
A Client-Side Architecture for Supporting Pervasive Enterprise Communications

Amogh Kavimandan†

Department of EECS
Vanderbilt University
Nashville, TN 37235

a.kavimandan@vanderbilt.edu

Dorée Seligmann

Avaya Labs Research
666 5th Ave.

New York, NY 10103
doree@avaya.com

Reinhard Klemm

Avaya Labs Research
233 Mount Airy Road

Basking Ridge, NJ 07920
klemm@avaya.com

Ajita John

Avaya Labs Research
307 Middletown Lincroft Road

Lincroft, NJ 07738
ajita@avaya.com

Aniruddha Gokhale

Department of EECS
Vanderbilt University
Nashville, TN 37235

a.gokhale@vanderbilt.edu

Abstract
Pervasive, context-aware enterprise communications
applications rely on detailed knowledge of people’s
contexts to facilitate efficient communications between
people. We describe the challenges and intricacies in
collecting and disseminating relevant user context data
for the purpose of complex decision-making in enterprise
communications applications. We show that the
continuous and user-transparent collection of context
elements such as user presence and activity enables
certain simple decisions in communications applications
while other decisions may depend on additional,
communication task-specific user context details. These
details can be acquired by applications as needed
through what we call dialogs in which users explicitly
interact with communications applications. The rendering
and processing of such dialogs is predicated on our
notions of device context and dialog presence. We present
the architecture and implementation of our client-side
system Argus that addresses the context gathering and
propagation challenges. We show how Argus, in
conjunction with pervasive, context-aware enterprise
communications applications, can accelerate and
improve decision-making in an enterprise with a high
level of convenience for users when establishing
communications in response to enterprise events.

Keywords
Availability, Context-Awareness, Dialog, Interruptibility,
Pervasive Communications, Presence, SMIL, User
Context, Web Browser, XUL.

1. Introduction
1.1 Motivation
Enterprise workflows automate various aspects of
business processes and may be interspersed with
communications with and between users. Examples of

such communications include a conference call to resolve an
open issue that was detected by an enterprise workflow or
prompting a user for a decision on a given issue and collecting
the user response through an HTML form. This type of
communications can be modeled as communications
applications on enterprise communications middleware.
Enterprise communications applications establish
communications sessions through various communication
media and endpoints where enterprise users may collaborate
with each other or with the sessions to provide information that
serves as the basis for decision-making in the workflows. In
the quest for productivity increases in enterprises it becomes
important to establish communications with users virtually
anywhere and anytime. Hence, pervasiveness of enterprise
communications is a critical goal of communications
applications.

Consider a scenario where a group of managers in a large and
geographically distributed enterprise is on a conference call
that deals with the breakdown of a vital assembly line in one of
the enterprise’s factories. Since this is a technically complex
topic, the managers recognize the need for expert advice on
assembly lines before making a decision. Suppose also that the
enterprise has deployed middleware for executing pervasive,
context-aware communications applications (context-aware
middleware1) and that one of these applications is an expert
finder application. An example of such a middleware is the
Hermes [15, 16] system developed at Avaya Labs Research. A
participant of the manager conference call would invoke the
expert finder application through a Hermes user portal where
he or she supplies the desired criteria for finding an expert,
such as the required expertise, language, preferred

1 In the remainder of this article we assume that context-aware middleware

executes context-aware communications applications although generally
such middleware support is not required.

† This work was done while the author was an intern at Avaya Labs Research.

communication modality (e.g. voice or instant messaging),
desired time window for finding an expert, and a brief
description of the discussion topic. A naive expert finder
application could simply invite all matching enterprise
associates that it finds in an enterprise directory to join the
discussion, request a confirmation from each one to
ascertain their availability for consulting with the
managers, and ultimately select the first associate who
confirms that he or she can participate in the manager
discussion. However, there are several problems with this
simplistic approach. The following list outlines some of
these problems. In this list, we assume that Alice is a
matching assembly line expert who is working from her
home office and browsing the corporate newsletter
through her Web browser at the time of the scenario.

1. Invitation modality: If the expert finder application
picks a statically defined way of communicating the
invitation to an associate – based on preferences for
the associate or some hardwired decision – there is a
good chance that the invitation does not reach its
recipient within the desired time window because the
recipient might be in a different location. For example,
the expert finder application should not relay the
invitation to Alice on her office phone because she is
working from home. In fact, to ensure timely receipt
and maximum convenience for the recipient, the expert
finder application should relay the invitation to a
communication endpoint that the recipient is known to
be using at this point in time.

2. Interruptibility: If an associate is currently engaged in
an activity that is more important to the enterprise than
the participation in the manager conference, the expert
finder application should not interrupt the associate. If
Alice were currently collaborating with the corporate
sales president on an important new sales strategy
rather than browsing the corporate newsletter, the
expert finder application might choose to skip Alice as
a potential participant in the manager conference.

3. Communication volume: If the expert finder
application generally invites all matching associates,
regardless of current user contexts, the number of
invitations that the associates would receive could
prove a significant burden on productivity of the
associates. Moreover, a large number of invitations
and subsequent confirmations could lead to scalability
problems for the enterprise communications platform.

4. Confirmation modality: If, after receipt of an
invitation, an associate is forced to change
communication modalities to provide the requested
confirmation to the expert finder application, delays
and inconvenience for the associate are introduced.
For example, conveying the invitation to Alice as a
voice message over her home phone but requesting the
confirmation through her user portal would delay

Alice’s response to the confirmation request and cause
inconvenience. In the worst case, the associate might not
have access to the communication modality that is required
to deliver the confirmation.

