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Abstract

Developers of highly configurable performance-intensive soft-
ware systems often use a type of in-house performance-oriented
“regression testing” to ensure that their modifications have not
adversely affected their software’s performance across its large
configuration space. Unfortunately, time and resource constraints
often limit developers to in-house testing of a small number of con-
figurations and unreliable extrapolation from these results to the
entire configuration space, which allows many performance bot-
tlenecks and sources of QoS degradation to escape detection until
systems are fielded. To improve performance assessment of evolv-
ing systems across large configuration spaces, we have developed
a distributed continuous quality assurance (DCQA) process called
main effects screening that uses in-the-field resources to execute
formally designed experiments to help reduce the configuration
space, thereby allowing developers to perform more targeted in-
house QA. We have evaluated this process via several feasibility
studies on several large, widely-used performance-intensive soft-
ware systems. Our results indicate that main effects screening can
detect key sources of performance degradation in large-scale sys-
tems with significantly less effort than conventional techniques.
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1. Introduction

The quality of performance-intensive software systems, such
as high-performance scientific computing systems and distributed
real-time and embedded (DRE) systems, depend heavily on their
infrastructure platforms, such as the hardware, operating system,
middleware, and language processing tools. Developers of such
systems often need to tune the infrastructure and their software
applications to accommodate the (often changing) platform en-
vironments and performance requirements. This tuning is com-
monly done by (re)adjusting a large set (10°s-100’s) of compile-
and run-time configuration options that record and control variable
software parameters, such as different operating systems, resource
management strategies, middleware and application feature sets;
compiler flags; and/or run-time optimization settings. For exam-
ple, SQL Server 7.0 has 47 configuration options, Oracle 9 has
211 initialization parameters, and Apache HTTP Server Version
1.3 has 85 core configuration options.

Although these software parameters promote flexibility and porta-
bility, they also require that the software be tested in an enormous
number of configurations. This creates serious challenges for de-
velopers who must ensure that their decisions, additions, and mod-
ifications work across this large (and often changing) configuration
space:

e Settings that maximize performance for a particular platform/-
context may not be suitable for different ones and certain
groups of option settings may be semantically invalid due to
subtle dependencies between options.

e Limited QA budgets and rapidly changing code bases mean
that developers’ QA efforts are often limited to just a few
software configurations, forcing them to extrapolate their
findings to the entire configuration space.

e The configurations that are tested are often selected in an ad
hoc manner, so quality is not evaluated systematically and
many quality problems escape detection until systems are
fielded.



Since exhaustively testing all configurations is infeasible under
the circumstances listed above, developers need a quick way to
estimate how their changes and decisions affect software perfor-
mance across the entire configuration space. To do this, we have
developed and evaluated a new hybrid (i.e., partially in-the-field
and partially in-house) distributed continuous quality assurance
(DCQA) process that improves software quality iteratively, oppor-
tunistically, and efficiently by executing QA tasks continuously
across a grid of computing resources provided by end-users and
distributed development teams.

In prior work [12], we created a prototype DCQA support en-
vironment called Skoll that helps developers create, execute, and
analyze their own DCQA processes, as described in Section 2. To
make it easier to implement DCQA processes, we also integrated
model-based software development tools with Skoll, which help
developers capture the variant and invariant parts of DCQA pro-
cesses and the software systems they are applied to within high-
level models that can be processed to automatically generate con-
figuration files and other supporting code artifacts [7]. Some model-
based tools integrated with Skoll include the Options Configura-
tion Modeling language (OCML) [?] that models configuration
options and inter-option constraints and the Benchmark Genera-
tion Modeling Language (BGML) [8] that composes benchmark-
ing experiments to observe QoS behavior under different configu-
rations and workloads.

This paper extends our earlier work by developing a new model-
based hybrid DCQA process that leverages the extensive (albeit
less dedicated) in-the-field computing resources provided by the
Skoll grid, weeding out unimportant options to reduce the config-
uration space, thereby allowing developers to perform more tar-
geted QA using their very limited (but dedicated) in-house re-
sources. This hybrid DCQA process first runs formally designed
experiments across the Skoll grid to identify a subset of important
performance-related configuration options. Whenever the soft-
ware changes thereafter, this process exhaustively explores all con-
figurations of the important options using in-house computing re-
sources to estimate system performance across the entire config-
uration space. This hybrid approach is feasible because the new
configuration space is much smaller than the original, and hence
more tractable using in-house resources.

