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Abstract—Deep Learning (DL) model-based AI services are
increasingly offered in a variety of predictive analytics ser-
vices such as computer vision, natural language processing,
speech recognition. However, the quality of the DL models
can degrade over time due to changes in the input data dis-
tribution, thereby requiring periodic model updates. Although
cloud data-centers can meet the computational requirements of
the resource-intensive and time-consuming model update task,
transferring data from the edge devices to the cloud incurs a
significant cost in terms of network bandwidth and are prone
to data privacy issues. With the advent of GPU-enabled edge
devices, the DL model update can be performed at the edge
in a distributed manner using multiple connected edge devices.
However, efficiently utilizing the edge resources for the model
update is a hard problem due to the heterogeneity among the
edge devices and the resource interference caused by the co-
location of the DL model update task with latency-critical tasks
running in the background. To overcome these challenges, we
present Deep-Edge, a load- and interference-aware, fault-tolerant
resource management framework for performing model update
at the edge that uses distributed training. This paper makes the
following contributions. First, it provides a unified framework for
monitoring, profiling, and deploying the DL model update tasks
on heterogeneous edge devices. Second, it presents a scheduler
that reduces the total re-training time by appropriately selecting
the edge devices and distributing data among them such that
no latency-critical applications experience deadline violations.
Finally, we present empirical results to validate the efficacy of
the framework using a real-world DL model update case-study
based on the Caltech dataset and an edge AI cluster testbed.

Keywords—Resource Management, Deep Learning, Edge Com-
puting, Performance Optimization, Interference-aware, Dis-
tributed Training

I. INTRODUCTION

The past decade has seen substantial progress in Deep
Learning (DL), particularly Deep Neural Networks (DNNs),
leading to its widespread adoption in various domains, such
as medicine [1], geology [2] and vehicular navigation [3]. DL
models are trained using a large amount of data and have out-
performed previous AI-based approaches. However, training a
DL model is a resource-intensive and time-consuming task.
Various distributed DL frameworks, such as Tensorflow [4],
MXNET [5] and Ray [6], have been developed to reduce
the training time by distributing the training workload among
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multiple machines (cluster) consisting of one or more Graphics
Processing Units (GPUs) or Application Specific Integrated
Circuits (ASICs), such as Tensor Processing Units (TPUs).

However, an application composed of a deep learning com-
ponent can experience degradation in accuracy over time due
to changes in the input data distribution. This phenomenon
is referred to as Concept Drift. To overcome model staleness
and incorporate changes due to input data streams, continual
learning [7] has been used to periodically refine the static
models by re-training the existing model using recent data.
Figure 1 shows the lifecycle of a machine learning model
in production, where an inference API hosts the DL model.
Recent data, along with the predicted and actual labels are
stored in a data store that is fed to the model update process
based on a user-defined trigger to replace the stale model with
an updated one.
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Fig. 1: Machine learning model life cycle

A. Emerging Trends
Traditionally, the model update occurs in the cloud, where

the data collected from the edge of the network is transferred
to the cloud data centers. However, the availability of pow-
erful and reliable GPU-accelerated edge AI products, such as
NVIDIA’s Jetson family (TX2, Nano, Xavier) and Google’s
edge TPU [8] (Coral), has made continual learning viable
using edge devices. In particular, the edge devices are suitable
for performing the model update due to the following reasons:
• The computational power of edge devices is sufficient for

updating small to medium-sized DNNs (up to 150 million
parameters), such as VGG, Resnet, Inception, Mobilenet.



• The duration of the model update task is far less than the
initial model training time, as fewer full data iterations
(epochs) are required.

• Performing model update at the edge avoids costly data
transfers to the cloud.

• Using edge devices for the model update also handles
data privacy concerns and reduces data security threats.

B. Challenges

There exist several resource managers (e.g., Borg [9], Tet-
ricsched [10], Barista [11]) for different kinds of workloads
in the cloud environment that perform static and dynamic
scheduling. However, most of the approaches do not apply to
edge clusters, which illustrate higher levels of heterogeneity
among the edge devices. The heterogeneity can be the result
of different physical characteristics of the devices, such as the
number of processors, CUDA cores, memory, etc. or due to
the workload associated with the devices. Another challenge
is caused by the performance interference resulting from
resource contention due to tasks running in the background.
Running the resource-intensive model update task can cause
the background latency-critical tasks to miss deadlines leading
to Service-Level Objective (SLO) violations [12]. Hence, the
selection of an edge device to participate in the model update
task should be contingent on the latency constraints of the
background tasks. Resolving these challenges calls for a cus-
tom resource manager for DL model update workloads at the
edge by considering the timing constraints of the background
applications, the computational capabilities, and workloads
of the individual edge devices along with the structure and
characteristics of the DL jobs.

