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ABSTRACT
For service providers of multi-tiered component-based appli-
cations, such as web portals, assuring high performance and
availability to their customers without impacting revenue
requires effective and careful capacity planning that aims at
minimizing the number of resources, and utilizing them ef-
ficiently while simultaneously supporting a large customer
base and meeting their service level agreements. This paper
presents a novel, hybrid capacity planning process that re-
sults from a systematic blending of 1) analytical modeling,
where traditional modeling techniques are enhanced to over-
come their limitations in providing accurate performance
estimates; 2) profile-based techniques, which determine per-
formance profiles of individual software components for use
in resource allocation and balancing resource usage; and 3)
allocation heuristics that determine minimum number of re-
sources to allocate software components.

Our results illustrate that using our technique, perfor-
mance (i.e., bounded response time) can be assured while
reducing operating costs by using 25% less resources and in-
creasing revenues by handling 20% more clients compared
to traditional approaches.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory, Algorithms, Performance
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1. INTRODUCTION
A common requirement for large enterprise software sys-

tems such as (e.g., eBay, Priceline, Amazon and Facebook),
is high assurance of performance (e.g., response time) and
service availability to their users. Without such assurances,
service providers of these applications stand to lose their
user base, and hence their revenues.

High assurance of performance and availability to users in
return for fees are typically specified as service level agree-
ments (SLAs) between the user and the service provider.
A straightforward approach to addressing the high assur-
ance challenge is to over-provision resources which should
be avoided due to increased costs. Addressing the high as-
surance problem without unduly affecting revenues reduces
to addressing the capacity planning problem that can honor
the SLAs across the user base (which often is on the rise in
case of social networking portals).

Effective capacity planning requires an accurate under-
standing of application behavior. One approach is to de-
velop analytical models of the application that can estimate
the resource requirements and performance of the applica-
tion. It is important, however, that the analytical model be
reflective of real system behavior since it dictates the per-
formance assurance of the multi-tiered application.

For example, if the model is optimistic, (i.e., it estimates
the average response time lower than the actual), then the
capacity planning will result in lesser resources causing re-
source overloads and a violation of assurance of performance
and availability. On the other hand if the model is pes-
simistic (i.e., it estimates response times as higher than the
actual), then the users will have assured performance but
the system will use up more resources than actually needed,
which is detrimental to the service provider.

Prior work based on analytical techniques and profiling to
build models of multi-tiered web portals [15,19,21,23,24] ex-
ists but these efforts have not accounted for increased system
activity, such as page-faults which occur with increased load,
which is a frequent phenomenon. Moreover, the emerging
trend towards multiple processors/cores has also not been
considered by most of these works. Finally, resource allo-
cation [6, 7], which is a key issue in capacity planning, has
previously been investigated at the granularity of an entire
tier-level. However most of modern multi-tiered systems are
made up of finer-grained software components using com-



ponent based technology such as .NET, J2EE etc. Thus
resource allocation using these finer grained components is
possible and might provide better results in minimizing the
number of resources used.

This paper develops and presents a two-stage, design-
time, hybrid capacity planning process that systematically
combines the strengths of analytical modeling, profiling, and
allocation heuristics in a novel framework called Modeling
and Analysis using Queuing, Placement and Replication Opt-
imizations (MAQ-PRO). The MAQ-PRO process hinges on
a component-based structure of multi-tiered applications.

In the first stage, a profile-driven analytical model of the
system is developed that can accurately estimate system per-
formance even at high loads (which is a key factor that must
be considered). The second stage uses this model as input
to a replication and allocation algorithm that computes a
deployment plan for the software components, which mini-
mizes and efficiently utilizes resources.

To showcase our approach, we use a running example of
a real-world, representative, multi-tiered component-based
system called Rice University Bidding System (RUBiS) [1].
It is a prototype of an auction site that mimics eBay.

The rest of the paper is organized as follows: Section 2
presents the two-stage process provided by the MAQ-PRO
framework; Section 3 presents an empirical validation of the
replication and placement algorithm for the RUBis web por-
tal case study; Section 4 compares our work with related
work; and Section 5 presents concluding remarks.

2. MAQ-PRO PROCESS
This section details the MAQ-PRO process starting with

the problem description. Formally, we state the capacity
planning problem as follows: Suppose the multi-tiered ap-
plication consists of a set of k services {S1, S2, ...Sk}. Each
service is composed of software components, where a compo-
nent Cij is the jth component in the ith service. The target
workload is given by either the arrival rate, λ, for each ser-
vice {λ1.....λk}, or the concurrent number, M , of customers
{M1,M2, ....Mk}. The SLA gives an upper bound on the
response times of each of the k services {RTsla,1...RTsla,k}.
The objective is to find the minimum number of nodes to
deploy the application on such that the SLA requirements
of users are honored (thereby providing high assurance of
performance and availability) while ensuring that resource
usage is balanced.

We have developed a two stage framework called MAQ-
PRO shown in Figure 1 to solve the capacity planning prob-
lem. Two stages were deemed necessary since deployment
of components belonging to the services comprises of node
allocation and balancing resource usage, which in turn de-
pends on obtaining an estimate on the performance bounds
of individual components. This dependency led us to sep-
arate the process of performance estimation from that of
deployment planning.

We envision capacity planners using the techniques de-
veloped for Stage 1 to profile individual components and
determining their resource requirements. Thereafter, differ-
ent application scenarios can be analyzed, and using a base
performance model, an application-specific analytical model
can be developed that can accurately estimate the perfor-
mance requirements of the system. In Stage 2, planners will
use this analytical model as input to a component placement
heuristic we developed that will result in a deployment plan
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Figure 1: The MAQ-PRO Process

which ensures minimum use of resources, which in turn pro-
vides assurances of performance and availability to the users.