5. Confirmation Negotiation: In general, a confirmation
request cannot simply be a yes/no prompt because the user
needs the flexibility to negotiate details of the possibly
ensuing interaction. For example, if Alice were willing to
participate in the manager conference but needed to delay
her participation by 20 minutes, the expert finder
application should allow negotiating a delayed
participation in the manager conference.

6. Confirmation Adaptation: The specific type of negotiation
between the associate and the application needs to be
technically supported by the associate’s communication
endpoint and device. For example, if Alice’s browser were
deployed on a cell phone with low-bandwidth data
connectivity, the type of negotiation needs to be adapted to
this specific device context.

7. Negotiation Status: The expert finder application needs to
be able to track the progress that an associate makes with
the negotiation. If, for example, Alice has forgotten to start
the negotiation, the expert finder application might want to
re-invite her to the conference call and send a new
confirmation request, possibly through a different endpoint.

The problems raised by the naïve expert finder application can
be avoided by inviting only matching associates who are
currently present, available, and interruptible, and by
subsequently engaging an invited associate in a negotiation
dialog. We consider a user to be present if the user is logged
into a session on a communication endpoint. Availability
means the user has engaged in some activity within that
session during a recent time interval. A user is interruptible if
the recent or current type of user activity in that session allows
an interruption by a communication request such as a request
for information feedback. The negotiation dialog sent to an
invited associate allows the latter to specify the actual
availability for the manager conference. The dialog has to be
composed in such a way that it can be rendered on the
recipient’s communication endpoint and device. Determining
presence, availability, and interruptibility presupposes the
collection of relevant user context data and its propagation to
the pervasive and context-aware enterprise application. Note
that negotiation dialogs provide a means for users to specify
application-dependent user context parameters such as an
appropriate time and communication modality for the given
communication task, e.g. “I will be available for the manager
conference in 20 minutes on my cell phone”. In conclusion, the
appropriate definition, collection, and propagation of user
context data are of paramount importance to the execution of a
pervasive, context-aware enterprise communications
application such as the expert finder application.

1.2 Our Contributions
This paper motivates and details the challenges in
gathering user context at communication endpoints for the
purpose of supporting decision-making in pervasive and
context-aware enterprise communications applications. It
presents a client-side architecture and a prototypical
implementation that enables a two-phase negotiation
between an application and a user leading up to an
interaction: (1) An implicit negotiation phase which relies
on the user-transparent determination of the
communication endpoints the user is using (endpoint
presence) as well as the availability and interruptibility of
the user at these endpoints. (2) An explicit negotiation
phase where the user can specify and control an
application-dependent part of the user’s context through a
multimodal dialog with the application. The specified part
of the context allows the application to decide how and
when the actual interaction takes place. We describe how
our architecture collects device context to allow the
pervasive, context-aware enterprise application to tailor
dialogs to the recipient’s specific endpoint and device
capabilities and dynamic characteristics. We introduce the
concept of dialog presence to allow such an application to
track the current status of a dialog. Dialog presence can be
used to, among many other things, trigger a reminder to
the user to interact with the dialog if necessary.

We present our architecture in the context of user activity
in a Web browser and explicit negotiations with the user
using a multimodal dialog mechanism. The work
highlights the specific pre-steps that need to be taken
before drawing users into an interaction to guarantee
efficiency and speed in pervasive, context-aware
enterprise communications while maintaining the privacy
and productivity of the users. We claim that these steps
enhance the promise of pervasive services. Note that in
this paper we do not focus on how user context
information is leveraged in context-aware applications and
middleware. For details on the usage of context in
communications decisions in the Avaya Labs Hermes
middleware we refer the reader to [15] and [16].

The remainder of the paper is organized as follows.
Section 2 presents related work. Section 3 refines the
challenges introduced in Section 1.1. Section 4 outlines
the Argus architecture and shows how it resolves these
challenges, especially for Web browsers as
communication endpoints. We also detail some of the
implementation work. Section 5 provides concluding
remarks.

2. Related Work
User context includes any information that can
characterize and convey a user's situation [1, 22]. The
Active Badge System [26] is one of the earliest context-
aware applications. It provides a location service to find
people in an office environment, with the use of infrared

signaling. Much research has been devoted to context-aware
computation, communications applications and enabling
platforms [6, 4, 7, 9, 27, 24]. An example of middleware
specifically for context-aware communication applications is
the Hermes platform developed at Avaya Labs Research and
presented in [16]. Lei et al. discuss the notion of context-aware
computation and describe a middleware for context gathering
and dissemination in [19]. In the parlance of this reference,
Argus can be seen as a context source that feeds context
information gathered from Web browsers into a middleware
for context-aware communications applications. In Argus we
assume the presence of such a middleware and focus on a
client that supports user context collection and dialogs.

MyVine [12] investigates the relationship between user
presence on communication clients and user availability. The
technology in [12] uses indirect ways of ascertaining a user’s
general availability such as speech detection, computer
activity, calendar entries, and more. To determine a user’s
availability for a specific communication task, Argus first
monitors user activity to measure the user’s interruptibility for
a dialog, then sends the dialog to the user, and finally evaluates
the user feedback to the dialog. Notice that indirect availability
sensing technologies can complement the Argus approach to
user availability determination. An approach to determine a
user’s general presence and availability based on extrapolation
of historical data is presented in [14].