C. Overview of Technical Contributions

In this paper, we propose Deep-Edge, a custom resource
management framework for DL model update jobs to minimize
the model update time by distributing the re-training workloads
among a set of heterogeneous edge devices while adhering to
the timing and latency constraints of the background tasks. We
focus on data-parallel distributed training based on the central-
ized parameter server architecture. Specifically, we make the
following contributions:

• We define unified monitoring, profiling, and deployment
framework for model update tasks at the edge.

• We build accurate performance and interference models
for DL model update task and latency-critical background
tasks by profiling them under various system metrics,
such as CPU, GPU, Memory utilization, etc.

• We formulate an optimization problem that incorporates
the edge node selection and workload distribution deci-
sions to minimize the overall model update time.

• We present a polynomial-time heuristic solution based on
the timing constraints, the performance, and interference
models of the model update and background tasks.

• We show the efficacy of the framework by evaluating the
accuracy of the proposed solution on a real-world DL

model update task based on the Caltech dataset and an
edge AI cluster testbed.

D. Paper Organization

The rest of the paper is organized as follows: Section II
provides a brief introduction to DL and the challenges associ-
ated with updating a DL model using edge devices. Section III
describes the problem formulation. Section IV discusses the
design and implementation of the Deep-Edge framework. Sec-
tion V evaluates Deep-Edge using a prototypical case study.
Section VI presents a survey of existing solutions in the litera-
ture and compares them with Deep-Edge. Finally, Section VII
presents the concluding remarks and future directions.

II. BACKGROUND AND MOTIVATION

Deep learning is the process of learning very complex
functions by multiple transformations of the raw input to an
abstract high-level representation [13]. Training a DL model
such as a DNN is an iterative process that requires a large
amount of data due to the number of parameters to be learned.
The data is typically divided into shards, which are further
sliced up into batches. The processing of a batch constitutes
a training step, which involves: 1) inferring the output and
calculating a loss function for each data sample in the batch
(forward pass); 2) determining the gradients based on the loss
function, i.e., changes to be made to the parameters of the DL
model (backward pass); and 3) updating the parameters of the
DL model for the given batch of samples. When all batches
are processed, one epoch is said to be completed.

Training a DL model is a resource-intensive and time-
consuming task. Several machine learning frameworks, such as
MXNET, TensorFlow, and Ray, support distributed training in
which the task is divided among multiple workers. Primarily,
there are two kinds of parallelism associated with distributed
training: 1) Model Parallelism has all workers learn a part
of the DL model parameters while working on the complete
dataset; 2) Data Parallelism involves sharding the dataset
among different workers such that each worker learns the
complete DL model parameters while working on the part of
the dataset. In this work, we focus on data-parallelism-based
distributed training.

There exists another classification in distributed training
based on how the knowledge (parameters) learned by individ-
ual workers is shared across the group. Most DL frameworks
implement either centralized or decentralized architecture for
storing and sharing the updated parameters of a DL model. In
the centralized architecture, all workers compute forward and
backward passes locally and send the gradients to a central
entity, called the parameter server, for updating the parame-
ters based on an optimization algorithm such as Stochastic
Gradient Descent (SGD). The parameters are then pulled
back by the workers to continue the next training step. In
the decentralized architecture, no central entity exists, and
the workers exchange among each other the locally learned
gradients. The decentralized architecture is not suitable for
the model update at the edge because it incurs higher transfer



costs due to the need to broadcast the learned gradients to all
the other workers.

There are also two kinds of training loops associated with
data-parallel, centralized distributed training: 1) Synchronous
training loop, where each worker waits for the others to finish
a training step before starting another step, i.e., the train-
ing progress is synchronized at each step; 2) Asynchronous
training loop, where the training progress is not synchro-
nized, and the parameter server updates the model parameters
upon receiving the gradients from each worker. Using an
asynchronous training loop is more favorable for the model
update at the edge as it avoids the costly synchronization
overhead. Figure 2 shows a centralized parameter server-based
distributed training with n asynchronous training loops.
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Fig. 2: Parameter server architecture for distributed DL training

The following subsections motivate the development of
Deep-Edge by describing the impact of heterogeneity and
resource interference on the model update task and latency-
critical tasks running in the background.