We will now describe the two stage MAQ-PRO process
using RUBiS as the guiding example. We consider three
types of user sessions (visitor, buyer, and seller) provided
by RUBiS, and a client-browser emulator for user behavior.

2.1 Stage 1: Estimating System Performance via
Analytical Modeling

Component placement searches for the optimal/best com-
bination of the components in the given nodes. Each partic-
ular combination will influence the application performance
such as response time. Thus the combination with the best
performance and the least resource used should be chosen.
However for a large system, finding out the performance of
every component combination is hard. There needs to be an
analytical model which can accurately predict the applica-
tion performance given any combination of the components
in the machines.

Queuing theory enables the development of such perfor-
mance models. The advantage of a queuing model is that
armed with minimal profile data, it can estimate the perfor-
mance characteristic of the application given any particu-
lar combination of the components in the various machines.
These estimates can then be used to select the best compo-
nent placement. However, the performance estimation need
to be very accurate. Otherwise, when the application is de-
ployed and if there are errors in the performance estimation
then SLA bounds will be violated at production time.

2.1.1 Problem: Accuracy Of Performance Estima-
tion Under Varying Hardware Configuration
And Application Behavior

In,our previous work [10] we showed how a queuing model
used in related research [19, 21, 23, 24] does not provide ac-
curate response time estimates when the client population
increases.

To validate our claim, a multi-class closed queuing model
is developed for RUBiS as shown in Figure 2 for a scenario
comprising two machines. One machine acts as the joint
web server and business tier server while the other operates
as the database server.

A queue is modeled for each of the resources in the ma-
chines, i.e., CPU and disk. Each service r provided by the
application is mapped as a separate job class. The terms
service and class will be used interchangeably in the rest of
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Configuration Configuration Details
Configuration 1 Four 2.8 GHz Xeon CPUs, 1GB ram, 40GB HDD
Configuration 2 Quad Core 2.4 GHz Xeon CPUs, 4GB ram

Table 1: Machine Configurations Used

the paper. The main parameter to this model is the service
demand of each component which is the resource time taken
to complete a single job. The basic function of a compo-
nent comprising each service can be profiled to measure the
service demand of the component. Once the component is
placed in a given machine, the service demand of the com-
ponent will be imposed on the devices of the machine.

The above queuing model is used to predict the response
times of various services of RUBiS under two different hard-
ware configurations. The hardware configurations are given
in the Table 1:

Two sets of experiments are run in each machine config-
uration, one when a single service is run another in which
multiple services(class) are run. The former exhibits the per-
formance of each component running in isolation while the
latter gives an idea of the effect of collocation of components.
In both cases, we use the above queuing model to predict
the response time. The parameters (service demand) of the
queuing model depend upon the machines on which the ap-
plication runs. The service demands are thus computed by
profiling each single component on the different machines
by running with a single client in the system. In previous
work[14], it was seen that CPU activity of RUBiS increases
with load compared to memory and bandwidth which re-
main fairly constant. Thus CPU is mainly considered here.

Figure 3a shows the response time when a single service of
RUBiS is run with Configuration 1. Similar behavior is also
seen when multiple services are run, as shown in Figure 3.
Here we reproduce two of the services “SearchByCategory”
and “SearchByRegion” which have higher response times. In
this experiment around 12 services are running each service
having 3 components. The other services also incur similar
estimation errors.

Figures 4a, 4b, 4c show the response time of the same
above services when multiple services are running together
in Configuration 2. The model prediction is also shown.
Strange behavior is seen in this experiment, as shown in
Figure 4c where the CPU is only loaded till around 30%.
After this point, as load increases the response time shoots
up even though the CPU is underloaded. The memory and
bandwidth also remains much below its capacity(not shown
here for lack of space). It is evident that there is some other
bottleneck in the system which causes the response time to
shoot up. It could be due to software contention. The queu-
ing model understandably cannot predict this behavior since

the ”invisible bottleneck” is not modeled. Thus it estimates
the CPU utilization to increase with load while in reality it
saturates around 30% as shown in Figure 4c.

Finding the root cause of this bottleneck is hard since it
might require investigating immense amount of code and an-
alyzing various scenarios. In a real world scenario it could
also be caused by third-party libraries, the code for which
may not be available. Stewart et. al. [16] discuss such a
scenario where anomalies in an environment affect perfor-
mance. In such a scenario, a basic queuing model becomes
increasingly erroneous and cannot be relied upon for proper
prediction.

A remedy would be to profile the system with different
workload and create statistical regression models. But such
an approach will not help us in predicting the performance
when components are arbitrarily placed in different combi-
nations in the machines since this will require us to profile
the application using every combination of the components
which is clearly not possible. The next section details the
solution approach followed in this work.

2.2 Solution: Profile driven Regression based Ex-
tended Closed Queuing Network

This section discusses the details of the modeling tech-
niques developed by enriching basic closed queuing models
with statistical regression models to come up with increased
accuracy in estimating application performance.

In our approach we come up with the following steps to
produce better models: (a) Profile individual components,
(b) Create regression models, and (c) Extend queuing mod-
els with regression models

This helps us in estimating the performance of multiple
components running together in the same machine using
profile data of individual components. On one hand it lever-
ages the strength of regression models where unique scenar-
ios or environmental effects are captured through profiling
and on the other hand uses the strength of queuing models
which enables the performance estimation of multiple classes
(or collocated components). The above approach ensures
that the profiling is kept to no more than what is abso-
lutely required and also leverage existing queuing models to
estimate multi-component behavior which can be used for
component placement decisions.