This paper presents an evaluation of our new hybrid DCQA
process on ACE, TAO, and CIAO (deuce.doc.wustl.edu/
Download.html), which are widely-used production quality,
performance-intensive middleware frameworks. Our results indi-
cate that (1) hybrid model-based DCQA tools and processes can
correctly identify the subset of options that are important to sys-
tem performance, (2) monitoring only these selected options helps
to quickly detect key sources of performance degradation at an
acceptable level of effort, and (3) alternative strategies with equiv-
alent effort give less reliable results.

2. The Model-based Skoll DCQA Environment

To improve the quality of performance-intensive software across
large configuration spaces, we are exploring distributed continu-
ous quality assurance (DCQA) processes [12] that evaluate vari-
ous software qualities, such as portability, performance character-
istics, and functional correctness, “around-the-world, around-the-
clock.” To accomplish this, DCQA processes are divided into mul-
tiple subtasks, such as running regression tests on a particular sys-
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tem configuration, evaluating system response time under different
input workloads, or measuring usage errors for a system with sev-
eral alternative GUI designs. As illustrated in Figure 1, these sub-
tasks are then intelligently and continuously distributed to — and
executed by — clients across a grid of computing resources con-
tributed largely by end-users and distributed development teams.
The results of these evaluations are returned to servers at central
collection sites, where they are fused together to guide subsequent
iterations of the DCQA processes.

To support this effort we have developed Skoll, a model-based
DCQA environment described at www.cs.umd.edu/projects/
skoll. For completeness, this section describes some of Skoll’s
components and services, which include languages for modeling
system configurations and their constraints, algorithms for schedul-
ing and remotely executing tasks, and planning technology that an-
alyzes subtask results and adapts the DCQA process in real time.

The cornerstone of Skoll is its formal model of a DCQA pro-
cess’s configuration space, which captures different configuration
options and their settings. Since in practice not all combinations
of options make sense (e.g., feature X may not be supported on
operating system Y), we define inter-option constraints that limit
the setting of one option based on the settings of others. A valid
configuration is one that violates no inter-option constraints (for
the feasibility study in Section 4, we used the OCML modeling
tool to visually define the configuration model and to generate the
low-level formats used by other Skoll components). Skoll uses
this configuration space model to help plan global QA processes,
adapt these processes dynamically, and aid in analyzing and inter-
preting results from various types of functional and performance
regression tests.

Since the configuration spaces of performance-intensive soft-
ware can be quite large, Skoll has an Intelligent Steering Agent
(ISA) that uses Al planning techniques to control DCQA processes
by deciding which valid configuration to allocate to each incom-
ing Skoll client request. When a client is available, the ISA decides
which subtask to assign it by considering many factors, including
(1) the configuration model, which characterizes the subtasks that
can legally be assigned, (2) the results of previous subtasks, which
capture what tasks have already been done and whether the results
were successful, (3) global process goals, such as testing popu-
lar configurations more than rarely used ones or testing recently
changed features more heavily than unchanged features, and (4)
client characteristics and preferences, e.g., the selected configura-
tion must be compatible with the OS running on the client machine



or configurations must run with user-level — rather than superuser-
level — protection modes.

After a valid configuration is chosen, the ISA packages the
corresponding QA subtask into a job configuration, which con-
sists of the code artifacts, configuration parameters, build instruc-
tions, and QA-specific code (e.g., developer-supplied regression/-
performance tests) associated with a software project. Each job
configuration is then sent to a Skoll client, which executes the job
configuration and returns the results to the ISA (for the feasibil-
ity studies described in Section 4, we used the BGML modeling
tools [9] to generate most of the code that comprises a job con-
figuration). The ISA can learn from the results and adapt the pro-
cess, e.g., if some configurations fail to work properly, developers
may either want to pinpoint the source of the problems or refocus
on other unexplored parts of the configuration space. To control
the ISA, Skoll DCQA process designers can develop customized
adaptation strategies that monitor the global process state, analyze
it, and use the information to modify future subtask assignments
in ways that improve process performance.

Since DCQA processes can be complex, Skoll users often need
help to interpret and leverage process results. Skoll therefore sup-
ports a variety of pluggable analysis tools, such as Classification
Tree Analysis (CTA) [1]. In previous work [12, 15], for example,
we used CTA to diagnose options and settings that were the likely
causes of specific test failures. For this work, we developed statis-
tical tools to analyze data from the formally-designed experiments
described in the following section.