The Cooltown project at Hewlett-Packard Laboratories
introduced the concept of Web presence, which extends the
"homepage" concept and bridges the World Wide Web and the
physical world we inhabit [17]. It aims to make physical
entities Web-present by embedding Web servers in them. In
other words, physical entities gain a presence on the Web. This
is essentially different from Web browser presence and activity
introduced in our work, which determines whether a user is
present in an active Web browser session and what specific
activity the user is engaged in.

Begole et al. [2, 3] studied detailed computer activity coupled
with information about user location, online calendar
appointments, and e-mail activity. Begole et al. use temporal
patterns in a user’s presence to estimate when that user might
be likely to return. They point out that a user who is usually
present at a given time of day might be available at that time
even if the user’s computer has been inactive for several
minutes. Argus collects detailed current user and device
context, partially in a user-transparent manner and partially as
a result of an explicit dialog with the user for a given
communication task at this time. Argus propagates the
collected data in a timely fashion to context-aware
communications applications and delegates the context
evaluation to these applications. Hence, Argus supports the
establishment of communications based on actual current user
context while not precluding the computation and use of
temporal user context patterns described in [2, 3].

Collective Web awareness and collaborative browsing have
been researched previously and some commercial products

exist in this area [25, 8, 29, 20, 10]. CoBrow [25] is a
distributed tool that facilitates such collaborative
browsing in the WWW. In CoBrow users with similar
interests participate in virtual spaces built on the fly, so
that they can learn and benefit together from individually
gained knowledge of the shared interest. Similar to
CoBrow and other efforts in collaborative surfing, Argus
uses information such as what Web page a user is
currently browsing. However, unlike CoBrow, the
information is used for determining interruptability of the
user. CoBrow aims to find users with common interests
and facilitates collaboration between them. Argus on the
other hand collects and propagates detailed user presence
and activity information to the context-aware middleware.
Moreover, in Argus the status information of a user is
known only to the context-aware middleware, while this
information is visible to all the other users sharing the
same virtual space in CoBrow.

The Presence-Enabled Mobile Service (PEMS) in [23] is
an example of a platform that integrates mobile devices
such as cell phones with context-aware enterprise
middleware. PEMS provides Mobile Presence Agents
(MPAs) that can be deployed on mobile devices to detect
the device presence, which is different from and
complementary to Web browser presence.

3. Client-Side Challenges in Supporting
Pervasive, Context-Aware Enterprise
Communications Applications
In general, users frequently change their contexts over
time. Among other things, users engage in varying
activities, assume different communication modalities,
and switch locations. Efficient and seamless execution of
pervasive, context-aware enterprise communications
applications therefore requires precise and timely
determination of user contexts and in particular user
presence and activities. Mechanisms deployed on user
machines and devices are necessary to track and
determine contextual information about users. Our
scenario in Section 1.1 introduced several previously
unaddressed challenges to client-side architectures for
supporting pervasive, context-aware enterprise
communications applications. In this section, we discuss
these challenges in detail and outline the benefits of
solving these challenges.

3.1 Collecting and Disseminating User Presence
and Activity
Background: In the expert finder scenario, the notion of
communication endpoint presence and activities is crucial
for the effectiveness of the application. The application
needs to be able to ascertain such context information
about Alice to determine her availability and
interruptibility for a conference invitation. The collection
of detailed user context data at a communication endpoint

far exceeds simple activity monitoring, say, in or on an
operating system. The user context data that we want to define
contains endpoint-specific usage information that allows
inferring user presence, availability, and interruptibility. For
example, the expert finder application needs to know whether
Alice in her current Web browser session is reading her
horoscope or whether she is logged into a Web-based
conference bridge with other coworkers. In the former case,
she is interruptible for the manager conference but perhaps not
in the latter case. Furthermore, if the expert finder application
ascertains that a user is present and available on a specific
communication endpoint, it not only knows the user is present
but also how to convey an important piece of communication
to the user in a timely and convenient fashion. The client-side
mechanism that we were envisioning must detect and collect
detailed endpoint usage and forward it to the context-aware
middleware in a timely fashion. This mechanism should be
user-transparent and allow the user to protect his or her
privacy by instructing the client-side mechanism to not
propagate any or all presence and activity information to the
middleware. Note that our presence and activity dissemination
model is not peer-to-peer but follows a client-server approach
where the middleware assumes responsibility for guarding or
further relaying any presence and activity information from the
client-side mechanism.

Problems: A number of questions arise in this context. For
example, how do we define endpoint presence and activities
and how detailed should such context information be? How
can a client-side system gather context in a way that is
transparent to the user? Where does context aggregation and
evaluation take place? How often should context data
collection take place? Which model, push or pull, should be
used for data transmission? Some of these issues affect the
timeliness and detail and thus the accuracy of the information
that context-aware applications evaluate. Other architectural
choices affect the scalability of the solution, the requirements
for the bandwidth between the client and the middleware, and
the computing load on the client.

3.2 Collecting and Disseminating Device Context
Background: In our scenario in Section 1.1, even if Alice’s
browser were equipped to handle a confirmation or dialog sent
by the expert finder application there is no guarantee that her
computing environment is suitable for receiving and rendering
the dialog, allowing Alice to provide feedback, or return her
feedback to the application. A pervasive, context-aware
enterprise application has to be able to determine the
capabilities of the platform or device that runs the user’s
endpoint in order to tailor the dialog to the device. For
example, a dialog to be rendered on a cell phone-based
browser might contain only simple graphics and allow the user
to provide feedback by simply clicking on one of several form
buttons in the dialog. Gathering and reporting client-side
capabilities and parameters can also improve the quality of
communication modality selection in the middleware. For
example, if the middleware knows that Alice is currently using

a cell phone and needs to set up a conference with Alice
as one participant it might decide against initiating, say, an
instant messaging conference in favor of an audio
conference. The instant messaging conference would
require Alice to start an IM client on her cell phone and to
type more or less complex phrases on her keypad.
Similarly, dynamic parameters such as the current battery
charge level on a portable device could be part of the data
that a client reports to the context-aware middleware. In a
variation on the previous example, if the application
determines that Alice is present on a laptop but that this
machine has only a few minutes of battery life left, the
application might decide against an instant messaging
conference in favor of an audio conference.