2.2.1 Modeling Increased System Activity

The Figures 3a, 3b and 3c show that there is increased er-
ror in model prediction at high load. This section discusses
the probable reasons for such error and comes up with solu-
tions to address them.

Queuing models can be efficiently solved using approxi-
mate Mean-Value Analysis (MVA) algorithm [9]. The main
equation that is used to compute response time is given by

R = Dir + ni ×Dir (1)

where Dir is the service demand of service r on device i and
ni is the number of waiting jobs on device i. The service
demand gives the actual resource time used by a component
while processing the job. At high load, additional activity in
the machine due to system work including context switches,
paging, swapping etc also adds to the response time. This
excess system activity is not accounted by Equation 1.

To further investigate this intuition we measure the num-
ber of context switches that occur per second as client popu-
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Figure 4: Comparison of Analytical vs Empirical Data In Configuration 2

lation is increased (measured using Configuration 1 as given
in Table 1). This data is plotted in Figure 5. It can be seen
that the number of context switches per second steadily in-
creases with increase in client population. Since context
switch is one type of system activity, it clearly shows that
the amount of system activity increases with clients. The
challenge now is to capture and quantify this increased sys-
tem activity in terms of resource usage so that it can be
added to the MVA analysis which will then produce better
estimation of performance parameters.

Next we measure the total CPU utilization per job as
we increase client population. This measurement is done
by capturing the total CPU utilization for the lifetime of
the experiment and dividing it by the total number of jobs
completed in the same interval. The observed total CPU
utilization per job is shown in Figure 5 along with the con-
text switches per sec. It is seen that the CPU utilization
per job steadily increases along with the number of context
switches per sec and becomes steady after some time. Ini-
tially, at very low load (single client) there is nearly zero
context switch/sec. The CPU utilization/job is also very
less and matches with the service demand value. Conse-
quently it can be deduced that as system activity increases
the excess CPU utilization per job is due to additional sys-
tem activity. Obviously such effect must be accounted for in
a performance model. However, traditional queuing models
do not account for this behavior.

To overcome this limitation we define a term ”Overall Ser-
vice Demand” (OSD) which is defined as the total resource
time required to complete a single transaction. Thus the
CPU utilization shown in Figure 5 is actually the OSD for

the concerned service. As shown in Figure 5 the OSD has
the potential to vary with load since it is the sum of the
service demand and resource usage due to system activity.

Overall service demand (OSD) can be measured using the
service demand law [9]. The service demand law is given as
Di = Ui/X whereDi is the service demand on the ith device,
Ui is the utilization of the ith device, and X is the total
number of transactions/sec or throughput of the system.
When the service demand law is used at high load it returns
the OSD which is a sum of the service demand and the
resource time spent due to system activity. The OSD can
thus be obtained for different client population by measuring
the device utilization and the throughput of the services
while client size is varied. The measured values are then
used with the above law to obtain the OSD.

We empirically profiled each service hosted by the RU-
BiS web portal by varying the client size from an initial
small value to a large value. Here we assume that indi-
vidual components (services) of a large, multi-tiered system
are available for unit testing and profiling. We measured the
processor usage and the number of successful calls for each
client population size. The service demand law is then used
to compute the overall service demand for each client size.

As seen in Figure 5, the overall service demand remains
steady at low utilization (≤ 10) and then follows a near lin-
ear increase till around 80% utilization or 350 clients. The
linear rise can be attributed to the increase in system activ-
ity as clients increase. Since each client represents a thread
in RUBiS, consequently, an increase in the number of clients
increases the number of threads.

This behavior is better understood from the number of
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Figure 5: Overall Service Demand

context switches as utilization and clients increases. There
is negligible context switching for low number of clients but
increases linearly with clients until 350 clients when it be-
comes steady. At 350 clients, the service demand also stabi-
lizes because the device (e.g., CPU) utilizations are close to
saturation (greater than 90%) and there is not much scope
for any increase in system activity. We have observed similar
behavior in the other services of RUBiS.

Based on these insights, the overall service demand is
modeled as a load-dependent function of processor utiliza-
tion which is piecewise linear. To empirically obtain accu-
rate demand functions, the Polyfit tool provided in the Mat-
lab Curve Fitting Toolkit is used. The resulting function
which represents the overall service demand for the Search-

ByRegion service is given by:

OSDsr(U) =


48 for U < 8

0.4264× U + 45.1062 for 8 <= U <= 85

81.62 for U > 85

(2)
and the function representing the service demand for the
SearchByCategory service is given by:

OSDsc(U) =


28 for U ≤ 5

0.0457× U + 24.94 for 5 <= U <= 84

52.06 for U ≥ 84

(3)
The coefficient of determination, R2, value for the lin-

ear fit is 0.99 for both equations indicating very good fits.
Capacity planners using MAQ-PRO should adopt a similar
approach to obtain accurate functions for overall service de-
mands of individual services belonging to their applications.

The MVA algorithm used is now modified to include usage
of the overall service demand instead of the original service
demand which represents the actual resource time used by
a transaction. Thus Equation 1 is replaced by the following:

R = OSDir(U) + ni ×OSDir(U) (4)

where OSDir is the overall service demand for the rth class
on the ith device. So the single constant value of service
demand is replaced by overall service demand which takes
into account the system activity in the machine. As the
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overall service demand increases with utilization, the num-
ber on the device(ni) also increases and both controbute to
the response time to increase.

