component

4. Applications are defined by instantiating components
and configuring their communication. Components are

assigned to actors in this step.

Component

Component

Component

Component

Application 3 Application 4

6. Applications are instantiated and mapped to hardware
nodes. Scheduling abstractions are also created in this step.

struct enum interfaces containers

2. Structure of software components is defined or
existing components are imported from a library.

Component

Component

Component

Component

Component

Component

3. Skeleton files are generated and behavioral logic is
written for the new components by the developer.

Application Development

Hardware
Node

Hardware
Node

5. Hardware Nodes are described.

ActorActorActor

Actor Actor Actor Actor

Deploy
ment
plan

Deploy
ment
plan

Deploy
ment
plan

Deploy
ment
plan

7. Deployment plans are generated from the models after
constraints are checked.

System Integration

A

C

B

Multi-node Application Deployment

Fig. 3. Application development (A), system integration (B), and deployment on a three -

node cluster of embedded processors. The simulator image shows three satellites, while

the other display shows the deployment model of the experiment (C).

When OrbitMaintenance receives a command from CommandProxy, it publishes the command as a
Satellite_Command topic. The OrbitMaintenance actor on each satellite subscribes to the
Satellite_Command topic, and upon reception of the topic, instructs the satellite thrusters to fire (via an
AMI call to ModuleProxy), which activates the satellite thruster in the simulation.

Despite the complexity of the application, only 405 total lines of code (0.41% of the application code)
were written by hand between the four components. The other 99.59% is generated code that governs
all communications, timing, and interactions.

VII. DISCUSSION
There certainly exist state-of-the-art development environments and run-time platforms that address
some of the needs discussed earlier. There are model-based development environments for embedded
systems (e.g., Mathworks’s toolsuites, IBM’s UML tools, etc.), there are various real-time operating
system products with sophisticated development toolchains (e.g., Integrity by Green Hills), and there are
systems that support Multi-Level Security (e.g., SELinux). However, to the best of our knowledge we are
not aware of any single development environment and run-time platform that holistically provides all
these capabilities in one package.

In our experiments, we found that emerging cloud paradigms for mobile devices can be supported
through a managed runtime platform with integrated support for multi-level security and advanced
component models. A model-based development environment that abstracts the runtime platform and
automatically generates the required interface code eases the burden of developing applications for a
new platform.

Sidebar 1: Further Reading
DREMS page at ISIS: http://www.isis.vanderbilt.edu/DREMS
F6 Project Page at Kestrel Institute: http://www.kestrel.edu/home/projects/f6/
Generic Modeling Environment project page: http://www.isis.vanderbilt.edu/Projects/gme

Acknowledgments. This work was supported by the DARPA System F6 Program under contract
NNA11AC08C. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the views of DARPA. The authors thank Olin Sibert of
Oxford Systems and all the team members of our project for their invaluable input and contributions to
this effort.

REFERENCES
[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A Survey. Computer
Networks, 54(15):2787–2805, 2010.
[2] Owen Brown, P Eremenko, and C Roberts. Cost-benefit analysis of a notional fractionated satcom
architecture. In Proc. of the 24th AIAA International Communications Satellite Systems Conference,
AIAA-2006-5328, San Diego, CA, 2006.

http://www.isis.vanderbilt.edu/DREMS
http://www.kestrel.edu/home/projects/f6/
http://www.isis.vanderbilt.edu/Projects/gme