Problems: We need to define a user’s device context that
includes static and dynamic client-side capabilities and
parameters that may be relevant to pervasive, context-
aware enterprise communications applications. Dynamic
device context parameters such as battery level or current
data connectivity need to be collected and propagated to
the context-aware middleware in a timely fashion. Our
goal is to allow the application to infer the most
appropriate communication modality and type of dialogs
to be used for a certain user in a given situation. There are
other problems that are analogous to those discussed at the
end of Section 3.1.

3.3 Explicit Negotiation of User Context
Parameters through Dialogs
Background: In our scenario, the ability of endpoints to
receive, render, and return dialogs is as important as user
presence and activity determination. In our expert finder
example, just knowing that Alice is present, available, and
interruptible does not imply she can or wants to
participate specifically in the manager conference. What it
does indicate is simply that Alice’s Web browser may
provide the most expedient means to deliver a piece of
communication to Alice. A subsequent dialog would allow
Alice to specify the part of her user context that is specific
to the expert finder application and the request for Alice’s
participation in the manager conference. In particular, a
dialog would allow her to negotiate her availability at a
certain time with the expert finder application. The types
of dialogs that we envision range from dialogs that purely
display information to genuinely interactive and
multimodal dialogs that can gather user feedback which
the application can consider in subsequent decisions.

In our scenario, if Alice does not respond quickly to the
dialog that the expert finder application sent to her, the
application has no way of determining whether Alice
received the dialog. For example, Alice may not be able to
respond to the dialog immediately because she may have
to check her calendar first and then ask her supervisor for
approval to talk to the managers. In the absence of fast
feedback from Alice, the application may choose to
contact several other potential experts but such an

approach is inherently inefficient because many potential
experts might be excluded from consideration simply because
they take time to respond to a dialog. Instead, we were looking
for a way to collect and gather dialog presence that allows a
context-aware application to determine whether a user has
received a dialog. If necessary, the application could send a
reminder to the user, through the same or an alternate
endpoint, that asks the user to respond to the dialog.

Problems: A significant challenge involves identifying a
dialog technology that is flexible enough to handle the
requirements of a wide range of pervasive, context-aware
enterprise communications applications. Although textual
forms are simple and meet the basic requirement, we wanted to
be able to include multimedia elements, for example video and
audio clips. Such dialogs have to be asynchronously received
and rendered in an off-the-shelf endpoint. The same endpoint
needs to return user feedback to a dialog. Dialogs have to be
designed by the developers of a context-aware application, so
we are particularly interested in a standards-based dialog
technology with a large tool base. The arrival of new dialogs
in an active endpoint session has to be announced to the user.
If a number of dialogs are sent to a user simultaneously or in
an overlapping way they should be rendered in a meaningful,
serialized fashion. Serialization of dialogs suggests
categorization of dialogs based on priority or importance,
where a higher-priority dialog gets precedence and is rendered
before a lower-priority one.

The dialog presence concept raises its own problems. How do
we best define and monitor dialog presence for the benefit of a

wide range of context-aware communications applications?
Unlike communication endpoint presence and activities or
client-side capabilities, dialog presence changes must be
propagated to the context-aware middleware with minimal
latency.

3.4 Technical and Societal Merits of Resolving these
Challenges
The challenges in the previous subsections were motivated by
our scenario in Section 1.1 but we envision many other
scenarios where context-aware communications applications

Web Services
Client

Proxy
Server

Device
Agent

AJAX Components

UI
Elements Activity

User
Response

Communication Agent

Per endpoint instance
Machine Agent

Web Services
Client

Proxy
Server

Device
Agent

AJAX Components

UI
Elements Activity

User
Response

Communication Agent

Per user device

User Device

Context-Aware Communication Middleware

Figure 1: Argus System Architecture

may greatly benefit from a system that meets these
challenges. In our work, we aim at closing the loop from
user context gathering at a communication endpoint to
rendering dialogs initiated by a context-aware
communication application in response to user context
evaluation. Closing this loop can substantially accelerate
and facilitate collaborative communications in enterprises
and helps make enterprise communication processes
seamless, both from a temporal point of view and from a
user experience point of view. This is especially important
for large, globally distributed enterprises where associates
have varied and specialized skills and expertise, and
where communication and collaboration are essential to
fully utilizing the available human assets. In such
environments we usually find diverse communication
modalities with a wide range of communication endpoints,
from video conferencing to instant messaging to various
types of voice communication technology (POTS, VoIP,
wireless, etc.). The devices and machines that host
communication endpoints tend to be equally diverse and
there is a considerable amount of uncertainty about which
user is currently present on which endpoint, at which
location, and what activities users are engaged in.
Context-aware communication applications have to adjust
to this type of environment to accelerate decision-making
in enterprises and enhance workers’ productivity.

