
A Coordination and Discovery Service for QoS-enabled Data-Centric
Publish/Subscribe in Wide Area Networks

Kyoungho An and Aniruddha Gokhale
ISIS, Dept of EECS

Vanderbilt University
Nashville, TN 37235, USA

Email: {kyoungho.an, a.gokhale}@vanderbilt.edu

Takayuki Kuroda
Knowledge Discovery Research Laboratory

NEC Corporation
Kawasaki, Kanagawa, Japan

Email: t-kuroda@ax.jp.nec.com

Abstract—A special class of Internet of Things called the
Industrial Internet of Things (IIoT) operates in a large,
distributed and dynamic environment comprising sensors all
the way to large server clusters. A key requirement for
IIoT is a scalable messaging service that supports multiple
quality of service (QoS) properties, such as timeliness and
resilience. Although existing pub/sub standards, such as the
Object Management Group (OMG)’s Data Distribution Service
(DDS) for data-centric pub/sub, support a range of QoS
properties and dynamic discovery of peers, they are effective
only in local area networks (LANs). Moreover, they lack
an effective coordination and discovery service needed by
brokers that can bridge multiple different LANs. To address
these limitations, this paper presents PubSubCoord, which is
a cloud-enabled coordination and discovery service for QoS-
enabled data-centric pub/sub for wide area network (WAN)
operations. PuSubCoord realizes a WAN-scale, low-latency data
dissemination architecture by (a) balancing the load using
elastic cloud resources, (b) clustering brokers by topics for
affinity, and (c) minimizing the number of data delivery hops in
the pub/sub overlay. PubSubCoord’s coordination mechanism
uses ZooKeeper to support dynamic discovery of brokers and
pub/sub endpoints located in isolated networks. Empirical re-
sults evaluating the performance of PubSubCoord are presented
for (1) scalability of data dissemination and coordination, and
(2) deadline-aware overlays employing configurable QoS to
provide low-latency data delivery for topics demanding strict
service requirements.

Keywords-Data Distribution Service, Publish/Subscribe, Mid-
dleware, Discovery, Coordination, Cloud Computing

I. INTRODUCTION

Emerging paradigms, such as the internet of things (IoT),
connect machines and devices in a loosely coupled manner
to form intelligent and large-scale systems. The publish/-
subscribe (pub/sub) communication paradigm is attractive
for these emerging systems since it provides a scalable and
decoupled data delivery mechanism between communicating
peers. A special class of IoT referred to as industrial
IoT (IIoT) [1] found in domains such as transportation,
healthcare, manufacturing, and energy requires different
quality of service (QoS) properties to be satisfied, such as
timeliness, reliability, and security, for their applications that
are deployed over wide area networks (WANs). For example,

wind farms have different requirements for data analysis
depending on the type of analysis (e.g., frequency of data
arrival for machine-level analysis is every 40 milliseconds
and for plant-level analysis is every one second). The key
to successful data analysis relies on how effective is the
system in collecting and delivering data across large number
of entities at internet scale in a timely, and reliable manner.1

Many pub/sub messaging solutions [2], [3], [4] including
research efforts [5], [6], [7] exist that can operate in WANs.
Some of these even support QoS properties, such as avail-
ability [6], [7], configurable reliability [2], durability [3], and
timeliness [8], [9]. However, these solutions tend to support
only one QoS property at a time and in most cases, support
for configurability is lacking. Moreover, dynamic discovery
of endpoints, which is a key requirement for IIoT, is often
missing in these solutions.

The presence of large amounts of generated data in IIoT
motivates the need for data-centric pub/sub with support for
configurable, multiple QoS properties. The Object Manage-
ment Group (OMG)’s Data Distribution Service (DDS) [10]
standard for data-centric pub/sub holds substantial promise
for IIoT applications because of its support for configurable
QoS policies, dynamic discovery, and asynchronous and
anonymous decoupling of data endpoints (i.e., publishers
and subscribers) in time and space. However, there still
remain many unresolved challenges in using DDS in WAN-
based IIoT applications. For instance, DDS uses multicast
as a default transport to dynamically discover peers in a
system. If the endpoints are located in isolated networks
that do not support multicast, then these endpoints cannot be
discovered by each other. Secondly, even if these endpoints
were discoverable, because of network firewalls and network
address translation (NAT), peers may not be able to deliver
messages to the destination endpoints.

One approach to supporting DDS in WAN-based pub/sub
relies on broker-based solutions [11], [12]. It is conceivable
to think that these broker-based solutions in conjunction with

1https://www.gesoftware.com/sites/default/files/Industrial Big Data
Platform.pdf

https://www.gesoftware.com/sites/default/files/Industrial_Big_Data_Platform.pdf
https://www.gesoftware.com/sites/default/files/Industrial_Big_Data_Platform.pdf

the data-centric and configurable QoS features provided by
DDS can readily make it useful for IIoT. However, this is not
the case for the following reasons. IIoT use cases illustrate
heterogeneity in the kinds of devices and networks involved,
the number and types of data-centric topics of interest that
must be managed, and significant number and churn (i.e.,
joining and leaving) of the endpoints. Thus, a solution for
dynamic discovery and QoS-enabled dissemination that can
scale to large number of endpoints is desired. Since brokers
are necessary to overcome issues with NAT and firewalls,
the scalable discovery and dissemination solution desired
for IIoT must also provide effective coordination among
potentially large number of distributed brokers.

To fill this gap, we present PubSubCoord, which is a
cloud-enabled coordination service for geographically dis-
tributed pub/sub brokers to transparently connect endpoints
and realize internet-scale data-centric pub/sub systems. To
that end, this paper makes the following contributions:

• To address the scalability and low latency requirements
of data dissemination across WANs, PubSubCoord in-
troduces a two-level broker hierarchy deployed over a
pub/sub overlay network, which provides a maximum
two-hop dissemination path for data across distributed,
isolated networks.

• To achieve dynamic discovery and data routing be-
tween brokers, PubSubCoord exploits and extends the
ZooKeeper coordination service [13] to synchronize
dissemination paths for the dynamic network of brokers
and endpoints.

• For those dissemination paths that need both low la-
tency and reliability assurances, PubSubCoord trades
off resource usage in favor of deadline-aware overlays
that build multiple, redundant paths between brokers.

PubSubCoord preserves the endpoint discovery and data
dissemination model of the underlying pub/sub messaging
system while adding a two-level broker hierarchy by tunnel-
ing discovery and dissemination messages across the broker
hierarchy. Our contributions are discussed and demonstrated
concretely in the context of endpoints that use the OMG
DDS as the pub/sub messaging system, however, the solution
is generic and can be used for other pub/sub messaging
systems.