Using the above version of MVA, we validate the response
time prediction of the model against actual measured re-
sponse time under a single processor machine and is shown
in Figure 6. It can be seen that for single processor ma-
chines, our extended MVA can nicely approximate the re-
sponse time.

2.2.2 Modeling Multiprocessor Effects

Due to the increasing availability and use of multi-processors
and multi-cores for large scale applications, such as web por-
tals, existing closed queuing network models must model
multi-processor effects on performance. We use the extended
version of MVA explained in Section 2.2.1 to validate the
prediction under hardware Configuration 1 as given in Ta-
ble 1. Figure 7 compares the model estimation with empir-
ical measurement and shows that there is still some gap in
the estimation which is investigated in this next section.

Typically multiple-server queuing models are solved by
considering each multiple server as a load dependent server [9]
and computing the probability mass function of the queue
sizes for each server. The mass function can then be used
within MVA to calculate the total expected waiting time
that a customer experiences on a server. This approach,
however, significantly increases the complexity of the MVA
solution. There have been attempts in recent research [17]
in which a simple approximate method is presented that ex-
tends MVA to analyze multiple-servers. In [17], the authors
introduce the notion of a correction factor, which estimates
the waiting time. When a transaction is executed on multi-
processor machines, the waiting time for each transaction on



the processor is taken to be the product of a constant fac-
tor, the service demand, and the average number of waiting
clients as captured by the following formula:

R(N) = SD + c× SD × n (5)

where R(N) is the response time of a transaction when there
are a total of N customers in the system, SD is the service
demand of the job, n is the average number of customers
waiting on the device, and c is the correction factor to com-
pute the waiting time. In their work they theoretically com-
pute the value of the correction factor. [17] also consid-
ers a constant service demand and thus Equation 5 need
to be adjusted by using Overall Service Demand instead of
service demand to incorporate increased system activity at
high load. Equation 6 shows the revised version including
overall service demand (OSD).

R(N) = OSD(U) + c×OSD(U)× n (6)

We surmise that such a correction factor will depend on a
number of factors, such as the domain of the operation, and
the service time characteristics for the underlying hardware,
the cache hit ratio, memory usage levels, memory sharing
etc. Therefore, the correction factor will vary with each
different scenario and need to be profiled on the particular
hardware. We now describe how we found the correction
factor for the RUBiS example.

Capacity planners using the MAQ-PRO process should
adopt a similar approach for their applications. The data
needed to compute the correction factor can be extracted
from the same experiments done to estimate the OSD as
mentioned in Section 2.2.1. Thus there is no need to con-
duct additional experiments and a single experiment will
suffice for both the OSD and the correction factor. Our ap-
proach again is to profile individual components and then
estimate the expected performance when any combination
of the components are placed in the machines.

Referring to Equation 6, the value of the overall service
demand OSD(U) can be found using the profile-based curve
fitting approach explained in Section 2.2.1. The average
number of customers waiting on the CPU, n, is obtained
by using standard system monitoring tools. The response
time for each transaction, R(N), can be obtained from the
application logs or by time-stamping client calls. The only
unknown in Equation 6 is the correction factor, c, which can
be obtained by solving the equation.

We ran a number of experiments for different classes of ser-
vices supported by RUBiS with different client population
sizes and the variable n was monitored. R(N) was obtained
from the RUBiS logs. The load-dependent service demands,
OSD(U), were obtained from Equations 2 and 3. The cor-
rection factor was then computed using Equation 6, which is
presented in Table 2 for two different services in RUBiS for a
4 processor machine. Figure 8 shows the comparison of the
empirically obtained correction factor to the one proposed
by Suri. It clearly shows that the actual correction factor is
much different and depends upon the specific scenario.

Table 2 presents the experimental values and the compu-
tation for the correction factor with different client popu-
lation for the two main services in RUBiS. The inverse of
the correction factor is given in the rightmost column of the
table. It is termed as CI. It can be seen that the correction
factor varies with clients or processor utilization.
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Figure 8: Comparison of Empirical Correction Fac-
tor with Suri Proposed

Service Clients Service Avg Response Corr. CI
Name Demand (msec) Waiting Time Factor CI

Search 100 51.71 2.00 54 0.022 45.16
ItemsByReg 150 57.12 2 62 0.043 23.40

200 64.29 3 77 0.066 15.17
250 71.4 5 103 0.089 11.29
300 78.3 10 222 0.183 5.45
350 80.78 40 909 0.256 3.90
400 81.12 86 1968 0.27 3.69
500 81.62 185 4232 0.275 3.64

Search 100 51 2 54 0.029 34.00
ItemsByCat 150 31.25 2 34 0.044 22.73

200 33.45 2 37 0.053 18.85
250 35.6 2 40 0.062 16.18
300 38.38 3 47 0.075 13.36
350 41.28 4 58 0.101 9.88
400 43.16 5 73 0.138 7.23
450 46.14 8 116 0.189 5.28
500 50.88 34 513 0.267 3.74

Table 2: Correction Factors for Various Services

Since the correction factor actually represents the multi-
processor effects on performance, it should be dependant
on the number of processors in the machine. To validate
our hypothesis, we configured the machine to use different
number of processors and repeated the experiment with 1
and 2 processors, respectively. Figure 9 shows the value of
CI with clients for the service ”SearchByCategory”. Similar
results were obtained for other services but are not shown
due to space constraints.

The value of CI is interesting. It has a very high value
with less load but slowly converges to a steady value at high
load. The steady value appears to converge to the number
of processors in the system. It can also be seen that the
variation in the factor increases with increase in processors.
Higher values of CI (i.e., lower value of the correction factor)
improves the response time as seen from Equation 6. This
observation indicates that the correction factor could also
be indicative of the inherent optimizations such as caching
that occur in the system.