3. Performance-Oriented Regression Testing

As software systems change, developers often run regression
tests to detect unintended functional side effects. Developers of
performance-intensive systems must also be wary of unintended
side effects on their end-to-end QoS. To detect such performance
problems, developers often run benchmarking regression tests pe-
riodically. As described in Section 1, however, in-house QA ef-
forts can be confounded by the enormous configuration space of
highly configurable performance intensive systems, where time
and resource constraints (and often high change frequencies) se-
verely limit the number of configurations that can be examined.
For example, our earlier experience with applying Skoll to the
ACE+TAO middleware [12] found that only a small number of de-
fault configurations are benchmarked routinely by the core ACE+-
TAO development team, who thus get a very limited view of their
middleware’s QoS. Problems not readily seen in these default con-
figurations therefore often escape detection until systems based on
ACE+TAO are fielded by end-users.

This section describes how we address this problem by using
the model-based Skoll environment (Section 2) to develop and im-
plement a new hybrid DCQA process called main effects screen-
ing. We also describe the formal foundations of our approach,
which is based on design of experiments theory, and give an ex-
ample that illustrates key aspects of our approach.

3.1 The Main Effects Screening Process

Main effects screening is a technique for rapidly detecting per-
formance degradation across a large configuration space as a result
of system changes. Our approach relies on a class of experimental
designs called screening designs [14], which are highly economi-

cal and can reveal important low order effects (such as individual
option settings and option pairs/triples) that strongly affect per-
formance. We call these most influential option settings “main
effects.”

At a high level, main effects screening involves the follow-
ing steps: (1) compute a formal experimental design based on the
system’s configuration model, (2) execute that experimental de-
sign across fielded computing resources in the Skoll DCQA grid
by running and measuring benchmarks on specific configurations
dictated by the experimental design devised in step 1, (3) collect,
analyze and display the data so that developers can identify the
main effects, (4) estimate overall performance whenever the soft-
ware changes by evaluating all combinations of the main effects
(while defaulting or randomizing all other options), and (5) recal-
ibrate the main effects options by restarting the process periodi-
cally since the main effects can change over time, depending on
how fast the system changes.

The assumption behind this five step process is that since main
effects options are the ones that affect performance most, evalu-
ating all combinations of these option settings (which we call the
“screening suite”) can reasonably estimate performance across the
entire configuration space. If this assumption is true, testing the
screening suite should provide much the same information as test-
ing the entire configuration space, but at a fraction of the time and
effort since it is much smaller than the entire configuration space.

3.2 Technical Foundations of Screening Designs

For main effects screening to work we need to identify the main
effects, i.e., the subset of options whose settings account for a large
portion of performance variation across the system’s configuration
space. One obvious approach is to test every configuration exhaus-
tively. Since exhaustive testing is infeasible for large-scale, highly
configurable performance-intensive software systems, however, de-
velopers often do some kind of random or ad hoc sampling based
on their knowledge of the system. Since our experience indicates
that these approaches can be unreliable [12, 8], we need an ap-
proach that samples the configuration space, yet produces reason-
ably precise and reliable estimates of overall performance.

The approach we chose for this paper uses formally-designed
experiments, called screening designs, that are highly economi-
cal and whose primary purpose is to identify important low-order
effects, i.e., first-, second-, or third-order effects, where an n'"-
order effect is an effect caused by the simultaneous interaction of
n factors. For instance, for certain web server applications, a 1°°-
order effect might be that performance slows considerably when
logging is turned on and another might be that it also slows when
few server threads are used. A 2"¢ order effect involves the in-
teraction of two options, e.g., web server performance may slow
down when caching is turned off and the server performs blocking
reads.

There are many ways to compute screening designs. The one
we use is based on traditional factorial designs. Consider a full
factorial design involving k binary factors. Such a design exhaus-
tively tests all combinations of the factors. Therefore, the design’s
run size (number of experimental observations) is 2%. Although
this quickly becomes expensive, it does allow one to compute all
effects.

To reduce costs statisticians have developed fractional factorial
designs. These designs use only a carefully selected fraction (such
as 1/2 or 1/4) of a full factorial design. This saves money, but



does so by giving up the ability to measure some higher-order ef-
fects. This is because the way observations are chosen aliases the
effects of some lower-order interactions with some higher-order
ones. That is, it lumps together certain high- and low-order effects
on the assumption that the high-order effects are negligible.