The remainder of this paper is organized as follows:
Section II provides background information on the under-
lying technologies; Section III describes the design and
implementation of PubSubCoord; Section IV shows exper-
imental results validating our claims; Section V compares
PubSubCoord with related work; and Section VI presents
concluding remarks and alludes to future work.

II. OVERVIEW OF UNDERLYING TECHNOLOGIES

Since we have used the OMG DDS as the concrete pub/-
sub technology and ZooKeeper as the coordination service to

describe PubSubCoord’ contributions, this section provides
an overview of these underlying technologies.

A. OMG Data Distribution Service (DDS)

The OMG DDS specification defines a distributed pub-
/sub communications standard [10]. At the core of DDS is
a data-centric architecture (i.e., subscriptions are defined by
topics, keyed data types, data contents, and QoS policies) for
connecting anonymous data publishers with data subscribers
in a logical global data space, as shown in Figure 1.

Data Bus (DDS Domain)

Publisher

Data
Reader

Data
Writer

Data
Writer

Subscriber Subscriber

Data
Reader

Data
Reader

Topic Topic Topic

Publisher

Data
Writer

Participant

Figure 1: DDS Architecture

A DDS data publisher produces typed data streams iden-
tified by names called topics. The coupling between a
publisher and subscriber is expressed in terms of topic name,
its data type schema, and QoS attributes of publishers and
subscribers.

A domain is used to logically partition the global data
space into groups that are isolated from each other within
which the participants, i.e., publishers and subscribers can
communicate. To ease the management, each publisher is
made up of one or more DataWriters and each subscriber
is made up of one or more DataReaders. Each DataWriter
and DataReader can be associated with only one topic and
perform the action of writing and reading, respectively.

A Topic is a logical channel between DataWriters and
DataReaders that specifies the data type of publication and
subscription. The topic names, types, and QoS of DataWrit-
ers and DataReaders must match for them to communicate
with each other.

B. OMG DDS QoS Policies

OMG DDS supports a number of different QoS policies
that can be mixed and matched. Each QoS policy has
offered and requested semantics (i.e., offered by publishers
and requested by subscribers) and are used in conjunction
with the topic data type to match pairs of endpoints, i.e.,
the DataReader and DataWriter. We briefly describe only
those policies that we have used either in the design of
PubSubCoord or in our empirical studies.

The reliability QoS controls the reliability of data flows
between DataWriters and DataReaders at the transport level.

It can be of two kinds: BEST EFFORT and RELIABLE. The
durability QoS specifies whether or not the DDS middle-
ware stores and delivers previously published data samples
to endpoints that join the network later. The reliability and
persistency can be affected by the history QoS policy, which
specifies how much data must be stored in in-memory cache
allocated by the middleware. Along with the history QoS
policy, the lifespan QoS helps to control memory usage and
lifecycle of data by setting expiration time of the data on
DataWriters, so that the middleware can delete expired data
from the cache.

The deadline QoS policy specifies the deadline between
two successive updates for each data sample. The middle-
ware will notify the application via callbacks if a DataReader
or a DataWriter breaks the deadline contract. Note that
DDS makes no effort to meet the deadline; it only notifies
if the deadline is missed. The liveliness QoS specifies
the mechanism that allows DataReaders to detect discon-
nected DataWriters. The ownership QoS specifies whether
it allows multiple DataWriters to write data on a stream
simultaneously. If it is set to have an exclusive owner, the
exclusive owner is determined by the configured strength
of DataWriters. The primary DataWriter with the highest
strength is switched to a backup if it violates the deadline
QoS or is disconnected.

C. DDS Routing Service

Since PubSubCoord relies on a broker-based architecture,
we have leveraged and extended an existing DDS broker so-
lution. Specifically, we have used the DDS Routing Service,
which is a content-aware bridge service for connecting geo-
graphically dispersed DDS systems [11]. It integrates DDS
applications across LANs as well as WANs. DDS Routing
Service leverages all the entities of DDS and enables DDS
applications to publish and subscribe data across domains in
multiple networks without any changes to the applications.

D. ZooKeeper

ZooKeeper is a service for coordinating processes within
distributed applications [13]. The ZooKeeper service con-
sists of an ensemble of servers that use replication to accom-
plish high availability with high performance and relaxed
consistency. ZooKeeper provides the watch mechanism to
notify a client of a change to a znode (i.e., a ZooKeeper
data object containing its path and data content). There exist
many coordination recipes using ZooKeeper that are often
needed for distributed applications, such as leader election,
group membership, and sharing configuration metadata. Pub-
SubCoord exploits these capabilities in its design.

III. DESIGN OF PUBSUBCOORD

This section describes the architecture and design ratio-
nale for the PubSubCoord design. We also provide details
on the implementation.

A. PubSubCoord Architecture
Figure 2 shows the PubSubCoord architecture depicting

three layers: a coordination layer, a pub/sub overlay layer,
and the physical network layer. The pub/sub overlay com-
prises the two-level broker hierarchy representing the logical
network of brokers and endpoints in a system. An edge
broker is directly connected to endpoints in a LAN (i.e.,
an isolated network) to serve as a bridge to other endpoints
placed in different networks. A routing broker serves as a
mediator to route data between edge brokers according to
assigned and matched topics that are present in the global
data space. The coordination layer comprises an ensemble
of ZooKeeper servers used for coordination between the
brokers.

Cloud Data Center Network

Edge
Broker

P1
{A}

S1
{A}

P2
{B}

P2

Routing
Broker

P2

Edge
BrokerP3

{C}

S2
{B}

P3

P2, P4

P2, P4

Edge
Broker

S3
{C}

P4
{B}

P3 P4
P1

Routing
Broker

P4P3 P3

Network A Network B Network C

Routing
Brokers

ZooKeeper
Servers

ZooKeeper
Server

(Leader)

ZooKeeper
Server

ZooKeeper
Server Coordination

Layer

Pub/Sub Overlay
Layer

Physical Network
Layer

Figure 2: PubSubCoord Architecture

The data dissemination in PubSubCoord is explained us-
ing an example in Figure 2. Pi{T} denotes a publisher i that
publishes topic T (similarly for a subscriber S). Since there
are no endpoints interested in topic A other than publisher
P1 and subscriber S1, they communicate only within the
local network A via either UDP-based multicast or unicast
for scalability and low latency. P2, P4, and S2 are interested
in topic B but are deployed in different networks. So their
communications are routed through a routing broker that
is responsible for topic B. The network transport protocol
between brokers is configurable, but TCP is used as a default
transport to ensure reliable communication over WANs. As
seen from this example, a maximum of 2 hops on the overlay

network are incurred by data flowing from one isolated
network to another (e.g., network A to B).