A. Impact of Heterogeneity on Model Update Time

Typically, an equal amount of data is distributed among the
workers in multi-machine training. However, this approach can
result in a longer time to complete because of the heterogeneity
of the edge devices. For instance, we observed that TX2 is
30% faster on an average in completing a training step than
Nano when updating a state-of-the-art Inception model [14]
using the Caltech-256 Object category dataset [15]. Figure 3
shows the cumulative distribution of time to complete one step,
where the average step times for TX2 and Nano are 1.89 and
2.69 seconds, respectively. Thus, equal distribution can lead to
underutilization of edge resources. Moreover, the performance
of the model update task can be impacted by the state of
the node (e.g., CPU, GPU, Memory utilization) as shown in
Figure 4, where an initial GPU utilization of 88% and 66%
for the two devices increases the average step time by almost
20%. Hence, an intelligent data sharding policy is required by
considering the actual states of the workers.

B. Impact of Resource Interference on Background Tasks

The selection of a worker to participate in the model update
task depends upon the degree of interference that can be toler-
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Fig. 3: Variation of step time w.r.t device type
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Fig. 4: Increase in step time due to resource contention

ated by the worker’s background tasks. Each curve in Figure 5
shows the sensitivity of a resource (GPU, CPU, Memory)
towards the DL model update task. The X-axis represents
the resource utilization before running the DL update task,
and the y-axis represents the final resource utilization. The
updated system state (defined in terms of the system metrics)
can lead to deadline violation of a latency-critical background
task. Moreover, adding more workers can reduce the training
throughput, as described in [16]. Hence, a resource scheduler
for a DL task needs to find the optimal number of workers,
along with the ideal data shards, without violating the SLO
constraints of background tasks.
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Fig. 5: Initial and final resource usage along multiple resource dimensions.

III. PROBLEM FORMULATION

In this paper, we consider distributed data-parallel training
of DL models using a centralized parameter server architec-
ture with asynchronous training loops. This section models
the various costs involved in the DL model update process
formulates an optimization problem to minimize the overall
cost and states our assumptions.

A. Cost Models

We consider a set W = {w1, w2, . . . , wN} of N heteroge-
neous edge nodes (or workers) that can perform distributed
training, and a set M of data samples for training a DL
model. Let D = {d1, d2, . . . , dN} denote the size of data
shards among all the workers, i.e., the number of data samples
assigned to each worker, such that

∑N
i=1 di = |M|.



1) Data transfer cost: All data samples are assumed to be
initially stored in a data store ds ∈ DS, where DS is the set
of data stores. The data samples need to be transferred to each
edge worker for training. Let transferdsi denote the cost of
transferring a single data sample from data store ds to edge
node wi. Thus, the total transfer cost for node wi is given by
Transferdsi = di · transferdsi .

2) Initialization cost: After receiving the data samples,
each edge node wi incurs a one-time initialization cost,
denoted by Initializei, before the training begins. This cost
is DL framework-dependent and consists mainly of data pre-
processing (un-packing), loading the DL model, setting up the
logical DL cluster, etc.

3) Training cost: The data shards at each worker wi
are further divided into batches of size bi, and let B =
{b1, b2, . . . , bN} denote the set of batch sizes for all workers.
The cost to process each batch includes the time to do forward
propagation (for computing the loss function) and the time to
do backward propagation (for computing the gradients). Let
forwardi denote the forward propagation time for one data
sample on worker wi, and let backwardi denote the backward
propagation time, which is typically incurred once per batch
and is not related to the size of the batch. Given a batch size
bi, the per-sample compute time on worker wi is then given
by tcomputei = forwardi + backwardi/bi.

After processing each batch, each worker wi pushes the
gradients to a centralized parameter server ps for update, and
then pulls the updated parameters before continuing to train
on the next batch. Let pushpsi , updateps and pullpsi denote
the time to push, update and pull the parameters, respectively.
Then, the update time is given by the sum of these three times,
i.e., tupdatei = pushpsi +updateps+pullpsi . Since each worker
wi has Bi ≈ di/bi batches, the total time to process all the
data samples on the worker, called an epoch, is given by:

epochT imei = Bi

(
bi · tcomputei + tupdatei

)
.

Note that the per-sample compute time tcomputei to perform
forward and backward propagation depends on the computing
capability of the individual worker as well as the background
tasks running on the worker. Further, the update time tupdatei

to perform push, update, and pull on each worker is also
not fixed. It depends on the batch size, the total number of
deployed workers, as well as the states of the workers and the
parameter server.

4) Total cost: The total cost includes the data transfer
and initialization costs for all workers, followed by the asyn-
chronous training and update costs from different workers.
Note that all costs are expressed in terms of time.