Screening designs push this tradeoff to an extreme. Roughly
speaking, at their smallest, screening designs require only as many
observations as the number of effects one wishes to calculate (i.e.,
k observations to compute &, 1%*-order effects). Of course, ex-
perimenters will often use more than the minimum number of ob-
servations to improve precision or to deal with noisy processes.
As before, this is only possible because the design aliases some
low-order with some high-order effects.

While this aliasing may seem problematic, screening designs
have been used extensively to understand and improve products
and processes developed in manufacturing, engineering, and phys-
ical sciences. Their success stems largely from the ability to use
them in an iterative, “quick and dirty” fashion, i.e., to focus on
major problem sources, a few at a time, rather than trying to un-
derstand and fix all problems simultaneously. Since our objective
with main effects screening is also to produce a rough — but reliable
— estimate of overall performance, we conjecture that screening
designs provide the appropriate foundation for our hybrid model-
based DCQA processes.

3.3 Screening Designs in Action

To show how screening designs are computed, we now present
a hypothetical example of a software system with 4 binary con-
figuration options, A through D, with no inter-option constraints.
To compute a specific screening design, developers must (a) de-
cide how many observations they can afford, (b) determine which
effects they want to analyze, and (c) select an aliasing strategy
consistent with these constraints. Note that in practice screening
designs are usually computed by automated tools.

The configuration space for our sample system has 2* = 16
configurations. Therefore, the corresponding full factorial design
involves 16 observations. Let’s assume that our developers, how-
ever, can afford to run only 8 observations. Obviously, the full
factorial design would therefore be unacceptable. Let’s also as-
sume that our developers are mostly interested in capturing the 4,
1%t-order effects (i.e., the effect of each option by itself.) Given
this goal the developers decide to use a screening design.

The first step in computing the screening design is to create
a 2% full factorial design over 3 (arbitrarily selected) options, in
this case A, B, and C. This design is shown in Table 1(a) with the
binary option settings encoded as (-) or (+). This is the starting
point because 2° = 8 is the maximum number of observations the
developers can afford to run.

This initial design would be fine for 3 options. But it can’t han-
dle our developer’s 4-option system since they’ve already decided
that the full factorial design would be too expensive. We need a
way to stretch the current 3-option design to cover the 4! option.
As mentioned previously, this is done by aliasing some effects.

Here the developers must specify which effects can be safely
aliased. They do this by choosing a desired resolution for the
screening design. In resolution R designs, no effects involving
1 factors are aliased with effects involving less than R — ¢ factors.
Since our developers are only interested in computing 1%*-order
effects, they choose a resolution IV design. With this design, 15¢-
order effects will be aliased with 3"%-order or higher effects and

A[B]C [A[B[C[D]
+ | -] - + | -] -]+
-+ - S B
+ |+ | - + |+ - -
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(a) (b)

Table 1. (a) 2° design and (b) 27,,' design

2"?_order effects will be aliased with 2"%-order or higher effects.

Our developers, therefore, are assuming that 3"%-order or higher
effects are negligible and that they are not interested in comput-
ing the 2"%-order effects. If the developers are unwilling to make
these assumptions, then screening designs may be inappropriate
for them (or they may need to use the screening designs in an iter-
ative, exploratory fashion).

The final step in the process to compute the specific values
of option D consistent with the developers desire for a resolution
IV design. To do this a function called a design generator must
be determined. This function computes the setting of option D
based on the values of options A, B and C. In our hypothetical
example, automated tools chose D = ABC' as the design gen-
erator. This means that for each observation, D’s setting is com-
puted by multiplying the settings for options A, B, and C (think
of + as 1 and — as —1). In general there is no closed-form solu-
tion for choosing a design generator. In fact, in some situations,
none may exist. For this paper we identified design generators
using the factex function of the SAS QC package (See http:
//www.math.wpi.edu/saspdf/qgc/chapl4d.pdf). This
search-based function essentially looks through numerous possi-
ble design generators until an acceptable one is found (or until the
algorithm gives up, if none can be found).

Table 1(b) gives the final design, which is identified uniquely
asa 27, design with the design generator D = ABC' The 27,
designation means that the total number of options is 4, that we
will examine a 1/2 (27" = 1/2) fraction of the full factorial de-
sign, that the design is a resolution IV screening design, and that
the aliasing pattern is D = ABC.