B. Rationale for PubSubCoord Design Decisions

We now offer a justification for the various design deci-
sions we made in our architecture.

1) 2-level Broker Hierarchy and Scalability: Traditional
WAN-based pub/sub systems form an overlay network with
brokers to which endpoints can be connected. The brokers
exchange subscriptions they receive from subscribers, by
which they build a routing path. The published messages
are routed to matching subscribers through the routing
decision. The main challenge of this approach is how
to build states among brokers to route messages towards
matching subscribers efficiently. To resolve this challenge,
our solution clusters brokers by matching topics and routes
topic data through routing brokers responsible for specific
topics to minimize the overall number of data exchange and
connections between brokers.

In the traditional broker-based pub/sub systems, if a
local broker fails, it halts not only a service for endpoints
connected to this broker but also service for endpoints
connected to other brokers because local brokers are used
as intermediate routing brokers. To overcome these limita-
tions, PubSubCoord is structured by harnessing a two-tier
architecture similar to the BlueDove system [14].

Having only one routing broker in the top level will be
problematic since it cannot handle the substantial routing
load stemming from the dissemination of various topic data.
On the other hand, multiple layers of hierarchy similar to
DNS would have complicated the management of topics and
recovery from failures, and could introduce multiple routing
hops. For that reason, the top layer comprises a cluster of
routing brokers that balance the load among themselves.

Although the edge brokers are always placed at the edge
of their respective isolated networks, we had to reason about
where to place the routing brokers. We decided to place the
routing brokers in the cloud because the cloud enables us
to elastically scale the number of routing brokers depending
on the load.

2) Need for a Coordination Layer: Although a 2-level
broker hierarchy resolves issues with maintaining substantial
state, we needed an approach so that the brokers can form
this 2-level hierarchy and set the connections between the
edge and routing brokers. To that end, PubSubCoord uses
a coordination layer comprising an ensemble of ZooKeeper
servers, which help brokers discover each other and build
broker overlay networks using coordination logic.

The data model of ZooKeeper is structured like a file
system in the form of znodes with a simple client API
(e.g., only read and write). This hierarchical namespace is
actually meant to manage group membership, however, we
repurpose it to manage pub/sub endpoints that are grouped
by topics. Figure 3 shows znode data tree structure of

PubSubCoord stored in ZooKeeper servers. The root znode
contains three znodes: topics, leader, and broker. The topics
znode contains children znodes for every unique topic that
has endpoints interested in it, which in turn become the
children of the specified topic znode. The leader znode is
used to elect a leader among routing brokers. The broker
znode has children znodes for each routing broker where its
locator information (i.e., IP address and port number of a
routing broker) is stored. The leader uses this information
to associate a selected routing broker’s locator to a topic
znode after the topic assignment.

/

/topics

/pub /sub

/dw1 /dr1

/leader /broker

/topic_A /topic_B

/pub /sub

/dw1 /dw2 /dr1

/rb1 /rb2 /rb3

Figure 3: PubSubCoord ZNode Data Tree Structure

Brokers connect to the coordinating servers as clients
and create, update, and delete znodes in ZooKeeper servers.
They also set watches on interesting znodes to receive
notifications (e.g., broker join/leave). ZooKeeper provides
different modes for znode: ephemeral and persistent. A
znode with ephemeral mode is automatically deleted when
a session of a client that creates the znode is lost. We utilize
this ephemeral mode to manage events when brokers join or
leave our system.

3) Load Balancing and Fault Tolerance: To achieve load
balancing at the routing broker layer, the cluster of routing
brokers elect a leader. To elect a leader in a consistent
manner, PubSubCoord uses ZooKeeper’s leader znode for
routing brokers to write themselves on the znode so as to be
elected as a leader (i.e., voting process). The routing broker
that gets to write first becomes a leader since the znode is
locked thereafter (i.e., no one can write on the znode unless
the leader fails).

When an endpoint is created with a new topic, an edge
broker informs ZooKeeper of the new topic which inserts it
into its znode tree and informs the leader routing broker of
the new topic. The routing broker leader selects one of the
existing routing brokers to handle that topic. This selection
is made based on the load on each routing broker.

If a routing broker fails, the leader reassigns topics
handled by that failed broker to another routing broker to
avoid service cessation. If the load is too high, the cloud will
elastically scale the number of routing brokers. If a leader
fails, the routing brokers vote for another leader again. On
assignment or failure and reassignment of routing broker,

ZooKeeper notifies the appropriate edge brokers to update
their paths to the right routing broker.

To provide a scalable and fault-tolerant service at the
coordination layer, multiple ZooKeeper servers can exist as
a quorum, and a leader of the quorum synchronizes data
between distributed servers to provide consistent coordina-
tion events to clients (i.e., brokers in our solution) and avoid
single points of failure.

4) Deadline-aware Overlay Optimizations: PubSubCo-
ord also supports an optimization to both improve reliability
and latency by providing an additional one hop path over the
overlay that directly connects communicating edge brokers.
Figure 4 illustrates the concept. These optimizations can be
leveraged by pub/sub streams that require stringent assur-
ances on reliable and deadline-driven data delivery.

R

E1 E2

P S

L2 L3

L1

Figure 4: Multi-path Deadline-aware Overlay Concept

To achieve this feature, PubSubCoord exploits the ca-
pabilities of the underlying pub/sub messaging system. To
that end, we use the deadline values configured by DDS’
deadline QoS. Recall that this parameter is used to express
the maximum duration of a sample to be updated. For those
event streams requiring strict deadlines, multi-path overlay
networks build an alternative, additional path directly be-
tween edge brokers thereby reducing the number of hops to
just one.

C. Broker Interactions and Implementation

In this section we describe how the brokers interact and
the actual process of updating their internal states used in
routing the streamed data. Routing brokers can be divided
into two kinds: leader routing broker and worker routing
broker. A leader routing broker manages the cluster of
routing brokers and assigns topics to workers in a way that
balances the load. Worker routing brokers relay pub/sub data
between edge brokers. The leader routing broker can also
serve as a worker routing broker.

Figure 5 presents the sequence diagram showing the
interactions of the routing brokers. Each routing broker
initially connects to the ZooKeeper servers as a client. The
cluster of routing brokers subsequently elect a leader among
themselves. The leader routing broker registers a listener
(i.e., event detector that is notified when the registered znode
changes) on the topics znode (shown in Figure 3) to receive
topic relevant events (e.g., creation or deletion of topics).