As the set of workers is assumed to be heterogeneous,
some of them may not be deployed for training (e.g., due
to high data transfer cost or low computational capability).
Typically, having more workers will reduce the workload of
each participating worker, thus decreasing the compute time
(i.e., tcomputei ). However, it may also incur a larger update time
(i.e., tupdatei ) due to contentions caused by different workers

trying to update the parameters at the same time.
Let γi ∈ {0, 1} denote a binary variable indicating if worker

wi will be deployed for training or not, i.e., γi = 1 if di > 0
and γi = 0 if di = 0. Then, for all workers to complete
a specified number of epoches, denoted by numEpoch, the
total cost of distributed training can be expressed as:

Tota_cost = max
i
{γi ·

(
Transfersi + Initializei

+ epochT imei · numEpoch
)
}

B. Optimization Problem

The goal of Deep-Edge is to minimize the overall cost of
distributed training on a set of heterogeneous edge nodes by
choosing a data sharding scheme D, the batch sizes B, as
well as the number of deployed workers while subject to some
system and performance constraints. The following states the
optimization problem:

minimize Total_cost
subject to bmin ≤ bi ≤ bmax, ∀i (1)

0 ≤ di ≤ |M|, ∀i (2)∑
i
di = |M| (3)

pressureai ≤ δa, ∀a ∈ backAppi,∀i (4)

Constraint (1) requires the batch size to be within the
range of minimum and maximum system-specific batch size,
which could be determined by the DL model or the device’s
memory constraint. Constraints (2) and (3) require that each
worker receives a portion of the data samples, and altogether
they cover the entire set of data samples. Finally, Constraint
(4) requires that, for each worker wi, the pressure to its
set of background applications, backAppi, due to running
the distributed training job on the same device, should be
contained to be within an application-specific threshold δa for
each application a ∈ backAppi in order not to violate the SLO
of the application. The estimation of the pressure function to
a background task, and the sensitivity function for the training
job will be discussed further in Section IV.

As the objective function (i.e., Total_cost) and the pressure
constraint in the above optimization problem have complex,
non-linear relationships with the decision variables (i.e., D,B),
they cannot be expressed analytically. Thus the problem cannot
be solved using standard solvers and/or analytical techniques.
Therefore, we will design efficient heuristic solutions for the
problem, which will be described in Section IV.

C. Assumptions

We assume that the user specifies the maximum number
of epochs (i.e., numEpoch) required for the training of the
DL model, which is independent of the configuration of the
workers. The user also provides the model trigger condition,
and the model is only updated whenever the trigger condition
is received. As the DL model is usually updated on a large
amount of data, we further assume that the one-time transfer
cost (i.e., Transfersi ) and initialization cost (i.e., Initializei)



are negligible compared to the total training cost. Finally, we
assume that the location of the parameter server is given, and
we do not need to select a node as a parameter server based
on some specific criteria.

IV. DESIGN AND IMPLEMENTATION OF DEEP-EDGE

This section presents the design and implementation details
of Deep-Edge by describing the architecture model, various
components of the framework, and its modes of operation.

A. Architecture Model

The architecture model is shown in Figure 6 consists of K
edge nodes, out of which N are workers, O are data stores,
and P are parameter servers, and they are represented by the
disjoint sets W , DS and PS , respectively. These edge nodes
form a local area network and are connected via a layer 2
switch. As mentioned in the previous section, the nodes in
W∪PS form the DL model update cluster, where the worker
nodes perform the actual re-training and the parameter server
nodes act as a central repository for model parameters. The
nodes in DS store data samples for the model update task.
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Fig. 6: Deep-Edge architecture
One of the nodes in DS also acts as a Deep-Edge Man-

ager (DEM), which implements the Deep-Edge framework.
DEM consists of a collection of components that enables
profiling, resource scheduling and runtime monitoring of the
DL cluster. The components are hosted as REST endpoints
as http://<ip>:<port>/<endpt_name>?<endpt_args>,
where ip is the IP address of the host, port is the port
associated with the DEM, and endpt_name, endpt_args are
the name and input arguments of the endpoint. The following
subsections describe the different components and modes of
operation associated with the DEM.

B. Components of Deep-Edge Manager

The DEM consists of five components, which together
provide a unified solution for profiling, scheduling, and mon-
itoring the DL model update tasks.

1) Profiler: Deep-Edge uses a data-driven approach to
estimate various performance and interference models (i.e.,
tcompute, tupdate and pressure experienced by the back-
ground applications). This component allows both latency-
critical and model update tasks to be profiled against stress
points along the dimensions of CPU, GPU, and Memory

utilization. The Profiler accepts different system metrics and
stress points as the input arguments. Deep-Edge uses CPU,
Memory, Disk I/O stressors from the well-known library
Stress-ng [17] and the GPU load stressing application is based
on the NVIDIA Cuda-10 library.

2) Solver: This component implements the scheduling
strategy to identify the candidate workers and their respective
data shards. The Solver takes the number of data samples, the
current state of the edge cluster along with the performance
and interference models as inputs, and outputs a data sharding
scheme. The scheduling strategy is explained in more detail
in Section IV-C2

3) Resource Monitor: The Resource Monitor maintains a
map of active workers in the edge cluster and periodically
monitors the ongoing model update tasks. This component is
responsible for re-triggering the model update task in response
to worker node failure.