This hypothesis needs further investigations and will be-
come part of our future work. It also tells us that at high
load there may not be much scope of optimization and the
system behaves like a straightforward fluid flow system and
can be modeled using variations of fluid flow modeling tech-
niques as done by many recent work. [3, 8, 12]

The value of CI for each client population is averaged
over all the services. It is then approximated against pro-
cessor utilization. A piecewise linear function is developed
to express CI as a function of utilization which is calculated
using polyfit function in Matlab and is given by
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Algorithm 1: Modified Mean Value Analysis

Input:
R Number of Job Classes
K Number of Devices
Di,r Service Demand for rth job class on ith device

Nr Number of clients for rth class
Ur Utilization of the rth device
Xr Throughput of the rth device

Output:
Response Time R← vector containing response time for all
classes of jobs

1 begin
2 // Run initial MVA with lowest service demand
3 while Error > ε do
4 // Initialization ....
5 for r ← 1 to R do
6 for i← 1 to K do
7 Di,r = OSDi,r(Ur) // Call function for Service

Demand with device utilization as parameter
8 Ri,r = Di,r × (1 + CI(Ur)× nr)

9 Xr = Nr
Zr+

∑K
i=1

Ri,r

10 // Error = Maximum Difference in Utilization between
successive iterations

CI(U) =


−0.5632× U + 38.75 for U <= 58

−0.1434× U + 15.71 for 58 < U < 85

3.69 for U ≥ 85

(7)

Equation 7 is then used from within MVA algorithm to
compute the response time in each iteration.

2.2.3 Modifying Mean Value Analysis Algorithm

As described in Section 2.2.1, we develop a multi-class
closed queuing model for RUBiS as shown in Figure 2. An
approximate MVA algorithm based on the Schweitzer [9]
assumption can be used to solve this model and calculate
performance values, such as response time, number of jobs in
the system, and device utilizations for closed systems [9]. We
developed an approximation to the original MVA algorithm
as shown in Algorithm 1. Some details in the initialization
phase are not shown due to space constraints.

The algorithm starts by assuming that the clients are
evenly balanced across all the devices and then adjusts the
clients in the various devices iteratively. In each iteration,
the algorithm computes the number of clients on each de-
vice, response time, utilization and throughput of each job
type. It continues this iteration until the error in the number

30
40
50
60
70
80

U
 U

til
iz

at
io

n

DB_SRV

0
10
20

250 500 750 1000 1250

%
 C

PU

Clients

BT_SRV

Figure 10: CPU Utilization

of clients in each device reduces below a given minimum.
The boldface parts shown are the places where the origi-

nal MVA algorithm is modified to include the functions for
overall service demand and refined correction factor. The
function OSDi,r represents the service demand function for
rth job class in the ith device while function CI(Ur) is the
Equation 7. Both of these functions need device utilizations
which is computed on every loop. They also need an utiliza-
tion value which needs to be provided for the first iteration.
For this reason, initially the first iteration is run using the
lowest value of overall service demand for each service as
given by Equations 2, 3 and the value of CI equal to the
number of processors in the system.

2.3 Stage 2: Minimizing Resource Usage in Com-
ponent Placement

Having developed accurate analytical models for the multi-
tiered applications in Stage 1, the next task is to determine
the number of resources needed to host the components of
the different services with a goal towards minimizing the
number of resources.

To address the next problem, it is important to under-
stand the client behavior. For example, different kinds of
client actions and the services they use will determine the
overall workload on the multi-tiered application. Some ser-
vices may impose more load compared to the others depend-
ing on which ones are heavily used by the user population.
Accordingly it may become necessary to deploy multiple
instances of the software components that implement the
highly loaded services so that the total load can be bal-
anced between different instances. An important question
stems from determining which components need to be repli-
cated for load balancing. This question must be accounted
for while minimizing the total number of resources needed
for all the components.

To highlight the need for load balancing, we reproduce
Figure 10 from our earlier work [14] in which processor uti-
lizations of two servers in RUBiS are shown. In the machine
DB_SRV, only one component called SearchItemsByCat takes
up 70% of processor time when the number of clients reaches
around 1,300. At the same time, the other machine shown
by Line BT_SRV is loaded only upto 40%. Thus, there is an
imbalance in resource usage.

Resource allocation algorithms developed in prior research
[6, 7, 14] cannot improve this situation since the single in-
stance of component SearchItemsByCat takes up significant
CPU. To overcome this limitation, a promising solution is
to add a new instance of SearchItemsByCat component and
distribute the load between the two machines. Consequently,



Item Size % Slack
0 - 5 5 - 10 10 - 15 15 - 20

0 - 30 34.84 97.96 99.97 100
0 - 50 10.57 65.49 96.14 99.67
0 - 70 26.44 65.68 93.02 99.14
0 - 100 100 94.93 99.34 99.64

Table 3: Success Rate of Heuristics on Solvable
Problems:Courtesy [13]

one of the components could then be placed onto BT_SRV so
that the overall earlier load of 70+40 = 110 can be balanced
across the two servers (55 each). Such allocation makes it
possible to handle more clients since now the utilization of
both servers can be increased to around 70.

This evidence suggests that by replicating individual com-
ponents and controlling the distribution of load on a com-
ponent, we can balance the resource requirement of compo-
nents in various nodes and thus minimize use of resources.
In the remainder of this section, we will refer to the per-
centage resource required by a component as the size of the
component. The challenge now is to determine the size of
each component that will help in balancing the load and
minimizing resources, which is a non-trivial problem [20].