For example, as shown in Figure 5, when TopicA is created,
the leader assigns the topic to the least loaded worker, which
currently is decided based on the number of adopted topics
by that worker. However, other strategies can also be used
in the load balancing decisions (e.g., least loaded based on
CPU utilization or the number of connections). Next, the
leader updates a locator of the assigned worker broker on
the corresponding znode that is created for TopicA, i.e., a
child of topics znode – see the leftmost node in row three
of Figure 3. This locator information will then be used by
edge brokers interested in TopicA.

Leader
Routing Broker

Routing Service
ZooKeeper

Server

Run
Routing Service

Initiate connection

Elect a leader

Register a listener to receive
topic creation/deletion events

Creation event of Topic 'A'

Assign Topic 'A'
to a worker routing broker

Elected as a leader

Update the znode
for Topic 'A' with the assigned

routing broker's locator

Worker
Routing Broker

Elect a leader

Assignment event of Topic 'A' to this worker routing broker

Register a listener to receive events of endpoints for Topic 'A'

Creation event of an endpoint for Topic 'A'
with edge broker's locator (IP and port)

Initiate connection

Create a route for
Topic 'A' Add a path to

the edge broker

Register a listener to receive topic assignment events

Figure 5: Routing Broker Sequence Diagram

Worker routing brokers initially register listeners on bro-
ker znodes to receive topic assignment events, which occur
when the assigned topics znode is updated by a leader
routing broker. When the worker routing broker is informed
that it must handle a specific topic, such as TopicA, it then
registers a listener on pub/sub znodes for that particular
assigned topic (e.g., children of topic A znode) to receive
endpoint discovery events, such as creation of publisher
or subscriber endpoints interested in TopicA. When an
endpoint for TopicA is created and the worker routing
broker is notified, it establishes data dissemination paths
to edge brokers. For this data dissemination, PubSubCoord
relies on the underlying pub/sub messaging systems’ broker
capabilities, such as the DDS Routing Service we have
leveraged in our work.

Figure 6 shows the corresponding sequence diagram for
edge brokers. Like routing brokers, edge brokers initially
connect to ZooKeeper servers as clients. Edge brokers make
use of built-in entities (i.e., special pub/sub entities for
discovering peers and endpoints in a network supported
by the underlying pub/sub messaging system) to discover
endpoints in local networks. For example, when a pub or
sub endpoint interested in TopicA is created, built-in entities
receive discovery events via multicast, and then edge brokers

create a znode for the created endpoints.

Edge Broker Routing Service
ZooKeeper

Server
Endpoint

(Pub or Sub)

Discovery event
via Multicast

Run
Routing Service

Initiate connection

Create a znode for the created endpoint
with edge broker's locator (IP and port)

Register a listener to receive
events for routing broker assignment

Assignment event of
a routing broker for Topic 'A' with its locator

Create a route
for Topic 'A' Add a path to

the routing broker

Create an endpoint
for Topic A

Publish/Subscribe data

Destroy or move
the endpoint
for Topic A

Liveliness timeout
of the endpoint

Delete the znode
for the disappered endpoint

Delete the route
for Topic 'A'

Create a znode for Topic 'A'
if it does not exist

Figure 6: Edge Broker Sequence Diagram

Edge brokers register a listener on a topic znode (e.g.,
topic A in Figure 3) in which the created endpoint is
interested in to obtain the locators for the routing broker
that is in charge of that particular topic. Once a locator of
a routing broker is obtained, an edge broker initiates a data
dissemination path to the routing broker through the Routing
Service. If the created endpoints move to different networks
or are deleted, a timeout event occurs by virtue of using
the liveliness QoS (i.e., it is used to detect disconnected
endpoints where the timeout values are configurable) and
accordingly the znodes for endpoints are deleted from co-
ordination servers and a route created in Routing Service is
also terminated. Thus, mobility of publisher and subscriber
endpoints is also supported by the PubSubCoord design.

IV. EXPERIMENTAL VALIDATION OF PUBSUBCOORD

This section presents the experimental results we con-
ducted to evaluate scalability and validate deadline-aware
overlays of PubSubCoord.

A. Overview of Testbed Configurations and Testing Method-
ology

Our testbed is a private cloud managed by OpenStack
comprising 60 physical machines each with 12 cores and
32 GB of memory. To experiment with a WAN-scale envi-
ronment, our cloud platform uses Neutron2, an OpenStack
project for networking as a service, that allows users to
create virtual networks by using a Open vSwitch plugin3.
For our experiments, we created 120 virtual networks, and
380 virtual machines (VMs) are placed across these virtual
networks. Each VM is configured with one virtual CPU

2https://wiki.openstack.org/wiki/Neutron
3http://www.openvswitch.org

and 2 GB of memory. We use RTI Connext 5.14 as the
implementation of the DDS Routing Service and for our
test applications.

Our experiments use the reliability and durability DDS
QoS policies for pub/sub communications to illustrate ex-
perimental results for higher service quality in terms of
reliability and persistence of data delivery. Depending on
the systems’ requirements, QoS policies can be varied and
performance results may change according to the different
QoS settings. Specifically, we use RELIABLE reliability
QoS to avoid data loss in a transport level through data
retransmission. We use KEEP ALL history QoS to keep all
historical data and TRANSIENT durability QoS to make it
possible for late-joining subscribers to obtain previously
published samples. The lifespan QoS is set to 60 seconds so
publishers guarantee persistence for 60 seconds even with
constrained memory resources.

To evaluate our solution, we measure end-to-end latency
from publishers to subscriber, and CPU usage on brokers
for scalability of data dissemination. CPU usage is shown
along with latency to understand how different settings,
i.e., number of topics per network and number of routing
brokers, affect dissemination scalability. Moreover, we mea-
sure latency of coordination requests and the number of
data objects and notifications on ZooKeeper servers to show
coordination scalability. To measure end-to-end latency from
publishers to subscribers, we calculate time differences with
timestamps of events on publishers and subscribers. Because
publishers and subscribers run in different machines, we
exploit the Precise Time Protocol (PTP) [15] that guarantees
fine-grained time synchronization for distributed machines,
and achieves clock accuracy in the sub-microsecond range
on a local network.

B. Scalability Results

We used the 380 VMs for our scalability experiments.
Each broker operates on a VM for which we used 160 VMs
in total (120 VMs for edge brokers and 40 VMs for routing
brokers). Of the remaining 220 VMs, 20 VMs are used for
publishers and 200 VMs for subscribers. Each of these VMs
runs 25 publisher or 50 subscriber test applications. We
locate 50 publishers or 100 subscribers for each network
(i.e., 2 VMs for each network). The entire number of
publishers and publishers is 1,000 and 10,000, respectively.
Subscribers in each network are interested in 100 topics out
of 1,000 topics in a system. Publishers push data every 50
milliseconds, and the size of a data sample is 64 bytes. We
use settings described above as a default in our experiments.