4. Architecture and Implementation
Considerations for Argus
This section presents the architecture and implementation
of Argus, our Web browser-based client software for
supporting context-aware communications applications.
We first outline the reasons behind our choice of Web
browsers as communication endpoints for context
gathering and dialog rendering. We then describe how the
Argus architecture and implementation meets the
challenges and goals outlined in Section 3. Our Argus
implementation at Avaya Labs interacts specifically with
the Hermes context-aware middleware. In this section,
however, we simply assume that the context-aware
middleware provides a Web Services interface that allows
Argus to report presence and user activity data as well as
device context and that can relay dialogs originating at
context-aware communications applications.

4.1 Web Browsers as Communication
Endpoints
In the Argus project we decided to first focus on Web
browsers as endpoints for collecting presence and activity
information and rendering dialogs. In the interest of
supporting pervasive communication services, we
ultimately want to extend Argus to a wide spectrum of
communication endpoints in order to collect user context
at any endpoint that a user might employ and to render
dialogs on any such an endpoint. Our specific interest in
Web browsers for gathering user context, specifically

presence and activity information, and for rendering
multimedia dialogs is motivated by our observation that Web
browsers are universally deployed across user computers and
devices, are very versatile and programmable software
components with the ability to render multimedia content, and
have turned into the client software of choice for many user
activities, from access to collaboration tools to information
retrieval to downloading multimedia content. Because many
enterprises have deployed Web-based enterprise portals that
provide a unified access point to a wide spectrum of
applications in the enterprise [18], Web browsers have gained
particular importance as client software in enterprises. Thus,
many enterprise users spend a lot of time interacting with Web
browsers, and context data collection through Web browsers
becomes meaningful. Web browsers already support uploading
of information to servers and the retrieval of multimedia
content, thus providing the infrastructure for transmitting
presence and other user context data to context-aware
applications, retrieving dialogs, allowing user interaction with
such dialogs, and returning user feedback to context-aware
applications. Hence, browsers can enable a seamless user
experience for accessing Web content and interacting with
context-aware applications through dialogs.

4.2 Argus Architecture
Figure 1 shows the Argus architecture. Argus contains two
major components, a communication agent and a machine
agent. The communication agent is tightly integrated with a
Web browser. It allows Argus to observe a user’s Web
browser activities and enables the injection of dialogs into the
Web browser. The communication agent consists of browser
User Interface (UI) components, AJAX (Asynchronous Java
and XML) components [13], an activity monitor, and a User
Response module. More than one communication agent may
be active on a given user device, depending on how many
browser instances are currently executing, but there is only one
machine agent per device. The machine agent resides outside
the browser and mediates between the communication agents
on a device and the context-aware middleware. The machine
agent contains a proxy server, a device agent, and a Web
Services client for communication with the context-aware
middleware. In the following subsections, we will explain the
rationale behind our particular architecture and show how the
various components act in concert with a Web browser and the
middleware to support context-aware communications
applications.

4.3 Collecting and Disseminating User Context
4.3.1 Presence and Activity Definition
In Argus, a Web browser session starts when an instance of the
browser begins executing and ends when that instance
terminates. Note that a Web browser session corresponds to
our notion of user presence introduced in Section 1.1. Within a
session, each user interface activity, in particular browser
button clicks, hyperlink clicks, changing browser window size,
entering text into a form or clicking buttons in a form, and

rendering multimedia content, that can be gleaned from
the browser counts as a user presence indication and is
captured as user activity. User interface activities are
indications of user availability as introduced in Section
1.1. Note that this approach is different from a publisher-
subscriber system, wherein various subscribers register for
specific events and receive notifications of such events
generated by publishers. In Argus, the context-aware
middleware is the only recipient of user context
information and receives all such information. Context-
aware applications categorize the types of presence and
activity data reported by Argus and subsequently make a
determination of the user’s presence, availability, and
interruptibility based on the detailed presence and activity
information. Interruptibility of a user has to be assessed
vis-à-vis a specific type of application and a specific piece
of communication or interaction within the application.

4.3.2 Presence and Activity Collection
Our choice of a Web browser as a presence and activity
collection endpoint and dialog rendering device had a
strong impact on the entire Argus architecture and
implementation. One of our criteria in choosing a Web
browser was ease of implementing context data collection
and dialog rendering. Moreover, rather than designing a
special-purpose Web browser, we intended to use an off-
the-shelf Web browser with a large install base and
modify it for our purposes. We decided to use the Mozilla
Firefox Web browser [30] customize it through its
extension mechanism.

Extensions provide a modular and platform-independent
way to add new functionality to Firefox. The design of an
extension is event driven, where the user interface is
specified using the XML User Interface Language (XUL)
[31], while the event handlers that define the browser
behavior are implemented using JavaScript. One of our
goals in designing Argus was user convenience, in
particular the user does not have to explicitly specify
presence and activity information when he or she is using
the browser interface. The Activity part of our Firefox
extension shown in Figure 1 automatically monitors the
user’s activities in a browser window. Beginning with the
start of each browser session, every user interface activity
triggers an event, and a corresponding JavaScript handler
inside our Firefox extension is called that logs the event.
The event handler execution is not noticeable to the user.
Periodically, with a user-configurable frequency, the
Argus Firefox extension bundles the logged events into a
presence and activity information packet and pushes it to
the machine agent. Obviously, the higher the presence and
activity update frequency is, the more accurate the
presence and activity information is that context-aware
applications may evaluate. On the other hand, a higher
update frequency also increases the computing load on the
client that hosts Argus and it may increase the bandwidth
requirements between Argus and the middleware.