The problem becomes more acute when trying to deter-
mine component placement at design-time, which require
models that can accurately estimate the component size as
well as performance of the overall application for a particular
placement. We leverage Stage 1 of the MAQ-PRO process
to obtain accurate estimates for each component.

We present our technique for determining the replication
requirements and placement decisions for software compo-
nents in the context of the different services offered by RU-
BiS. Capacity planners using MAQ-PRO should adopt sim-
ilar stategy for their applications.

The lower bound on the total number of machines required
for a web portal like RUBiS can be calculated from the ex-
pected processing power required in the following way:

#ofmachines = dLd/me <= OPT, (8)

where Ld is the total processing power required (sum of
the CPU requirement of all the components) and m is the
capacity of a single machine. OPT is the optimal number
of bins required to fit the given items.

The problem of allocating the different components onto
the nodes is similar to a bin-packing problem [5]. The ma-
chines are assumed to be bins while the components are
items, where the items need to be placed onto the bins. It
is well-known that the bin-packing problem is NP hard [20].
Thus, popular heuristics like first-fit, best-fit or worst-fit [5]
packing strategies must be employed to determine the al-
location. It has been shown that these heuristics provide
solutions which require (1.22 ∗OPT + 1) bins [5].

Our previous work [13] did an extensive study on the effec-
tiveness of the different bin-packing heuristics under various
conditions. We found that the size of items used in packing
made a significant difference to the results generated by the
heuristics as shown in Table 3. Here all quantities are men-
tioned in terms of percentages, i.e., percentage of a single
bin size. So an item size of 20% means that the resource
requirement of a component is 20% of the total CPU time.
The table shows the probability of finding an allocation of
the given items onto the bins with different values of slack
(difference between total bin capacity and total of all packed
item sizes) and for different item size ranges.

For example, the entry of the third column and first row
is 97.96%. This means that if there are items sized between
0 and 30% (row value) of bin size and slack between 5 to
10% (column) of bin size, then the chance of finding an allo-
cation is 97.96%. This also means that if the item sizes are
kept between 0% and 30%, then the heuristics can find an
allocation using up to around 10% more space than the total
item sizes. Thus, the expected number of machines required
would be d1.1×Ld/me which is less than (1.22 ∗OPT + 1)
as per Equation 8.

The above insights are used in the component replication
and allocation algorithm developed for this paper. Our al-
gorithm requires that component sizes be kept within 30%
which means the component resource requirement is kept
within 30% of total processor time. We satisfy this require-
ment by figuring out the number of clients that drive the
utilization of the processor to 30% due to that component
and allowing only these many clients to make calls on a sin-
gle component instance. Such an approach can easily be
implemented by a sentry at the server level that monitors
the incoming user requests. Algorithm 2 describes the com-
ponent replication and placement algorithm. It performs a
number of functions as follows:

• Capacity Planning: It computes the number of nodes
required for a target number of customers while mini-
mizing the number required.

• Load Balancing via Replication: It computes the
number of replicas of each component needed to dis-
tributed loads on the components and achieve balanced
resource usage.

• Component Placement: It computes the mapping
of the different components onto the nodes.

Algorithm 2 uses two subroutines, Placement and MVA.
Placement places the components onto the machines by us-
ing the worst-case bin packing heuristic since it is known
to balance load. MVA is the Mean Value Analysis algo-
rithm that uses the enhanced analytical models developed
in Stage 1 to accurately estimate performance characteristics
of a closed queuing network. It returns the response time of
the different transaction classes along with the utilization of
each component and each machine.

Initially, the algorithm starts with a default set of com-
ponents needed for each service, uses a tiered deployment,
and assumes a low number of clients, say, 100 (Line 7). A
3-tiered deployment typically uses one machine per tier but
Algorithm 2 starts with 2 machines to attempt to fit the ap-
plication in lesser machines. The components of each type
are placed in the respective machines. The algorithm starts
by estimating the performance characteristics of the appli-
cation and placing the different components onto the given
machines (Lines 8 & 9).

Next, the algorithm enters an iterative loop (Line 11) in-
creasing the number of clients with each iteration until the
target number of clients is reached. At every iteration MVA
is used to estimate the performance requirement (Line 12).
If any component reaches 30% utilization (Line 13), then
another instance of the component is created and initially
placed in the same machine as the original. Then MVA is
invoked to estimate performance and the components are
again placed onto the nodes. Similarly, if at any point the
response time of any transaction reaches the SLA bound
(Line 19), then another machine is added to the required



Algorithm 2: Replication & Allocation

begin
// Initially, use 2 machines in a tiered deployment

1

2 // All business logic components in first machine
3

4 // Database in second machine, Default Deployment Plan DP
5

6 P = 2 // Initially 2 machines
7 N = init clients
8 (RT,SU,U) = MVA (DP, N) // Compute Initial

Component Utilizations
9 (DP) = Placement (SU, P) // Find a placement of the

components
10

11 while N < Target do
12 (RT,SU,U) = MVA (DP, N)
13 if ∃i : SUi > 30 then
14 Replicate (i); // Create New instance of

Component i
15

16 // Place new component on same machine as i
17 (RT, SU, U) = MVA (DP, N) // Calculate new

response time
18 (DP) = Placement (SU, P) // Update

Deployment Plan

19 if ∃i : RTi > RTSLA then
20 // add new machine
21 P = P + 1
22 (DP) = Placement (SU, P) // find new

placement

23 N += incr // Increase Clients for next iteration

node set and the placement heuristic is invoked.
This iterative process continues until the target number of

clients is reached. Since the heuristic is one of the popular
bin packing heuristics and the components are kept within
a maximum of 30% resource utilization, it is ensured that
near-minimum number of resources will be used.