For end-to-end latency of measurements, we collect la-
tency values of 5,000 samples in total for each subscriber
and use values only after 1,000 samples since the latency

4https://community.rti.com/rti-doc/510/ndds.5.1.0/doc/pdf/RTI
CoreLibrariesAndUtilities UsersManual.pdf

https://wiki.openstack.org/wiki/Neutron
http://www.openvswitch.org
https://community.rti.com/rti-doc/510/ndds.5.1.0/doc/pdf/RTI_CoreLibrariesAndUtilities_UsersManual.pdf
https://community.rti.com/rti-doc/510/ndds.5.1.0/doc/pdf/RTI_CoreLibrariesAndUtilities_UsersManual.pdf

20 40 60 80 100

100

200

300

400

500

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Number of Topics Per Edge Broker

20 40 60 80 100

1

2

3

4

5

M
a
x
im

u
m

 L
a
te

n
c
y
 (

s
e
c
)Average Latency

Maximum Latency

(a) End-to-end Latency of Pub/Sub
by Different Number of Topics Per Network

5 10 15 20

2

4

6

8

10

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
e
c
)

Number of Routing Brokers

5 10 15 20

10

20

30

40

50

M
a
x
im

u
m

 L
a
te

n
c
y
 (

s
e
c
)Average Latency

Maximum Latency

(b) End-to-end Latency of Pub/Sub
with Load Balance in Routing Brokers

200 4000 6000 8000 10000

5

10

15

20

25

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

m
s
)

Number of Subscribers

200 4000 6000 8000 10000

500

1000

1500

2000

2500

M
a

x
im

u
m

 L
a

te
n

c
y
 (

m
s
)Average Latency

Maximum Latency

(c) Latency of Coordination Service
by Different Number of Joining Subscribers

20 40 60 80 100
0

20

40

60

80

100

Number of Topics Per Edge Broker

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

(d) CPU Utilization by Different Number
of Topics Per Network

5 10 15 20
0

20

40

60

80

100

Number of Routing Brokers

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

(e) CPU Utilization with Load Balance
in Routing Brokers

2000 4000 6000 8000 10000
0

5,000

10,000

15,000

20,000

25,000

30,000

Number of Subscribers

Number of ZNodes

Number of Watches

(f) Number of ZNodes and Watches
by Different Number of Joining Subscribers

Figure 7: Scalability Experiments

values of the initial samples are not consistent due to
coordination and discovery process overhead until system
stabilizes (e.g., time for discovery of brokers and creating
routes).

1) Scalability of the Broker Overlay Layer: Since the
edge brokers are responsible for delivering data incoming
from other brokers to subscribers in a local network, the
computation overhead on edge brokers grows linearly as
the number of adopted topics increases. Figure 7a and 7d
show results with different number of topics per edge broker,
increasing the number of topics from 20 to 100 out of 1,000
topics in a system. The CPU utilization linearly increases
by the number of adopted topics, and average and maximum
latency values grow as well. From these results, we can infer
that if the number of incoming streams increases due to more
number of topics per network, it affects latency values even
though CPUs of edge brokers are not saturated.

Our solution supports load balancing in the group of
routing brokers and makes it possible to flexibly scale
systems with the number of topics. Figure 7b and 7e present
latency and CPU usage by different number of routing
brokers. When the number of routing brokers is small, in
this case 5, the CPU of the routing brokers become saturated
and latency values are adversely impacted. However, after
increasing the number of routing brokers to 10, latency
values improve. The results in Figure 7e also validate that
CPU usage linearly decreases by increasing the number of
routing brokers.

2) Scalability of the Coordination Layer: We evaluate the
scalability of a ZooKeeper-based centralized coordination
service by increasing the number of simultaneous joining

subscribers. Figure 7c shows latency, i.e., the amount of time
it takes for the server to respond to a client request. Figure 7f
presents the number of used znodes and watches. We use
mntr, a ZooKeeper command for monitoring service5, to
retrieve the experimental values presented in our results. We
increase the number of subscribers from 2,000 to 10,000 in
steps of 2,000. The average latency increases from 10 mil-
liseconds to 20 milliseconds and the number of znodes and
watches linearly increase approximately 2,000 and 4,000,
respectively by the increased number of subscribers. The
reason why the number of watches are twice compared to the
number of znodes is that it needs to notify brokers for both
publishers and subscribers if they have matching pub/sub
endpoints.

C. Deadline-aware Overlays

We also conducted experiments to validate our deadline-
aware overlays showing latency and overhead by comparing
the performance parameters for multi-path and single-path
overlays. A topology used for these experiments was shown
in Figure 4. We use Dummynet [16] to simulate network de-
lays and packet losses, which are common in WANs. These
parameters are varied depending on geographic locations of
brokers, which is a factor influencing the need for deadline-
aware overlays. For multi-path overlay experiments, we use
delay and loss data provided by Verizon, which shows
latency and packet delivery statistics for communication
between different countries across the globe.6 We categorize

5http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html
6http://www.verizonenterprise.com/about/network/latency

http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html
http://www.verizonenterprise.com/about/network/latency

30ms 45ms 90ms 125ms 250ms

250

500

750

1000

1250

1500

Network Delay

E
n

d
−

to
−

e
n

d
 L

a
te

n
c
y
 (

m
s
)

Avg (1% Packet Loss)

Max (1% Packet Loss)

Avg (No Packet Loss)

Max (No Packet Loss)

(a) End-to-end Latency of Pub/Sub
with Single-path Overlays

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

100

200

300

400

500

600

700

800

E
n

d
−

to
−

E
n

d
 L

a
te

n
c
y
 (

m
s
)

Test Case

Average

Maximum

(b) End-to-end Latency of Pub/Sub
Multi-path Overlays

Single−path Multi−path
0

1000

2000

3000

4000

5000

6000

N
e

tw
o

rk
 T

ra
ff

ic
 (

K
B

)

E1 to R

R to E2

E1 to E2

(c) Overhead Comparison

Figure 8: Deadline-aware Experiments

delay and loss data into two groups (i.e., A with 30ms
delay and no packet loss, and B with 250 msec delay and
1% packet loss in Table I) and experimented 8 possible
combinations with given links (i.e., L1, L2, and L3 as shown
in Figure 4), and test cases described in Table I.