To allow the user to protect his or her privacy, the UI elements
shown in Figure 1 provide a toolbar in every browser window
that contains buttons to turn context gathering and
dissemination on or off. If the user allows Argus to propagate
context data to the middleware, it becomes the responsibility
of the middleware to protect the user’s privacy. For example,
the Hermes system introduces the notion of brokered presence
where context-aware applications make communications
decisions based on user context but do not necessarily disclose
user context to other users.

4.3.3 Context Propagation
For a given client, we assign the context propagation
functionality to a dedicated machine agent, specifically an
HTTP proxy server which acts as a broker for all sessions
between that endpoint and the context-aware middleware.

The following are advantages of separating the machine agent
from the presence and activity collection mechanism, i.e. the
communication agent:

 Separation of concerns. The system design is modular since
collection and propagation functions are kept separate. This
also makes the extension simple in design.

 Collective state management: The machine agent provides
state management for all active sessions on a single client.
The state of an active session is a measure of how far a user
dialog has proceeded in that session (see Section 4.5.2). A
number of active sessions may be present for a single
endpoint and a state has to be recorded for each of those
active sessions. In the interest of scaling the Argus approach
to many clients and communication endpoints, we decided
to perform state management on the client side rather than in
the context-aware middleware.

 Device context. As we will see in Section 4.4, deploying a
machine agent outside the browser enables the gathering and
propagation of device context.

 Efficiency. While it was necessary and appropriate to use a
Firefox extension for user context gathering and dialog
injection, the Firefox extension model is very restrictive and
inefficient for general purpose computing tasks such as the
propagation of user context to the middleware. Placing non-
user interface functionality into a separate machine agent
therefore simplifies the Argus design and enhances its
efficiency.

Propagating presence and activity information from the
communication agent to the middleware involves the following
steps:

1. The communication agent converts JavaScript event
handler function calls into asynchronous HTTP requests for
the proxy server.

2. If the proxy server receives a Web browser startup event
notification from the communication agent, it invokes a
Web Services (WS) method in the middleware to obtain a
session ID. The session ID will identify this particular
browser instance as a context data source and allow Argus

to associate context data sources with presence and
activity events when communicating with the
middleware in the future. The session ID is also used
when the machine agent polls the middleware for
pending dialogs (see below).

3. The proxy server invokes a WS method in the
middleware through the WS client interface and
reports the latest user context update from the
communication agent to the middleware.

AJAX is used for the interaction between the
communication agent and the machine agent as shown in
Figure 2. The asynchrony provided by AJAX ensures
complete user transparency of the presence and activity
collection mechanism. The interaction between the
communication agent and machine agent on the one side
and the middleware on the other side is two-way, i.e.
while the JavaScript event handlers make asynchronous
HTTP requests, the middleware sends SMIL dialogs (see
below) to the communication agent through the proxy
server.

A timeout event triggers the periodic presence and activity
propagation mechanism in the Argus Firefox extension,
illustrated by the JavaScript (JS) calls in Figure 2. The
AJAX routines convert JS native calls into HTTP
requests, to be sent to the machine agent. Once the AJAX
routines have created the server request for the proxy
server, control is returned back to the extension event loop
to handle further events in the browser.

4.4 Collecting and Disseminating Device
Context
Because the machine agent resides outside a Web
browser, we can use it to gather device-wide client
platform/hardware capabilities and parameters and
propagate that information to the middleware. Section 3.2
introduced the notion of device context as a collection of
such capabilities and static/dynamic parameters. The
device agent inside the machine agent implements this
functionality. It is a simple operating system-specific

module that reports static client-side capabilities to the
middleware once upon startup of the agent. Throughout its
execution, it periodically updates the middleware with
dynamic client-side parameters. Currently, the device agent is
implemented for Windows XP but it can be easily modified for
other operating systems. The client-side capabilities and
parameters sent to the middleware include the type of machine
(laptop, desktop, PDA, mobile phone, etc.), processor
information, network interface type, type of keyboard and
mouse if any, battery strength remaining, data connectivity
status, etc. Because the device agent is implemented as part of
the machine agent rather than as part of the communication
agent, it can work independently of any browser sessions and
send client information directly to the middleware.

4.5 Explicit Negotiation of User Context Parameters
through Dialogs
4.5.1 Dialog Technology
Argus uses the Synchronized Multimedia Integration Language
(SMIL) [32], a W3C proposal, originally designed for
describing and rendering interactive audiovisual presentations.
Because SMIL supports interactions with users and rich
multimedia content, in particular audio and video clips in
addition to textual data and forms, it lends itself to our notion
of dialogs. We also chose SMIL as our dialog technology of
choice because (a) it is flexible in that it can be easily used for
a wide number of context-aware applications, (b) a large
variety of tools to create SMIL dialogs is available, and (c)
SMIL can be used as a general way of defining structured
dialogs irrespective of the endpoint modality of
communication. Note that SMIL is an XML-based language,
and hence Argus uses the same format for dialogs that it uses
for data exchange (through Web Services) between Argus
agents and the context-aware middleware.

4.5.2 Dialog Injection and Rendering
The following are the steps involved in injecting a dialog,
originating at a context-aware communication application, into
a Web browser session:
1. The context-aware application associates the dialog with

the session ID of the target Web browser session.

2. The machine agent detects a nonempty list of dialogs
pending in the middleware for the active session. To this
end, the machine agent calls the appropriate WS method in
the middleware and uses the ID of the active Web session
as a parameter for the WS method.

3. The machine agent receives the list of pending dialogs for
this user for the active Web browser session from the
middleware.

4. The machine agent performs delivery of the dialogs to the
communication agent, one dialog at a time.

5. The communication agent, through a Firefox extension
shown as the User Response component in Figure 2,
retrieves the dialog and Firefox presents it to the user
through a pop-up window.