4) Launcher: This component is responsible for launching
applications (DL & stressing) on the worker and parameter
server nodes. It accepts three different kinds of arguments:
a) Stressor arguments; b) DL arguments; and c) Logging
arguments. The Stressor arguments include parameters for the
different stressing applications. The DL arguments include ma-
chine learning specific arguments, such as batch size, number
of epochs, optimizer, etc. The Logging arguments include the
file path for creating log files.

5) Accuracy Monitor: Deep-Edge allows dynamic stop-
ping of the model update task by tracking the accuracy of the
validation set. The update task is launched based on the initial
estimate of the number of epochs provided by the user, and
the estimate of the number of epochs is refined in an online
fashion using logistic regression, similar to Optimus [16].
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Fig. 7: Modes of operation

C. Modes of Operation

The operation of DEM can be categorized into two modes,
offline and online, as illustrated in Figure 7. In the offline or
design mode, we build machine learning models to predict
the execution times of the DL re-training task and latency-
critical background tasks. In the online mode, appropriate
workers, along with batch size distribution and data shards,
are calculated based on the developed performance models
such that re-training time is minimized while adhering to
the SLO constraints imposed by the background applications.



The online mode also handles worker failures by trying to
restart the DL re-training task. The details of these features
are described in the following.

1) Performance and Interference Modeling: Deep-Edge
uses a data-driven approach for modeling the performance of
DL re-training tasks on each node as well as the interference
experienced by latency-critical background tasks. The perfor-
mance of the DL re-training task is measured by the time to
complete one epoch, epochT imei, which is the function of
per-sample compute time, tcomputei , and update time, tupdatei ,
as defined in the optimization problem. Here, tcomputei depends
upon the node type, state and batch size. We describe node
state as a vector of system metrics containing CPU, GPU and
Memory utilizations. However, tupdatei depends not only on the
node state but also on the complete batch distribution, state of
the parameter server and number of workers. We define two
functions, EstComputeTime and EstUpdateTime, to model
the relation between the state of the DL cluster and tcomputei

and tupdatei as shown in Equations (5) and (6) below, where
Xi and bi represent the state and batch size associated with
worker wi ∈ W , B is the batch size distribution and Xps is
the state of the parameter server.

tcomputei = EstComputeTime(Xi, bi) (5)

tupdatei = EstUpdateTime(Xi,B,Xps, |W|) (6)

In order to create an interference profile of the DL re-
training task, we model interference as performance degra-
dation experienced by the background applications. We use a
two-step approach to quantify performance degradation, i.e.,
increase in execution time. In the first step, we model the
effects of running the DL re-training task on a node whose
state is described in Equation (7). The function, EstState,
gives the relation between the initial state of the node, X initiali ,
and its new state, Xnewi , while executing the DL re-training
task. Since the system metrics can vary during the execution
of the re-training task, we use the 95th percentile value
statistic. The second step involves learning the performance
degradation, i.e., the pressure on a background task, as a
function of the new node state, defined by EstExecTime as
shown in Equation (8).

Xnewi = EstState(X initiali ) (7)
pressureai = EstExecTime(Xnewi ) (8)

The above-mentioned models are learned by first performing
a sensitivity analysis to understand the importance/influence
of the prospective features. Based on the candidate feature
set obtained after the sensitivity analysis, regression models
are learned. In Deep-Edge, we use H2O’s AutoML frame-
work [18] to find the best hyper-parameter tuned algorithm.

2) Resource Scheduling: Figure 8 (Middle) shows the
sequence of events pertaining to a new request of model
update. A data store makes a request to DEM’s solver endpoint
to trigger the mode update. Upon the receipt of the request, the
Solver gets the updated states of the workers, i.e., the number
of prospective workers and their respective states (system

metrics). Then, the Solver calculates the candidate worker
nodes, data shards, and batch distribution using the schedul-
ing strategy illustrated in Algorithm 1. The data and batch
distributions are sent back to the data store to initiate data and
base model transfer. After successful transmission, the data
store registers the task information, such as the number of
workers, data source, worker hostnames, data shards and batch
distribution, with the Launcher. In the end, the Launcher sends
the acknowledgment back to the data store after successfully
starting the DL re-training task on the selected workers.