Table I: Deadline-aware Overlays Experiment Cases

Test Cases L1 L2 L3
Case 1 A A A
Case 2 A A B
Case 3 A B A
Case 4 A B B
Case 5 B A A
Case 6 B A B
Case 7 B B A
Case 8 B B B

A = 30ms delay, no packet loss
B = 250ms delay, 1% packet loss

Figure 8a and 8b show average and maximum latency
of single-path overlays with different network delays and
packet loss and multi-path overlays with 8 test cases, respec-
tively. From case 1 to case 5, multi-path overlays perform
better than any cases of single-path in terms of latency.
All cases of multi-path overlays outperform a case with
125 milliseconds delay and 1% packet loss in single-path
overlays. In spite of that, a multi-path overlay builds a
duplicate path from an edge broker other than from a routing
broker, so it causes extra overhead compared to a single-path
overlay due to additional computations and extra network
transfer at the edge broker. We measure network transfer
overhead for 10,000 samples from a publisher to a subscriber
to compare single-path and multi-path by using tcpdump7

and the results are presented in Figure 8c.

V. RELATED WORK

Prior research on pub/sub systems can be classified into
topic-based, attribute-based, and content-based depending
on the subscription model. Topic-based model, such as

7http://www.tcpdump.org

Scribe [17], TIB/RV [18], and SpiderCast [19], groups sub-
scription events in topics. In attribute-based model, events
are defined by specific types, and therefore this model
helps developers to define data models in a robust way
by type-checking. The content-based model [5], [6] allows
subscribers to express their interests by specifying conditions
on the data content of events, and the system filters out and
delivers events based on the conditions. The OMG DDS
adopts a data-centric model that groups subscriptions in
topics, validates types of topic events, and also filters out
events by conditions on data content using a special topic
called Content-Filtered Topic (CFT). Besides, it matches
subscriptions based on offered and requested QoS param-
eters to disseminate data with assured service levels.

Pub/sub systems tend to form overlay networks to support
application-level multicast rather than using IP-based mul-
ticast owing to the fact that IP multicast is not supported
in WANs and the limited number of IP-based multicast
addresses would not fit the potential number of logical
channels for fine-grained subscription models [20]. Over-
lay architectures for pub/sub systems can be categorized
into broker-based overlay [5], [6], [18], structured peer-to-
peer [17], and unstructured peer-to-peer. GREEN [21] sup-
ports configurable overlay architectures for different network
environments. PubSubCoord adopts a hybrid approach that
constructs unstructured peer-to-peer overlays in LANs by
dynamically discovering peers via multicast, and broker-
based overlays in WANs.

BlueDove [14] is similar to our approach in that it
achieves scalability and elasticity by harnessing cloud re-
sources, and is a two-tier architecture to reduce the number
of delivery hops and for simplicity. However, this service is
designed for enterprise systems deployed in the cloud and
does not consider the restrictions of physical locations of
pub/sub endpoints. In our system, pub/sub endpoints located
in different networks dynamically discover each other with
the help of edge brokers, and therefore we consider physical
restrictions of pub/sub endpoints and they cannot connect to
any edge brokers.

Bellavista et al. [22] study QoS-aware pub/sub systems

http://www.tcpdump.org

over WANs and compare multiple existing pub/sub systems
supporting QoS including DDS. In [9], the authors evaluate
a pub/sub system for wide-area networks named Harmony
and techniques for responsive and high available messaging.
The Harmony system delivers messages through broker
overlays placed in different physical networks, and pub/sub
endpoints communicate via local brokers located in the
same network. Although this effort describes a WAN-scale
pub/sub solution with QoS support, it centers on selective
routing strategies to balance responsiveness and resource
usage in view of the fact that its architecture is based on
multi-hop broker networks unlike our 2-hop solution.

IndiQoS [8] also proposes a pub/sub system with QoS
support to reduce end-to-end latency by exploiting network-
level reservation mechanisms, where message brokers are
structured using distributed hash table (DHT). Similar to
IndiQoS, we pursue low-latency and high availability but
our solution also supports other QoS policies such as con-
figurable transport reliability, data persistence, ordering, and
resource management by controlling depth of history data
and subscribing rate. We do not use a DHT solution for
brokers and so a comparison along these lines will be part
of our future work.

Recent research [11], [12] has broadened the scope of
DDS to WANs by bringing in routing engines to disseminate
data from a local network to others. Our solution utilizes
similar routing engines and additionally solves the discovery
and coordination problem between routing engines that
otherwise requires significant manual efforts for large-scale
systems. Finally, [23] suggests separation of control and
data plane in next generation pub/sub systems, which is
motivated by software-defined networking (SDN).

VI. CONCLUDING REMARKS

Emerging paradigms such as the Industrial Internet of
Things illustrate the need to disseminate large volumes
of data between a large number of heterogeneous entities
that are geographically distributed, and require stringent
QoS properties for data dissemination from the publishers
of information to the subscribers. This paper presents the
design, implementation, and evaluation of PubSubCoord,
which is a cloud-enabled coordination and discovery ser-
vice for internet-scale pub/sub applications. PubSubCoord
supports scalability in terms of data dissemination as well
as coordination, dynamic discovery, and configurable QoS
properties. The test harness and capabilities in PubSubCoord
are available for download from www.dre.vanderbilt.edu/
pubsubcoord.

A. Key Insights and Discussion

The following is a summary of the insights we gained
from this research and the empirical evaluations.

• PubSubCoord disseminates data in a scalable man-
ner for systems having many pub/sub endpoints

and topics. The experimental results show that Pub-
SubCoord can deliver streamed data within 100 mil-
liseconds for a system having 10,000 subscribers and
1,000 topics distributed across more than 100 networks.
As the number of topics increases in a system, our
solution uses elastic cloud resources and load balancing
techniques to deliver data in a scalable way. However, if
the number of adopted topics per edge broker increases,
service quality becomes worse as shown in the experi-
mental results because edge brokers need to deal with
more number of forwarding operations between routing
brokers and pub/sub endpoints. If a system requires
higher frequency or more number of topics per network,
edge brokers possibly become bottleneck, so an elastic
solution for edge brokers will be needed.

• Centralized coordination service like ZooKeeper can
serve as a pub/sub control plane for large-scale
systems. Our solution employs a centralized service
for coordinating pub/sub brokers for its consistency
and simplicity, and our experimental results show that
average latency of the coordination service is 20 mil-
liseconds for 10,000 subscribers and the number of data
nodes and notifications linearly increase by organizing
its data tree in a hierarchical way. Our experiments
use a standalone server for coordination, but multiple
servers as quorum can be used for scalability and
fault-tolerance and ZooKeeper guarantees consistency
of data between multiple servers. The quorum is more
scalable for read operations, but not for write operations
that require synchronizing data between servers. In
future, we plan to carry out experiments with increasing
the number of coordination servers to understand its
scalability for pub/sub broker coordination in depth.