After defining the screening design, developers can execute
it across the Skoll grid. For our process, each observation in-
volves measuring a developer-supplied benchmarking regression
test while the system runs in a particular configuration. Once the
data is collected we would analyze it to calculate the effects. For
binary options (with settings — or +), the main effect of option A,
ME(A), is

ME(A) = z(A-) — z(A+) 1)

where z(A-) and z(A+) are the mean values of the observed data
over all runs where option A is (—) and where option A is (+),
respectively.

If appropriate, 2™?-order effects can be calculated in a similar
way. The interaction effect of option A and B, INT(A, B) is:

INT(A, B) = 1/2{ME(B|A+) — ME(B|A-)} (2
= 1/2{ME(A|B+) — ME(A|B=)} (3



Option Option Option
Index Name Settings

A ReactorThreadQueue {FIFO, LIFO}
B ClientConnectionHandler {RW, MT}
C ReactorMaskSignals {0, 1}
D ConnectionPurgingStrategy {LRU, LFU}
E ConnectionCachePurgePercent {10, 40}
F ConnectionCacheLock {thread, null}
G CorbaObjectLock {thread, null}
H ObjectKeyTableLock {thread, null}
I InputCDRAllocator {thread, null}
J Concurrency {reactive, thread-per-connect }
K ActiveObjectMapSize {32, 128}
L UseridPolicyDemuxStrategy {linear, dynamic}
M SystemPolicyDemuxStrategy {linear, dynamic}
N UngPolicyRevDemuxStrategy {linear, dynamic}

Table 2. Some ACE+TAO options

Here M E(B|A+) is called the conditional main effect of B at the
+ level of A. The effect of one factor (e.g., B) therefore depends
on the level of the other factor (e.g., A). Similar equations exist for
higher order effects.

Once the effects are computed developers will want to deter-
mine which of these effects are important and which are not. There
are several ways to determine this, including using standard hy-
pothesis testing approaches. For this paper we opted not to use
formal hypothesis tests primarily because they require strong as-
sumptions about the standard deviation of the experimental sam-
ples. In future work we will avoid this problem by simply replicat-
ing observations in the experimental design. For this work how-
ever, we display the effects graphically and ask developers to use
their expert judgment to decide which effects they consider impor-
tant.

4. Feasibility Study

This section describes a feasibility study that assesses the im-
plementation cost and the effectiveness of the main effects screen-
ing process described in Section 3 on a suite of large, performance-
intensive software systems.

4.1 Experimental Design

Hypotheses. Our feasibility study explores the following hypothe-
ses: (1) our model-based Skoll environment cost-effectively sup-
ports the definition, implementation and execution of our main
effects screening process described in Section 3, (2) the screen-
ing design used in main effects screening correctly identifies a
small subset of options whose effect on performance is impor-
tant, and (3) exhaustively examining just the options identified by
the screening design gives performance data that (a) is represen-
tative of the system’s performance across the entire configuration
space, but less costly to obtain and (b) is more representative than
a similarly-sized random sample.

Subject applications. The experimental subject applications for
this study were based on a suite of performance-intensive soft-
ware: ACE v5.4 + TAO v1.4 + CIAO v0.4. ACE provides reusable
C++ wrapper facades and framework components that implements
core concurrency and distribution patterns [13] for communication
software. TAO is a high-performance, highly configurable Real-
time CORBA ORB built atop ACE to meet the demanding QoS
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Figure 2. Option effects based on full data

requirements of DRE systems. CIAO is QoS-enabled middleware
that extends TAO to support components, which enables develop-
ers to declaratively provision QoS policies end-to-end when as-
sembling a DRE system.

ACE, TAO, and CIAO are ideal subjects for our feasibility
study since they share many characteristics with other highly con-
figurable performance-intensive software systems. For example,
they collectively contain over 2M+ lines of source code, func-
tional regression tests, and performance benchmarks contained in
~4,500 files that average over 300 CVS commits per week. They
also run on a wide range of OS platforms, including all variants of
Windows, most versions of UNIX, and many real-time operating
systems, such as LynxOS and VxWorks.

Application scenario. Due to recent changes made to the message
queuing strategy, the developers of ACE+TAO+CIAO were con-
cerned with measuring two performance criteria: (1) the latency
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Figure 3. Option effects based on screening designs

for each request and (2) total message throughput (events/second)
between the ACE+TAO+CIAO client and server. For this version
of ACE+TAO+CIAO, the developers identified 14 binary run-time
options they felt affected latency and throughput (See Table 2).
Thus, the entire configuration space has 2'* = 16, 384 different
configurations.