The heuristic presented in Algorithm 1 provides an efficient
solution to the optimization problem described in Section III.
The input of the algorithm includes the workers’ state map
X = [X1,X2, . . . ,XN ], where Xi = [X cpui , X gpui , Xmemi ]
represents the state of worker wi ∈ W , the parameter server’s
state Xps = [X cpups , X gpups , Xmemps ], the number of data samples
M, the stopping threshold ε, and the maximum number
of iterations τ attempted by the algorithm. The output of
the algorithm is the data distribution D̃ and the batch size
distribution B̃, such that di ∈ D̃ and bi ∈ B̃ indicate,
respectively, the data shard and batch size associated with
worker wi ∈ W . Note that if any worker wk ∈ W is not
selected for the model update task, the algorithm will return
dk = 0 and bk = 0 for that worker.

The heuristic computes the data shards and batch distribu-
tion in an iterative fashion, where the initial estimate of the
size of all data shards is set to be ∞ [Lines 2-3]. Using the
initial data shards and the memory utilization of a node, the
corresponding batch size bi is calculated [Line 6] using the
function GetMaxBatchSize, which provides the maximum
batch size given the current memory utilization of the node,
while enforcing adherence of the memory constraint described
in the optimization problem. With the batch size estimates,
tcomputei , tupdatei and ttotali are calculated for all the workers
[Lines 7-9]. A refined data shard di for worker wi is then
calculated based on ttotali to balance the workloads of all the
workers [Line 10]. After calculating the refined data shards,
all workers check for adherence for resource interference
constraints [Lines 11-22]. A worker is removed from the
DL cluster [Lines 19-21] if any of its background tasks will
experience deadline violations [Lines 14-17]. The cycle [Lines
5-28] repeats until the data shards in two consecutive iterations
are almost the same, i.e., the L2 norm is less than a threshold
ε, or the maximum number of iterations τ have been reached
[Lines 24-26].

Then, we calculate the epoch time based on the data shards,
which is given by the maximum time taken by any worker
to process the data samples assigned [Line 29]. Note that,
based on our proportional data sharding scheme, the difference
between the epoch times from the different workers should
be minimal (only due to rounding-off errors). If the resulting
epoch time is better than the best one we have found so far,
we remember the configuration as a potential solution [Lines
30-32]. Finally, to explore if better solutions are possible, we
calculate the effect of removing the slowest worker (in terms
of the total per-sample training time) on the overall epoch
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Fig. 8: Event sequence diagram: Profiling (Left), Job scheduling (Middle), Failure handling (Right)

time [Lines 33-34]. As fewer workers are now present, this
may affect the update time for each remaining worker, which
will, in turn, affect the data shards and the epoch time. This
process is performed iteratively until removing a worker no
longer improves the overall epoch time, in which case the
algorithm will eventually terminate [Line 36]. The final data
shard size will then be given by the best one found so far.

Algorithm 1: Scheduling Heuristic
1 Initialize: min_t∗ ←∞, W̃ ← φ, B̃ ← φ, D̃ ← φ; Iter ← 0
2 di =∞, ∀wi ∈ W ;
3 D ← {d1, d2, . . . , dN}, Iter ← 0;
4 while True do
5 while True do
6 bi ← min(GetMaxBatchSize(Xmem

i ), di), ∀wi ∈ W ;
7 tcompute

i ← EstComputeTime(Xi, bi), ∀wi ∈ W ;
8 tupdate

i ← EstUpdateTime(Xi,Xps,B, |W|), ∀wi ∈ W ;
9 ttotal

i ← tcompute
i + tupdate

i /bi, ∀wi ∈ W ;
10 di =

|M|
ttotal
i

·
∑

wi∈W
1

ttotal
i

, ∀wi ∈ W ;

11 for each wi ∈ W do
12 flag ← False;
13 for each a ∈ backAppi do
14 if pressureai > δai then
15 flag ← True;
16 break; . Constraint violated
17 end
18 end
19 if flag then
20 W ←W \ wi, bi ← 0, di ← 0; . Remove worker
21 end
22 end
23 Dnew ← {d1, d2, . . . , dN}, Iter++;
24 if (||Dnew - D||2 ≤ ε) ∨ (Iter == τ ) then
25 break;
26 end
27 D ← Dnew ;
28 end
29 epochTime = maxwi∈W(di · ttotal

i );
30 if epochTime < min_t∗ then
31 min_t∗ ← epochTime;
32 W̃ ← W , B̃ ← B , D̃ ← D;
33 wk ← argmaxwi∈W

(ttotal
i ); . Find slowest worker

34 W ←W \ wk, bk ← 0, dk ← 0; . Remove worker
35 else
36 break;
37 end
38 end

3) Fault Tolerance: When a worker node experiences a
failure while executing a model update task either due to

process crash or node failure, the Resource Monitor in the
DEM will detect such events and trigger the re-launching of
the task. The DEM uses a three-strike rule, i.e., a worker will
not be considered part of the DL cluster if it has experienced
at least three interruptions while running a model update task.
Figure 8 (Right) highlights the sequence of events as a result of
worker failure. After detecting a worker failure, the Resource
Monitor gets the DL task information such as data shards,
batch distribution, worker hostnames, data source and task
id from the Launcher, and kills the model update processes
on the remaining workers. After the processes are killed, the
Resource Monitor notifies the appropriate data source to re-
trigger the model update task.