• Configurable QoS supported by DDS can be used
for low-latency data delivery in WANs by building
multi-path overlays. We use configurable deadline
QoS to deliver data at low-latency by establishing selec-
tive multi-path overlays, and validate this approach by
providing experimental results. Since not every path can
be a delay-sensitive path, we need some higher level
policy management (e.g., offered and requested QoS
management between network domains) to decide what
characterizes a delay-sensitive path. In addition, al-
though this approach assures low-latency data delivery,
it occurs extra overhead by duplicating data delivery
from multiple paths. To reduce the costs, we can utilize
ownership QoS that dynamically selects an owner of
data streams to reduce data traffic from backups, and
the owner is changed to a backup when the owner
fails to meet its deadline. Our deadline-aware overlay
optimizations are possible due to capabilities of DDS;
implementing similar optimizations for other messaging
systems will require identifying similar opportunities.

• End-to-end QoS management is required for ef-

www.dre.vanderbilt.edu/pubsubcoord
www.dre.vanderbilt.edu/pubsubcoord

ficiency. Most of the QoS policies are supported by
hop-by-hop enforcement between brokers. Yet, some
QoS policies for persistence, reliability, and ordering
used in our experiments guarantee end-to-end QoS.
However, this approach would be inefficient for some
cases. For example, the durability QoS ensures sending
previously published data to late joining subscribers.
To support end-to-end data persistence with hop-by-
hop QoS enforcement, each broker needs to keep
history data in memory that will not be freed until
it is acknowledged. This is beneficial for some late
joining subscribers that require history data with low-
latency. However, keeping duplicated history data on
each broker unnecessarily consumes memory resources.
To reduce this overhead, we can suggest end-to-end
acknowledgment mechanisms to provide persistence
and reliability in an efficient way.

ACKNOWLEDGMENTS

We would like to thank DOC group members for their
valuable feedback. This work is supported in part by NSF
CAREER CNS 0845789. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of NSF.

REFERENCES

[1] D. C. Schmidt, “Accelerating the Industrial Internet with
the OMG Data Distribution Service,” http://www.rti.com/
whitepapers/OMG DDS Industrial Internet.pdf, 2014.

[2] OASIS, “Mqtt version 3.1.1,” http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, 2014.

[3] P. Hintjens, ZeroMQ: Messaging for Many Applications.
O’Reilly Media, Inc., 2013.

[4] S. Vinoski, “Advanced message queuing protocol,” IEEE
Internet Computing, vol. 10, no. 6, pp. 87–89, 2006.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and
evaluation of a wide-area event notification service,” ACM
Transactions on Computer Systems (TOCS), vol. 19, no. 3,
pp. 332–383, 2001.

[6] P. R. Pietzuch and J. M. Bacon, “Hermes: A distributed event-
based middleware architecture,” in Distributed Computing
Systems Workshops, 2002. Proceedings. 22nd International
Conference on. IEEE, 2002, pp. 611–618.

[7] C. Esposito, D. Cotroneo, and A. Gokhale, “Reliable pub-
lish/subscribe middleware for time-sensitive internet-scale
applications,” in Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems. ACM,
2009, p. 16.

[8] N. Carvalho, F. Araujo, and L. Rodrigues, “Scalable qos-
based event routing in publish-subscribe systems,” in Network
Computing and Applications, Fourth IEEE International Sym-
posium on. IEEE, 2005, pp. 101–108.

[9] M. Kim, K. Karenos, F. Ye, J. Reason, H. Lei, and K. Sha-
gin, “Efficacy of techniques for responsiveness in a wide-
area publish/subscribe system,” in Proceedings of the 11th
International Middleware Conference Industrial track. ACM,
2010, pp. 40–45.

[10] OMG, “The data distribution service specification, v1.2,” http:
//www.omg.org/spec/DDS/1.2, 2007.

[11] J. M. Lopez-Vega, J. Povedano-Molina, G. Pardo-Castellote,
and J. M. Lopez-Soler, “A content-aware bridging service
for publish/subscribe environments,” Journal of Systems and
Software, vol. 86, no. 1, pp. 108–124, 2013.

[12] A. Hakiri, P. Berthou, A. Gokhale, D. C. Schmidt, and
G. Thierry, “Supporting end-to-end scalability and real-time
event dissemination in the omg data distribution service over
wide area networks,” Submitted to Elsevier Journal of Systems
Software (JSS), 2013.

[13] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper:
wait-free coordination for internet-scale systems,” in Proceed-
ings of the 2010 USENIX conference on USENIX annual
technical conference, vol. 8, 2010, pp. 11–11.

[14] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei, “A scalable and
elastic publish/subscribe service,” in Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International.
IEEE, 2011, pp. 1254–1265.

[15] L. Carroll, “Ieee 1588 precision time protocol (ptp),” http:
//www.eecis.udel.edu/∼mills/ptp.html, 2012.

[16] L. Rizzo, “Dummynet: a simple approach to the evaluation
of network protocols,” ACM SIGCOMM Computer Commu-
nication Review, vol. 27, no. 1, pp. 31–41, 1997.

[17] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel,
“Scribe: The design of a large-scale event notification in-
frastructure,” in Networked group communication. Springer,
2001, pp. 30–43.

[18] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen, “The information
bus: an architecture for extensible distributed systems,” in
ACM SIGOPS Operating Systems Review, vol. 27, no. 5.
ACM, 1994, pp. 58–68.

[19] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Spi-
dercast: a scalable interest-aware overlay for topic-based pub-
/sub communication,” in Proceedings of the 2007 inaugural
international conference on Distributed event-based systems.
ACM, 2007, pp. 14–25.

[20] R. Baldoni, M. Contenti, and A. Virgillito, “The evolution of
publish/subscribe communication systems,” in Future direc-
tions in distributed computing. Springer, 2003, pp. 137–141.

[21] T. Sivaharan, G. Blair, and G. Coulson, “Green: A config-
urable and re-configurable publish-subscribe middleware for
pervasive computing,” in On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE. Springer, 2005,
pp. 732–749.

[22] P. Bellavista, A. Corradi, and A. Reale, “Quality of service in
wide scale publishsubscribe systems,” IEEE Communications
Surveys & Tutorials, 2014.