Web Services
Client

Proxy
Server

Device
Agent

AJAX Components

UI
Elements Activity

User
Response

Communication Agent Machine Agent

Web Services
Client

Proxy
Server

Device
Agent

AJAX Components

UI
Elements Activity

User
Response

Communication Agent

User Device

Context-Aware Communication Middleware

HTTP
Requests

XML
JS Calls HTML

Java Method Calls

Web Services Calls

Figure 2: Component Interaction in Argus

If more than one dialog is pending for this user and the
given Web session, the dialog with the highest priority, as
assigned by the originating context-aware application, is
chosen by the machine agent for delivery to the
communication agent. The machine agent sends the SMIL
dialog to the communication agent of the respective Web
session, which renders it as an HTML form, possibly with
multimedia content. From the user’s perspective, the
arrival of a dialog is indicated by a pop-up browser
window that displays the SMIL content. In some
applications, a single interaction between a user and a
context-aware communications application consists of a
number of dialogs where the next dialog served may
depend on the user response to an earlier dialog. The
interaction can be seen as a graph, with dialogs as its
nodes and edges as user responses to dialogs. In such
cases, the state of a particular interaction graph is
maintained at the machine agent, the state being last
dialog sent. The interaction completes when no dialogs
remain in the interaction graph.

4.5.3 Dialog Feedback
Since a dialog is rendered as an HTML form, any user
response is collected by the Web browser and sent back to
the machine agent as an HTTP request. The machine
agent may use this data to determine which dialog in the
current interaction to send next, or forward it to the
middleware for further processing.

4.5.4 Dialog Presence
When a context-aware communications application
prompts the Hermes middleware to deliver a dialog to a
user, Hermes sets the presence status of the dialog to
pending. When Argus polls the context-aware middleware
for pending dialogs for this user and receives a list of one
or more dialogs, the middleware knows that Argus has
received these dialogs and assigns a presence status of
consuming to these dialogs. At this point in time, Argus is
rendering the dialog to the user. Once a user has
responded to the dialog via Argus, Argus returns the user
responses to the middleware and the middleware can
again adjust the presence status of the dialog to
completed.

In the future, we envision a class of dialogs that are not
immediately rendered upon receipt by Argus and therefore
do not interrupt the recipient. Instead, Argus would simply
display a dialog waiting icon and only when the user
actually starts interacting with dialogs would Argus notify
the middleware of the beginning of the dialog
consumption through the user. The timing of dialog
presence status changes on the middleware side would be
adjusted correspondingly, thus enabling a more accurate
determination of when a user is actually interacting with a
dialog.

5. Summary and Outlook
In this article, we motivated and discussed in detail the
conceptual and design challenges for clients that are intended
to support pervasive, context-aware enterprise communications
applications. We introduced the notion of a two-phase
negotiation between such clients and applications in order to
determine the availability of a user for a specific
communication task (such as a conference call) initiated by an
application. The first phase is an implicit, user-transparent, and
automatic gathering of user context data at user
communication endpoints. It allows the application to
determine the presence, availability, and interruptibility of the
user for a feedback request. If a user is deemed present,
available, and interruptible, the second phase occurs and
engages the user in an explicit dialog that allows the user to
provide feedback to the application with an indication of his or
her actual availability for the communication task.

We described the architecture and implementation of our
client-side system Argus that collects user context data,
specifically user presence and activities, and propagates it to
context-aware communications middleware. In its current
form, Argus targets the Mozilla Firefox Web browser as a
widely deployed and technically versatile communication
endpoint for the collection of user context data (first
negotiation phase). We defined multimodal SMIL-based
dialogs (second negotiation phase) that can be rendered in a
Firefox browser through mediation in Argus. Based on static
and dynamic client-side parameters and capabilities (device
context) that Argus collects and disseminates to the
middleware, a communications application can tailor a dialog
so that it can be rendered on the recipient’s device. We
demonstrated through a sample scenario that the combination
of user context gathering at an endpoint such as a Web
browser and the rendering of interactive SMIL dialogs can
greatly aid pervasive enterprise communication applications in
accelerating and facilitating decision-making in enterprises.

The next steps in the Argus project are extensive user studies
in the system. We intend to investigate the scalability of our
solution, measure the latency and accuracy of user context data
as collected by Argus, and determine through a user study how
effective Argus is in meeting the goals and challenges outlined
in Sections 1 and 3. We already have extended Argus to work
with the Thunderbird [28] mail client application and, in the
future, also want to extend Argus to a wide spectrum of
communication endpoints. Examples of endpoints that we are
considering are softphones and IM clients.

6. References
[1] Abowd, G. D., Dey, A. K. Towards a Better Understanding of

Context and Context-Awareness. Proceedings of 1st
International Symposium on Handheld and Ubiquitous
Computing (HUC 99), Lecture Notes in Computer Science, no.
1707, Springer-Verlag, Heidelberg, Germany, 1999, pp. 304-
307.

[2] Begole, J. B., J. C. Tang, R. B. Smith and N. Yankelovich.
Work Rhythms: Analyzing Visualizations of Awareness

Histories of Distributed Groups. Proceedings of the ACM
Conference on Computer Supported Cooperative Work,
2002.

[3] Begole, J. B., Tang, J. C., and Hill, R. Rhythm Modeling,
Visualizations, and Applications. Proceedings of the ACM
Symposium on User Interface Software and Technology,
2003.