V. EVALUATION RESULTS

In this section, we present the evaluation results of different
phases of the Deep-Edge framework.

A. Experimental Setup

Testbed: Our testbed comprises one NVIDIA Jetson TX2
(256-core NVIDIA Pascal GPU, 8GB memory, Dual-Core
NVIDIA Denver 2 64-Bit CPU and Quad-Core ARM Cortex-
A57), three NVIDIA Jetson Nano (128-core Maxwell GPU,
Quad-Core ARM Cortex-A57, 4GB memory), and two Rasp-
berry Pi 4 (Broadcom BCM2711, Quad-core Cortex-A72
(ARM v8), 4GB memory). These devices are connected by
a layer 2 switch. One Raspberry Pi acts as a parameter server
while the second acts as a data store and also hosts the DEM.

Workloads: The model update task consists of updating a
base DNN, namely Inception [14], with 3,855 data samples
from the Caltech-256 dataset [15] using MXNET [5]. The
base Inception model is created using transfer learning [7],
where the last layer of a pre-trained Inception model based
on Imagenet [19] is replaced by a new layer. We trained the
base model (last layer) with 2,700 data points to reach an
accuracy of 60%. The latency-critical background task is based
on a distributed real-time computer vision application, which
performs image reconstruction from multiple video streams
where an initial image processing step is done in parallel on
multiple edge devices. The image processing step involves
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identifying scale and rotation invariant descriptors (features)
using Scale Invariant Feature Transform (SIFT) [20]. The
latency-critical task constitutes executing SIFT on the acquired
frame and sending the serialized SIFT features along with the
original frame to an image stitching server over a UDP socket
every 200ms. The size and resolution of the acquired frame
are 56KB and 640×320, respectively.

B. Performance Modeling

We performed sensitivity analysis along the dimensions of
GPU, CPU, and Memory utilization, as well as the number of
workers and batch size. The following behaviors are observed:
• Increasing the GPU utilization increases the compute time
tcompute (Figure 9(a)).

• Increasing the CPU utilization increases the compute time
tcompute (Figure 9(b)).

• Increasing the batch size of the DL model update process
decreases the compute time tcompute (Figure 9(c)).

• Increasing the batch size of the DL model update process
increases the memory utilization (Figure 9(d)).

• Increasing the batch size of the DL model update process
decreases the update time tupdate (Figure 9(e)).

• Increasing the CPU utilization of the parameter server
increases the update time tupdate (Figure 9(f)).

• Increasing the number of workers increases the DL model
update time tupdate.

• Increasing Memory utilization does not affect the
throughput of the model update task. However, insuffi-
cient free memory can result in terminating a process by
the OS.

Based on the above observations, we considered CPU
utilization, GPU utilization, and batch size as the candidate
features to learn the function EstComputeTime and added
server CPU utilization, the number of workers along with
batch distribution of all nodes to the above list as the set of
features to learn the function EstUpdateTime. The function,
EstState, has multiple outputs in nature, i.e., GPU, CPU,
Memory, and a separate regressor is learned for each one of

Device Function Data-points Accuracy
(train/test) (MAPE)

Nano EstComputeTime 1386/264 1.668 ± 2.074
Nano EstUpdateTime 1386/264 9.617 ± 7.383
Nano EstStategpu 1386/264 1.498 ± 3.9
Nano EstStatecpu 1386/264 5.21 ± 4.53
Nano EstStatemem 1386/264 1.508 ± 1.306
Nano EstExecTime 1386/264 1.73 ± 0.21
TX2 EstComputeTime 378/72 5.916 ± 6.721
TX2 EstUpdateTime 378/72 7.721 ± 6.598
TX2 EstStategpu 378/72 0.509 ± 0.479
TX2 EstStatecpu 378/72 6.294 ± 5.468
TX2 EstStatemem 378/72 0.894 ± 0.704
TX2 EstExecTime 378/72 1.48 ± 0.12
Pi EstStatecpu 630/120 2.32 ± 1.58
Pi EstStatemem 630/120 1.70 ± 1.15

TABLE I: Estimator results

them. We extend the label with the feature name to indicate
the individual regression model (for instance, EstStatemem

represents the memory regressor). GetMaxBatchSize uses
EstStatemem recursively to identify the maximum feasible
batch size to run the model update task on a node. Finally,
EstExecTime uses all system metrics of the node as features
to predict the time to finish the latency-critical task. We used
H2O’s AutoML framework [18] to select the best regression
algorithm as well as to perform hyperparameter tuning. Table I
highlights the number of data points, regression algorithm
along with the accuracy for all learned functions. In particular,
the gradient boosting based ensemble methods outperformed
other algorithms with an average MAPE (mean absolute per-
centage error) of 3.433% overall for all the learned functions.