4.2 The Full Data Set

Experimental process. Our experimental process used Skoll’s
model-driven tools to implement the main effects screening pro-
cess and evaluate our three hypotheses. To do this, we executed
the main effects screening process across a prototype Skoll grid of
dual processor Xeon machines running Red Hat 2.4.21 with 1GB
of memory in the real-time scheduling class. The experimental
task involved running a benchmark application in a particular con-
figuration, which evaluated the application scenario outlined above
by creating an ACE+TAO+CIAO client and server. For each task
we measured message latency and overall throughput between the
client and the server. The client sends 300K requests to the server,
where after each request it waits for a response from the server
and records the latency measure. At the end of 300K requests, the
client computes the throughput achieved in terms of number of re-
quests served per second. We finally analyzed the resulting data to
evaluate our hypotheses. Section 6 describes the limitations with
our current experimental process.

To evaluate our approach, we generated performance data for
all 16,000+ valid configurations, which we refer to as the “full
suite” and the performance data as the “full data set.” We then
examined the effect of each option and judged whether they had
important effects on performance using a graphical method called
half-normal probability plots, which show each option’s effect a-
gainst their corresponding coordinates on the half-normal proba-
bility scale. If |8]1 < |0]2 < ... < |0|r are the ordered set of effect
estimations, the half-normal plot then consists of the points

(®1(0.5+0.5[i — 0.5]/1),10];) fori=1,..,I (4
where @ is the cumulative distribution function of a standard nor-
mal random variable.

The rationale behind half-normal plots is that unimportant op-
tions will have effects whose distribution is normal and centered
near 0. Important effects will also be normally distributed with
means different that 0. If no effects are important, the resulting
plot will show a set of points on a rough line near y = 0. Options
whose effects deviate substantially from O are considered impor-
tant.

Note that “importance” is not defined formally and differs in
spirit from the traditional notion of statistical significance. In par-
ticular, developers must decide for themselves how large effects
must be to warrant their attention. While this has some downsides
(see Section 6), even with traditional statistical tests that measure
statistical significance developers still must make judgments as to
the magnitude of effects.

Figure 2 plots the effect across the full data set of each of the
14 ACE+TA+CIAO options on latency and throughput. We see
that options B and J are clearly important, whereas options I, C
and F are arguably important, and the remaining options are not
important.

4.3 Evaluating Screening Designs

We now evaluate whether the remotely executed screening de-
signs can correctly identify the same important options discov-
ered in the full data set. To do this, we calculated and executed
three different screening designs, whose specifications appear in
Appendix A. These designs examined all 14 options using in-
creasingly larger run sizes (32, 64, or 128 observations). We refer
to the screening designs as Scrsz, Screa and Scrias, respectively.

Figure 3 shows the half-normal probability plots obtained from
our screening designs. The figures show that all screening designs
correctly identify options B and J as being important (as is the case
in full-factorial experiment). Scri2g also identifies the possibly
important effect of options C, I, and F. Due to space considerations
in the paper we only present data on latency. Throughput analysis
shows identical results unless otherwise stated.

These results suggest that (1) screening designs can detect im-
portant options at a small fraction of the cost of exhaustive testing,
(2) the smaller the effect, the larger the run size needed to identify
it, and (3) developers should be cautious when dealing with op-
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Figure 4. Q-Q plots for the top-2 and top-5 screening suites

tions that appear to have an important, but relatively small effect,
as they may actually be seeing normal variation (Scrsz and Screa
both have examples of this).

4.4 Estimating Performance with Screening Suites

We now evaluate whether screening all the combinations of
the most important options can be used to estimate performance
quickly across the entire configuration space we are studying. The
estimates are generated by examining all combinations of the most
important options, while defaulting the settings of the unimportant
options. In the previous section, we determined that options B and
J were clearly important and that options C, I, and F were arguably
important. Developers will therefore make the estimates based on
benchmarking either 4 (all combinations of options B and J) or 32
(all combinations of options B, J, C, I, and F) configurations. We
will refer to the set of 4 configurations as the top-2 screening suite
and the set of 32 configurations as the top-5 screening suite.