[23] K. Zhang and H.-A. Jacobsen, “Sdn-like: The next generation
of pub/sub,” arXiv preprint arXiv:1308.0056, 2013.

http://www.rti.com/whitepapers/OMG_DDS_Industrial_Internet.pdf
http://www.rti.com/whitepapers/OMG_DDS_Industrial_Internet.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://www.omg.org/spec/DDS/1.2
http://www.omg.org/spec/DDS/1.2
http://www.eecis.udel.edu/~mills/ptp.html
http://www.eecis.udel.edu/~mills/ptp.html

APPENDIX A.
BROKER IMPLEMENTATION DETAILS

In this section we describe some implementation details
that use the OMG DDS pub/sub messaging system as the
underlying pub/sub technology and the Curator framework
that implements ZooKeeper.8 Algorithms 1 and 2 describe
the pseudo code of callback functions implemented in edge
brokers and routing brokers, respectively. Callback functions
are invoked by either the DDS endpoint discovery events in
built-in entities or notifications by ZooKeeper services.

A. Edge Broker Implementation

Algorithm 1 Edge Broker Callback Functions

function ENDPOINT CREATED(ep)
create znode (ep)
if ! topic multi set.contains(eptopic) then

ep node cache = create node cache(ep)
set listener (ep node cache)
routing service.create topic route(ep)

topic multi set.add(eptopic)
function TOPIC NODE LISTENER(topic node cache)

rb locator = topic node cache.get data()
if ! rb peer list.contains(rb locator) then

rb peer list.add(rb locator)
routing service.add peer(rb locator)

function ENDPOINT DELETED(ep)
delete znode (ep)
topic multi set.delete(eptopic)
if ! topic multi set.contains(eptopic) then

delete node cache(ep)
routing service.delete topic route(ep)

Each callback function for edge brokers is invoked when
the following events occur:

• ENDPOINT CREATED: This function is invoked when
an endpoint in a network is created and activated by a
built-in DDS DataReader.

• TOPIC NODE CACHE LISTENER: This function is in-
voked when a topic znode managed by an edge broker
is created, deleted, or updated. It is activated by a
ZooKeeper client process.

• ENDPOINT DELETED: This function invoked when an
endpoint in a network is deleted and activated by a
built-in DDS DataReader.

We use Curator, which is a high-level API that simplifies
using ZooKeeper, and provides useful recipes such as leader
election and caches of znodes. We use the cache recipe to
locally reserve data objects accessed multiple times for fast
data access and reducing loads on ZooKeeper servers.

8http://curator.apache.org

The ENDPOINT CREATED callback function first creates a
znode for a created endpoint (i.e. ep in Algorithms 1) that
contains the topic name, type, QoS settings. If a relevant
topic to the created endpoint has not appeared in an edge
broker before, a cache for the topic znode and its listener
for the topic are created to receive locator information of
an assigned routing broker. When the znode for the topic
is updated by a leader routing broker, it triggers the TOPIC
CACHE LISTENER callback described in Algorithm 1.

In the TOPIC NODE LISTENER callback function, each
topic znode stores a locator of a routing broker which is
responsible for the topic. The locator of a routing broker is
added to DDS Routing Service to establish a communication
path from the edge broker to a routing broker.

The ENDPOINT DELETED callback function deletes the
znode for the existing endpoint, and deletes it from the multi-
set for topics. Next, it checks if the multi-set contains the
topic of the deleted endpoint. If the topic is contained in the
multi-set, it means other endpoints are still interested in the
topic. If it is empty, it means no endpoints that are interested
in the topic exists, and that the cache and its listener need to
be removed. The multi-set data structure for topics is used
because there may still exist endpoints interested in topics
relevant to deleted endpoints.

B. Routing Broker Implementation

Algorithm 2 Routing Broker Callback Functions

function BROKER NODE LISTENER(broker node cache)
topic set = broker node cache.get data()
for topic : topic set do

if ! topic list.contains(topic) then
ep cache = create children cache (topic)
set listener(ep cache)
topic list.add(topic)

function ENDPOINT LISTENER(ep cache)
ep = ep cache.get data()
switch ep cache.get event type() do

case child added
if ! eb peer list.contains(epeb locator) then

eb peer list.add(epeb locator)
routing service.add peer(epeb locator)

if ! topic list.contains(eptopic) then
routing service.create topic route(ep)

topic multi set.add(eptopic)
case child deleted

topic multi set.delete(eptopic)
if ! topic multi set.contains(eptopic) then

eb peer list.delete(epeb locator)
routing service.delete topic route(ep)

Each callback function for routing brokers is invoked
when the following events occur:

http://curator.apache.org

• BROKER NODE LISTENER - This function is invoked
when a znode for a routing broker is updated and
activated by a ZooKeeper client process.

• ENDPOINT LISTENER - This function is invoked when
children pub/sub endpoints of a znode for an assigned
topic is created, deleted, or updated. It is activated by
a ZooKeeper client process.

Every routing broker registers a listener on the znode
for itself to receive topic assignment events updated by a
leader routing broker. In the BROKER CACHE LISTENER
callback function, the znode for the routing broker stores
a set of topics assigned by the leader. When the topic set is
updated by the leader (e.g., the leader assigns a new topic
to the worker routing broker), and it applies the changes by
creating a cache and its listener for endpoints interested in
the assigned topic.

When an endpoint is created or deleted, the edge brokers

create or delete znodes for endpoints and these events will
trigger the ENDPOINT CACHE LISTENER function in routing
brokers that are responsible for topics involved with the
endpoints. The data of znode cache for an endpoint (ep in
the ENDPOINT CACHE LISTENER callback function) contains
the locator of an edge broker where the endpoint is located
as well as the topic name, type, and QoS settings. If the
event type is creation, it adds the locator of the edge broker
to the DDS Routing Service if it does not exist. Thereafter,
it requests the DDS Routing Service to create a route for
the topic based on the information provided by the content
of the ep znode from this routing broker to the edge broker,
if it does not exist. If the event type is deletion, it has to
delete the locator and the topic route from the DDS Routing
Service on the condition that no endpoints for that topic still
exist.

	Introduction
	Overview of Underlying Technologies
	OMG Data Distribution Service (DDS)
	OMG DDS QoS Policies
	DDS Routing Service
	ZooKeeper

	Design of PubSubCoord
	PubSubCoord Architecture
	Rationale for PubSubCoord Design Decisions
	2-level Broker Hierarchy and Scalability
	Need for a Coordination Layer
	Load Balancing and Fault Tolerance
	Deadline-aware Overlay Optimizations

	Broker Interactions and Implementation

	Experimental Validation of PubSubCoord
	Overview of Testbed Configurations and Testing Methodology
	Scalability Results
	Scalability of the Broker Overlay Layer
	Scalability of the Coordination Layer

	Deadline-aware Overlays

	Related Work
	Concluding Remarks
	Key Insights and Discussion

	References
	Appendix A: Broker Implementation Details
	Edge Broker Implementation
	Routing Broker Implementation