[4] Campbell, R. H., Ranganathan, A. A Middleware for
Context-Aware Agents in Ubiquitous Computing
Environments. Proceedings of the ACM/IFIP/USENIX
International Middleware Conference, Rio de Janeiro,
Brazil, June 2003.

[5] Chaari, T., Laforest, F., and Celentano, A. Service-
Oriented Context-Aware Application Design. Proceedings
of the International Workshop on Managing Context
Information in Mobile and Pervasive Environments
(MCMP), Ayia Napa, Cyprus, May 9, 2005.

[6] Chen, H. An Intelligent Broker Architecture for Context-
Aware Systems. PhD proposal in Computer Science,
University of Maryland Baltimore County, USA, January
2003.

[7] Chen, H., Finin, T., Anupam, J. An Ontology for Context-
Aware Pervasive Computing Environments. Workshop on
Ontologies and Distributed Systems, IJCAI-2003,
Acapulco, Mexico, August 2003.

[8] Cohen, D., Jacovi, M., Maarek, Y. and Soroka, V.
Livemaps for collection awareness. International Journal
of Human-Computer Studies 56, 1 (January 2002), 7-23.

[9] Dey A. K. Providing Architecture Support for Building
Context-Aware Applications. PhD thesis, November 2000,
Georgia Institute of Technology.

[10] Day, M. and Foley, S. Selective dissemination of
information in a colleague awareness application. The
Demonstration Session of the 1998 ACM Conference on
Computer Supported Cooperative Work (CSCW), Seattle,
WA, November 1998.

[11] Day, M., Rosenberg, J., Sugano, H. A Model for Presence
and Instant Messaging. RFC 2778, February 2000.

[12] Fogarty, J., Lai, J., and Christensen, J. Presence Versus
Availability: The Design and Evaluation of a Context-
Aware Communication Client. International Journal of
Human-Computer Studies 61, 3 (September 2004), 299-
317.

[13] Garrett, J.J, Ajax: A New Approach to Web Applications.
Adaptive Path Essays,
www.adaptivepath.com/publications/essays/archives/00038
5.php, February 2005.

[14] Horvitz, E., Koch, P., Kadie, C.M., and Jacobs, A.
Coordinate: Probabilistic Forecasting of Presence and
Availability. Proceedings of the Eighteenth Conference on
Uncertainty and Artificial Intelligence, Edmonton, Alberta,
July 2002, 224-233.

[15] John, A., Klemm, R., Mani, A., and Seligmann, D. Hermes:
A Platform for Context-Aware Enterprise Communication.
Third International Workshop on Context Modeling and
Reasoning (CoMoRea), March 13-17, 2006, Pisa, Italy.

[16] John, A., Klemm, R., and Seligmann, D. Hermes: A System for
Orchestration of Shared Communication Spaces. Technical
Report ALR-2004-019, April 2004.

[17] Kindberg, T., et al. People, Places, Things: Web Presence for
the Real World. Proceedings of ACM Mobile Networks and
Applications Journal, 2002.

[18] Knorr, E. The new enterprise portal. InfoWorld January 2004,
http://www.infoworld.com/article/04/01/09/02FEportal_1.html,
on 10/31/2005.

[19] Lei, H., Sow, D., Davis, J., Banavar, G. and Ebling, M. The
Design and Applications of a Context Service. ACM
SIGMOBILE Mobile Computing and Communications Review
4, 6 (October 2002), 45-55.

[20] Moody, P. WebPath: synchronous collaborative browsing.
Demonstration Session of the 1998 ACM Conference on
Computer Supported Cooperative Work (CSCW), Seattle, WA,
November 1998.

[21] Padovitz, A., Loke, S., and Zaslavsky, A. Towards a Theory of
Context Spaces. Workshop on Context Modeling and
Reasoning. Orlando, Florida, March 2004.

[22] Ranganathan, A. and Lei. H. Context-Aware Communication.
IEEE Computer 4, 36 (April 2003), 90-92

[23] Shan, X. A Presence-Enabled Mobile Service Platform for
Integrating Mobile Devices with Enterprise Collaborative
Environment. International Workshop on Wireless Ad-Hoc
Networks, May 2005.

[24] Smailagic, A., Siewiorek, D., Anhalt, J., Gemperle, F., Salber.,
D. and Weber, S. Towards Context Aware Computing:
Experiences and Lessons Learned. IEEE Journal of Intelligent
Systems 3, 16 (June 2001), 38-46.

[25] Sidler, G., Scott, A. and Wolf, H. Collaborative browsing in the
world wide web. Proceedings of the 8th Joint European
Networking Conference, Edinburgh, 1997.

[26] Want, R., Hopper, A., Falco, V., and Gibbons J. The active
badge location system. ACM Transactions on Information
Systems, January 1992.

[27] Yau, S., Karim, Wang, Y., Wang, B., and Gupta, S.
Reconfigurable Context-Sensitive Middleware for Pervasive
Computing. IEEE Pervasive Computing, joint special issue with
IEEE Personal Communications, 1(3), July-September 2002,
33-40.

[28] http://www.mozilla.org/projects/thunderbird/ on 10/31/2005.

[29] http://www.lotus.com/sametime, on 10/31/2005.

[30] The Firefox Project. http://www.mozilla.org/projects/firefox/, on
10/31/2005.

[31] The XML User Interface Language (XUL) 1.0.
http://www.mozilla.org/projects/xul/xul.html, on 10/31/2005.

[32] Synchronized Multimedia Integration Language (SMIL 2.1).

 http://www.w3.org/TR/SMIL2/, on 10/31/2005.