Figure 4 shows the distributions of latency for the full suite
vs. the top-5 screening suite and for the full suite vs. the top-2
screening suite. From the figure, we see that the distributions of
the top-5 and top-2 screening suites closely track the overall per-
formance data. Such plots, called quantile-quantile (Q-Q) plots,
are used to see how well two data distributions correlate. To do
this they plot the quantiles of the first data set against the quantiles
of the second data set. If the two sets share the same distribution,
the points should fall approximately on x = y line. In addition
we performed Mann-Whitney non-parametric tests to determine
whether each set of screening data (top-2 and top-5 suites) appears
to come from the same distribution as the full data. In both cases
we were unable to reject the null hypothesis that the top-2 and top-
5 screening suite data come from the same distribution as the full
suite data. This data suggests that the screening suites computed
at step 4 of the main effects screening process (Section 3) can be
used to estimate overall performance in-house at extremely low
time/effort, i.e., running 4 benchmarks takes 40 seconds, running
32 takes 5 minutes, running 16,000+ takes 2 days.
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Figure 5. Latency distribution from full, top-2,
and random suites

4.5 Screening Suites vs. Random Sampling

Another question is whether our main effects screening process
was any better than other low-cost estimation processes. In par-
ticular, we compared the latency distributions of several random
samples of 4 configurations to that of the top-2 screening suite
found by our process. The results of this test are summarized in
Figure 5. These box plots show the distributions of latency met-
ric obtained from exhaustive testing, top-2 screening suite testing,
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Figure 6. Performance estimates across time

and random testing. These graphs suggest the obvious weakness
of random sampling, i.e., while sampling distributions tend toward
the overall distribution as the sample size grows, individual small
samples may show wildly different distributions.

4.6 Dealing with Evolving Systems

A primary goal of main effects screening is to detect perfor-
mance degradations in evolving systems quickly. So far we have
not addressed whether — or for how long — screening suites re-
main useful as a system evolves. To better understand this issue,
we measured latency on the top-2 screening suite, once a day, us-
ing CVS snapshots of ACE+TAO+CIAO. We used historical snap-
shots for two reasons: (1) the versions are from the time period
for which we already calculated the main effects and (2) devel-
oper testing and in-the-field usage data have already been collected
and analyzed for this time period (see www . dre .vanderbilt.
edu/Stats/), allowing us to assess the system’s performance
without having to exhaustively test all configurations for each sys-
tem change.

Figure 6 depicts the data distributions for the top-2 screening
suites broken down by date (higher latency measures are worse).
We see that the distributions were stable the first two days, crept up
somewhat for 3 days and then shot up the 4‘" day (12/14/03). They
were brought back under control for several more days, but then
moved up again on the last day. Developer records and problem
reports indicate that problems were noticed on 12/14/03, but not
before then.

Another interesting finding was that the limited testing done
by ACE+TAO+CIAO developers measured a performance drop of
only around 5% on 12/14/03. In contrast, our screening process
showed a much more dramatic drop — closer to 50%. Further anal-
ysis by system developers indicated that their unsystematic testing
failed to evaluate configurations where the degradation was much
more pronounced.

4.7 Higher-Order Effects

The analyses done so far only calculated first-order effects,
which worked well for our subject application and scenario, but
might not be sufficient for other situations. Figure 7 shows the
effects of all pairs of options in the subject systems based on the
full data set and on a screening design. We used a resolution VI
design here (rather than resolution IV as in the previous sections)
and increased the run size to 2,048 to capture the second-order ef-
fects. From the figure we see several things. First, the important
interaction effects involve only options that are already considered
important by themselves, which supports the idea that monitor-
ing only first-order effects was sufficient for our subject systems.
Second, we see that the screening design correctly identifies the 5
most important pairwise interactions at 1/ 8'" the cost of exhaus-
tive testing.
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5. Related Work

Applying DOE to software engineering. As far as we can tell,
no one has used screening designs for software performance as-
sessment. The use of design of experiments (DoE) theory within
software engineering has mostly been limited to interaction test-
ing, largely to compute and sometimes generate minimal test suites
that cover all combinations of specified program inputs. Some ex-
amples of this work include Dalal et al. [4], Burr et al. [2], Dunietz
et al. [5], and Kuhn et al [10]. Yilmaz et al. [15] used covering
arrays as a configuration space sampling technique to support the
characterization of failure-inducing option settings. Other relevant
literature on performance monitoring includes:

o Offline analysis, which has been applied to program analysis
to improve compiler-generated code. For example, the ATLAS [6]
numerical algebra library uses an empirical optimization engine
to decide the values of optimization parameters by generating dif-
ferent program versions that are run on various hardware/OS plat-
forms. The output from these runs are used to select parameter val-
ues that provide the best performance. Mathematical models are
also used to estimate optimization parameters based on the under-
lying architecture, though empirical data is not fed into the models
to refine it.