[3] Abhishek Dubey, William Emfinger, Aniruddha Gokhale, Gabor Karsai, William Otte, Jeff Parsons,
Csanad Szabo, Alessandro Coglio, Eric Smith, and Prasanta Bose. A Software Platform for Fractionated
Spacecraft. In Proceedings of the IEEE Aerospace Conference, 2012, pages 1–20, Big Sky, MT, USA,
March 2012. IEEE.
[4] Rajesh K. Karmani and Gul Agha. Actors. In Encyclopedia of Parallel Computing, pages 1–11. 2011.
[5] ARINC Incorporated, Annapolis, Maryland, USA. Document No. 653: Avionics Application Software
Standard Inteface (Draft 15), January 1997.
[6] William R. Otte, Abhishek Dubey, Subhav Pradhan, Prithviraj Patil, Aniruddha Gokhale, Gabor Karsai,
and Johnny Willemsen. F6COM: A Component Model for Resource-Constrained and Dynamic Space-
Based Computing Environment. In Proceedings of the 16th IEEE International Symposium on Object-
oriented Real-time Distributed Computing (ISORC’13), Paderborn, Germany, June 2013.
[7] Clemens Szyperski. Component Technology: What, Where, and How? In Proceedings of the 25th
International Conference on Software Engineering, ICSE ’03, pages 684–693, Washington, DC, USA,
2003. IEEE Computer Society.
[8] Object Management Group. Light Weight CORBA Component Model Revised Submission, OMG
Document realtime/03-05-05 edition, May 2003.
[9] William R. Otte, Aniruddha Gokhale, Douglas C. Schmidt, and Johnny Willemsen. Infrastructure for
Component-based DDS Application Development. In Proceedings of the 10th ACM international
conference on Generative programming and component engineering, GPCE ’11, pages 53–62, New York,
NY, USA, 2011. ACM.
[10] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Mathematical foundations.
Technical Report 2547, Volume I, MITRE, 1973.
[11] Olin Sibert. Multiple-domain labels. Presented at the F6 Security Kickoff, 2011.
[12] RFC 2460: Internet Protocol, version 6 (IPv6) specification, December 1998.
[13] S. Kent and K. Keo. IETF RFC 4301: Security architecture for the internet protocol, Dec 2005.
[14] Marta Carbone and Luigi Rizzo. Dummynet revisited. SIGCOMM Comput. Commun. Rev., 40(2):12–
20, April 2010.
[15] Bruce Irving. Playing in space: Interactive education with the orbiter space flight simulator. In
International Space Development Conference (ISDC) 2007.

AUTHOR INFORMATION
Tihamer Levendovszky is a Research Assistant Professor at Vanderbilt University. He
received his PhD from the Budapest University of Technology and Economics. His
interests include automated software engineering, model-based engineering,
computer security, and performance analysis of software systems.

Abhishek Dubey is a Research Scientist at ISIS at Vanderbilt University. He received his
PhD in Electrical Engineering from Vanderbilt University. His interests include
distributed fault-tolerant real-time systems and autonomic computing.

William R. Otte is a Research Scientist at ISIS at Vanderbilt University. He received his
PhD in Computer Science from Vanderbilt University. His interests include middleware
for real-time embedded systems and deployment and their configuration.

Daniel Balasubramanian is a Research Scientist at ISIS at Vanderbilt University. He
received his PhD in Computer Science from Vanderbilt University. His interests include
the lightweight application of formal methods and analysis to model-based
development.

Alessandro Coglio is a Principal Scientist at Kestrel Institute. He received a degree in
Informatics Engineering from University of Genoa, Italy. His interests are formal
methods and tools to develop correct-by-construction software via formal
specification, refinement, and theorem proving.

Sandor Nyako is a Senior Research Engineer at Vanderbilt University. He received his
BSc degree at Eotvos Lorand University, Hungary. Sandor has over 13 years of
experience in the telecom, finance and computer entertainment fields.

William Emfinger is a Graduate Research Assistant at ISIS at Vanderbilt University. His
research focuses on networking for critical systems. He received his B.E. in Electrical
Engineering and Biomedical Engineering from Vanderbilt University in 2011.

Pranav Srinivas Kumar is a Graduate Research Assistant at ISIS at Vanderbilt
University. His research focuses on modeling, analysis and verification techniques for
distributed component-based software applications. He received his B.E. in Electronics
and Communications Engineering from Anna University, India in 2011.

Aniruddha S. Gokhale is an Associate Professor in the Department of Electrical
Engineering and Computer Science, and Senior Research Scientist at ISIS, Vanderbilt
University. He received his PhD from Washington University, St. Louis. Dr. Gokhale is a
Senior member of both IEEE and ACM.

 Gabor Karsai is Professor of Electrical and Computer Engineering and Computer
Science at Vanderbilt University and Senior Research Scientist at ISIS. He conducts
research in model-integrated computing (MIC), design automation for model-driven
development processes, automatic program synthesis, and the application of MIC in

various government and industrial projects. He is a senior member of the IEEE Computer Society.