3. EVALUATION
This section presents results that evaluate the two stage

MAQ-PRO framework. The results are presented in the con-
text of the RUBiS example along two dimensions: the accu-
racy of the analytical models to estimate performance, and
the effectiveness of the resource allocation algorithm to mini-
mize the resources required while supporting increased num-
ber of clients, as well as balancing the utilization – which col-
lectively are an indirect measure of high assurance in terms
of performance and service availability to users.

3.1 Stage I Model Validation

Our analytical model have been enhanced by using equa-
tions 2, 3 and 6. The training data used to develop these
equations is found by profiling each of the components sep-
arately. While validating our model, we use performance
data when multiple components run together in the system.
This will help us in understanding the prediction power of
our models given an arbitrary set of components running in
the same machine.

RUBiS has 10 service types for a typical browsing scenario
consisting of item searches, user searches, viewing user com-
ments, viewing bid history etc. Our objective is to check how
well our model predicts the response time of each of the ser-
vice types and the processor utilization of the machine when
all such services are running. Each service is implemented
using multiple components thus our training data greatly
differs from the validation data. Our training data consists

Node Utilization
Deployment Response Time (msec) Node 1 Node 2 Node 3 Node 4

Tiered 270 51.06 79.08 17.47 78.86
MAQ-PRO 353.5 87.32 57.41 65.04

Table 4: Response Time and Utilization

of performance measures when each single component runs
while our validation data consists of performance measures
when multiple components run together.

Figure 11a shows the response time estimated by our model
for the service, ”SearchByRegion” using machine Configura-
tion 1 as given in Table 1. The estimation of the other
services are also similar. It can be seen that our enhanced
model is in close agreement with the empirical measurements
till the number of clients equal to 900. Beyond that number,
the error in our model increases slightly but still is close to
the actual result. The error in estimation at such high load
will not effect the overall capacity planning process since the
system is saturated at this stage with CPU utilization near-
ing 90% and the operating region of the application need to
be below this value to ensure SLA compliance. Figure 11b
compares the CPU utilization predicted by the model ver-
sus the empirically measured CPU utilization. It can be
seen that the model is in agreement with the empirical data
for all client population size.

Figures 12a, 12b, 12c shows model estimation of the per-
formance data in Configuration 2 using the extended mod-
els. It can be seen that the performance predictions are quite
close and there is very little error.

3.2 Effectiveness of the Stage II Placement Algo-
rithm

We now present results measuring the effectiveness of the
MAQ-PRO Stage 2 placement algorithm. The evaluation
tests the merits as follows:
1. Minimizing and Efficiently Utilizing Resources:

In a traditional tiered deployment, each tier is considered
atomic and hence all its functionality must be deployed to-
gether. In contrast, for a component-based system where
services are implemented by assembling and deploying soft-
ware components, it is possible to replicate and distribute
individual components over the available resources. We ar-
gue that this flexibility can make better usage of resources
compared to a traditional tiered architecture.

Figure 13 presents a number of scenarios in which the al-
gorithm was evaluated. It compares the number of machines
required to support a given number of clients for a range of
client populations. Each client has a think time of mean
7 seconds with exponential distribution. The service times
of the requests are also distributed exponentially. Even if
the service times are non-exponential in the real world, the
above models will produce good results due to the robust-
ness of closed non-product-form queuing networks. By ro-
bustness, we imply that a major change in system parame-
ters will bring about tolerable changes in computed param-
eters [2].

For every value of client population considered, the re-
sponse time of the client requests remained within the SLA-
prescribed bound of 1 second. It can be seen that for a
majority of the cases our algorithm finds an allocation of
the components that uses a reduced number of machines
compared to the traditional tiered deployment.

Table 4 shows the response times and the utilizations of
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Figure 11: Model Validation for Configuration 1
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Deployments

the different processors for one such scenario with a total
client population of 2, 000. A tiered deployment requires 4
machines to serve 2, 000 clients, while MAQ-PRO requires
only 3 machines – an improvement of 25%. The table clearly
shows that in the tiered deployment, Node 3 is mostly idle
(17.47%utilized). MAQ-PRO identifies idle resources and
intelligently places components resulting in a minimum of
idle resources.

Figure 14 shows the resulting allocation of the different
components in the deployment of RUBis web portal using
MAQ-PRO Stage II. Using multiple instances of components
and distributing them in an intelligent way helps in effective
utilization of available resources.

Figure 15 presents the coefficient of variance (CV) of the
CPU usages for the three machines used in this experiment.
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Figure 14: Component Placement : 2,000 Clients

0 1
0.15
0.2

0.25
0.3

0.35
0.4

0.45

ffi
ci

en
t o

f 
at

io
n 

-C
PU

 
ili

za
tio

n

0
0.05
0.1

500 1000 1500 2000

C
oe

Va
ria U

t

ClientsTiered MAQ

Figure 15: Coefficent of Variation of Node Usage

It can be seen that the CV for the tiered deployment is
much higher than the MAQ-PRO deployment. This signi-
fies that the MAQ-PRO deployment uses the processors in a
more balanced manner than the tiered deployment reinforc-
ing our claim that MAQ-PRO effectively utilizes resources.
The outcome is the ability of MAQ-PRO to handle more
incoming load while preventing a single node to become the
bottleneck as long as possible.