e Online analysis, where feedback control is used to dynam-
ically adapt QoS measures. An example of online analysis is the
ControlWare middleware [16], which uses feedback control the-
ory by analyzing the architecture and modeling it as a feedback
control loop. Actuators and sensors then monitor the system and
affect server resource allocation. Real-time scheduling based on
feedback loops has also been applied to Real-time CORBA mid-
dleware [11] to automatically adjust the rate of remote operation
invocation transparently to an application.

e Hybrid analysis, which combines aspects of offline and on-
line analysis. For example, the continuous compilation strategy [3]
constantly monitors and improves application code using code op-
timization techniques.

6. Concluding Remarks

This paper presents a new distributed continuous quality as-
surance (DCQA) process called main effects screening that is de-
signed to detect performance degradation efficiently in performance-
intensive software systems that have large configuration spaces.
To evaluate this process, we conducted a formally-designed exper-
iment across a grid of in-house and in-the-field computers in the
Skoll environment. The results of this experiment helped in esti-
mating performance across the large configuration space of ACE,
TAO, and CIAO software systems.

All empirical studies suffer from threats to their internal and
external validity. For this work, we were primarily concerned with
threats to external validity since they limit our ability to generalize
the results of our experiment to industrial practice. One potential
threat is that several steps in our process require human decision
making and input, e.g., developers must provide reasonable bench-
marking applications and must also decide when they consider ef-
fects to be important.

Another possible threat to external validity concerns the repre-
sentativeness of the ACE+TAO+CIAO subject applications, which
though large are still just one suite of software systems. A related
issue is that we have focused on a relatively simple and small sub-

set of the entire configuration space of ACE+TAO+CIAO that only
has binary options and has no inter-option constraints. While these
issues pose no theoretical problems (screening designs can be cre-
ated for much more complex situations), we need to apply our ap-
proach to larger, more realistic configuration spaces in future work
to understand how well it scales.

Another potential threat is that for the time period we stud-
ied, the ACE+TAO+CIAO subject application was in a fairly stable
phase, i.e., changes were made mostly to fix bugs and reduce mem-
ory footprint, but the system’s functionality was relatively stable.
For situations where a system’s basic functionality is in greater
flux, it may be harder to distinguish significant performance degra-
dation from normal variation.

Despite these limitations, we believe our study supports our
basic hypotheses. We reached this conclusion by noting that our
studies showed that: (1) screening designs can correctly identify
important options, (2) these options can be used to quickly produce
reliable estimates of performance across the entire configuration
space at a fraction of the cost of exhaustive testing, (3) the alterna-
tive approach of random or ad hoc sampling can give highly un-
reliable results, (4) the main effects process detected performance
degradation on a large and evolving software system, and (5) the
screening suite estimates were more precise than the ad hoc pro-
cess currently used by the developers of the subject system. Main
effects screening can also be a defect detection aid, e.g., if the
screened options change unexpectedly, developers can reexamine
the software to identify possible problems with software updates.

We believe that this line of research is novel and interesting,
but much work remains to be done. We are therefore continu-
ing to develop enhanced model-based Skoll capabilities and using
them to create and validate new more sophisticated DCQA pro-
cesses that overcome existing limitations and threats to external
validity. In particular, we are exploring the connection between
design of experiments theory and the quality assurance of systems
with large configuration spaces. We are also working to incor-
porate Skoll services into software repositories, such as ESCHER
(www.escherinstitute.org). Finally, we are conducting a
much larger case study using Skoll to conduct the ACE+TAO+-
CIAO daily build and regression test process with 100+ machines
contributed by users and developers worldwide.
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APPENDIX

A. Actual Screening Designs

The screening designs used in Section 4.3 were calculated us-
ing the SAS statistical package. (www . sas.com).
Scrs2is a 2732 with design generators F = ABC, G = ABD,
H = ACD,I =BCD,J = ABE, K = ACE, L = BCE,
M = ADE, N = BDE.
Scred is a 2}“1;8 with design generators G = ABC, H = ABD,
I = ABE,J = ACDE, K = ABF,L = ACDF, M =
ACEF,N = ADEF.
Scri128 is a 2}%;7 with design generators H = ABC, I
ABDE, J = ABDF, K = ACEF, L = ACDG, M =
ABEFG, N = BCDEFG.