C. Scheduling

We compare the scheduling policy of Deep-Edge with the
fairness-based scheduler adopted in many resource managers,
such as Hadoop [21], Yarn [22] and Mesos [23]. We performed
120 random experiments, and in each experiment, all worker
nodes are running the SIFT feature detector task along with
some randomly selected stressors, such that the initial state
of every node does not violate the deadline of the back-
ground application. Figure 10 highlights the average epoch
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times observed when using the Deep-Edge and the fairness
schedulers. On average, the Deep-Edge scheduler reduced the
epoch time by 1.54 times compared to the fairness scheduler
without violating any deadline. Figure 11 shows a histogram of
speedups for the DL task achieved by the Deep-Edge scheduler
over the fairness scheduler. We can see that the speedup can
be as high as 200%, and more than half of the experiments
have a speedup of more than 50%.

VI. RELATED WORK

This section provides a literature survey along the dimen-
sions of interference aware resource management in edge
devices and DL task scheduling.

A. Performance & Interference-aware Resource Management

Resource interference is studied extensively in the literature,
and different approaches are proposed to understand and
quantify interference. Paragon [24] presents an interference-
aware job scheduler, in which an application’s performance
is predicted using collaborative filtering. The performance
prediction model is built by subjecting the target applica-
tion by varying each resource stressor at a time. Authors
in [25] studied the impact of co-located application per-
formance for a single multi-core machine and developed
a piece-wise regression model using cache contention and
bandwidth consumption of co-located applications as input
features. The ESP project [26] also uses a regression model
to predict performance interference for every possible co-
location combination. Pythia [27] proposed a linear regression
model approach for predicting combined resource contention
by training on a small fraction of the large configuration space
of all possible co-locations. Both ESP and Pythia assume
that they have a priori information of all possible running
workloads, based on which an interference model is created
for a new application. PARTIES [28] proposes a feedback-
based controller to dynamically adjust resources between co-
scheduled latency-critical applications using fine-grained mon-

itoring and resource partitioning to guarantee the Quality-of-
Service (QoS). INDICES [29] proposes interference aware fog
server selection using a gradient boosting based performance
model of latency-critical applications. The authors extend
the same approach in [30] to offload a latency-critical task
between fog and edge devices while considering user mobility.
However, none of these approaches are designed for distributed
tasks such as DL model re-training and do not consider GPU
utilization.

B. Deep Learning Task Scheduling
There are several approaches in the scientific literature for

resource allocation to achieve a variety of objectives in cloud
settings such as Borg [9], Coral [31] and TetriSched [10], Mor-
pheus [32]. However, the schedulers mentioned above are not
designed for DL workloads. There are recent research efforts
on GPU sharing for machine learning tasks. Baymax [33]
explores GPU sharing as a way to mitigate both queuing
delay and resource contention. Following that, Prophet [34]
proposes an analytical model to predict the performance of
GPU workloads. Gandiva [35] proposes GPU time-sharing
in shared GPU clusters through checkpointing at low GPU
memory usage of the training job. CROSSBOW [36] proposes
a dynamic task scheduler to automatically tune the number of
workers to speed up the training and to use the infrastructure
optimally. Optimus [16] also dynamically adjusts the number
of workers and parameter servers to minimize the training
completion time while achieving the best resource efficiency.
SLAQ [37] targets the training quality of experimental ML
models instead of models in production. It adopts an online
fitting technique similar to Optimus to estimate the training
loss of convex algorithms. Dorm [38] uses a utilization-
fairness optimizer to schedule jobs. However, these approaches
are not applicable for edge clusters as none of them considers
resource interference while allocating heterogeneous resources
for the DL model update task.

VII. CONCLUSION AND FUTURE WORK

This paper presents Deep-Edge, an interference aware DL
model update framework for the edge devices that minimizes
the re-training time by intelligently distributing data among
edge nodes while adhering to the latency constraints of the
background applications. We described different components
of the framework and showed its efficacy by validating it
against a realistic case study.

In the future, we would like to extend this work in three di-
mensions: 1) improving performance and interference models
by adding more features such as memory and disk bandwidth;
2) adding support for Multi-Process Service (MPS) based GPU
workloads; 3) including parameter server load balancing as
part of the scheduling problem; and 4) considering a more
diverse set of edge devices such as TPUs and FPGAs.
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