2. Handling Increasing Number of Clients:
Our MAQ-PRO algorithm also enables increasing the num-

ber of clients handled using the same fixed number of ma-
chines compared to a tiered architecture. This result can be
achieved with a slight variation of Algorithm 2 where the
number of nodes are fixed initially to some value. The algo-
rithm terminates as soon as the response time reaches the
SLA bound (which means that performance is assured).

Using the result of three nodes obtained in the previous
result, we conducted additional experiments. The allocation
decisions made by MAQ-PRO are used to place the compo-
nents on the machines and the number of clients is gradually
increased till their response times reach a SLA bound of 1
sec. In comparison, the tiered deployment is also used to
host the same number of clients.

Figure 16 shows the response time for both the tiered
deployment and the MAQ-PRO deployment. It can be seen
that the tiered deployment reaches a response time of 1 sec
at around 1,800 clients while the MAQ-PRO deployment
reaches a response time of 1 sec at around 2,150 clients.
This result shows an improvement of 350 clients or around
20% thereby providing an opportunity for service providers
to increase their revenues.
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4. RELATED WORK
This section compares MAQ-PRO against related work

along two dimensions.
Analytical and Profile based Techniques: A large body
of work on analytical techniques to model and estimate the
performance of multi-tiered internet applications exists. For
example, [11, 19, 21, 23, 24] use closed queuing networks to
model multi-tiered internet applications. These efforts typ-
ically model an entire tier as a queue. Such models are also
usually service-aware, which allows system management de-
cisions involving components and services to be executed.

In contrast, MAQ-PRO models the applications at the
granularity of a software component. The finer granularity
helps our heuristics to place components onto nodes so that
resource wastage is minimized. In addition, load dependent
service demands are used to model increased system activ-
ity at high utilization levels. MAQ-PRO also presents a
method to model blocking effects due to database optimiza-
tions [10]. This method ensures that the queuing models
remain tractable while simultaneously improving the accu-
racy of performance predictions.

Stewart et. al. [15] propose a profile-driven performance
model for cluster based multi-component online services.
They use their model to perform system management and
implement component placement across nodes in the clus-
ter. MAQ-PRO complements this work by modeling system
activity, multiple processors/cores, and database optimiza-
tions. It also uses a formalized queuing model to predict

performance.
Application Placement Techniques: Karve et al. [6] and
Kimbrel et. al. [7] present a framework for dynamic place-
ment of clustered web applications. Their approach con-
siders multiple resources, some being load-dependent while
others are load-independent. An optimization problem is
solved which attempts to alter the component placement at
run-time when some external event occurs. Components are
migrated to respond to external demands.

Carrera et al. [4] design a similar system but they also pro-
vide utility functions of applications mapping CPU resource
allocation to the performance of an application relative to
its objective. Tang et al. [18] propose a placement algorithm
which can be used with the MAQ-PRO performance models
from Stage 1. Urgaonkar et. al. [22] identify resource needs
of application capsules (components) by profiling them.They
also propose an algorithm for mapping the application cap-
sules onto the platforms (nodes).

MAQ-PRO differs from these approaches in terms of its
workload and performance models, and also in terms of
the replication management strategy. MAQ-PRO defines a
queuing model and enhances it to consider application- and
hardware-specific factors which influence the performance of
the applications. The queuing model captures the interfer-
ence due to multiple components being co-located together.
Since MAQ-PRO is a strategizable framework, the place-
ment algorithms in [6, 7, 18,22] can be plugged in.

None of the prior works above (except [19]) enforces ex-
plicit performance bounds. MAQ-PRO maintains perfor-
mance bounds through the use of SLAs. The placement
of the components is thus attempted to maximize capacity
while ensuring that the performance remains within speci-
fied SLA bounds.

5. CONCLUDING REMARKS
This paper presented the MAQ-PRO process which is

a two stage framework comprising techniques to develop
profile-based analytical models, and an algorithm for compo-
nent replication and allocation for multi-tiered, component-
based applications. The goal of the MAQ-PRO process is
high assurance of performance and service availability to
users, while minimizing operating costs and potentially im-
proving revenues to the service provider.

MAQ-PRO advocates a profiling method by which tra-
ditional queuing models can be enhanced and made more
accurate. The novel ideas include the use of load-dependent
service demands of individual services on the processor and
correction factor for easily estimating multi-processor activ-
ity. MAQ-PRO also provides a component replication and
allocation algorithm which makes use of the above analyti-
cal model in minimizing the number of resources used and
balancing their usage while meeting the target number of
clients and their SLA bounds. It is shown that by keeping
the resource utilization of each component within a certain
threshold such as 30% of CPU time, the resources can be
utilized better.

We have used a running example of the RUBiS web por-
tal to discuss the two stages of MAQ-PRO and discussed the
steps any capacity planner should undertake when applying
MAQ-PRO to their applications. In the context of RUBiS,
MAQ-PRO was shown to have saved 25% resources while
supporting 20% more load when compared to using tradi-
tional modeling techniques all while providing high perfor-



mance and availability assurances to users.
Our results indicate that the process to enhance tradi-

tional queuing models with profiling based measurements
helped us to derive more accurate models. Since our ap-
proach is profile-based, the empirical results depend upon
the software design, business logic, and underlying hard-
ware. Thus the models developed for RUBis may not apply
directly to other projects. On the other hand such soft-
ware behavior is common across many applications and our
profiling techniques can be repeated on the concerned plat-
form/projects to measure the required variables, and derive
enhanced analytical models.

Our future work will investigate the impact of resource
failures and include fault tolerance. The MAQ-PRO data
and algorithm is available at http://www.dre.vanderbilt.
edu/~nilabjar/MAQ-PRO.
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