
Adversarially Robust Edge-Based Object Detection
for Assuredly Autonomous Systems

Robert Canady, Xingyu Zhou, Yogesh Barve, Daniel Balasubramanian, Aniruddha Gokhale
Dept of Computer Science, Vanderbilt University, Nashville, TN

(robert.e.canady,xingyu.zhou,yogesh.d.barve,daniel.a.balasubramanian,a.gokhale)@vanderbilt.edu

Abstract—Edge-based and autonomous, deep learning com-
puter vision applications, such as those used in surveillance
or traffic management, must be assuredly correct and perfor-
mant. However, realizing these applications in practice incurs a
number of challenges. First, the constraints on edge resources
precludes the use of large-sized, deep learning computer vi-
sion models. Second, the heterogeneity in edge resource types
causes different execution speeds and energy consumption during
model inference. Third, deep learning models are known to
be vulnerable to adversarial perturbations, which can make
them ineffective or lead to incorrect inferences. Although some
research that addresses the first two challenges exists, defending
against adversarial attacks at the edge remains mostly an
unresolved problem. To that end, this paper presents techniques
to realize robust and edge-based deep learning computer vision
applications thereby providing a level of assured autonomy. We
utilize state-of-the-art (SOTA) object detection attacks from the
TOG (adversarial objectness gradient attacks) suite to design
a generalized adversarial robustness evaluation procedure. It
enables fast robustness evaluations on popular object detection
architectures of YOLOv3, YOLOv3-tiny, and Faster R-CNN with
different image classification backbones to test the robustness
of these object detection models. We explore two variations of
adversarial training. The first variant augments the training data
with multiple types of attacks. The second variant exchanges a
clean image in the training set for a randomly chosen adversarial
image. Our solutions are then evaluated using the PASCAL
VOC dataset. Using the first variant, we are able to improve
the robustness of YOLOv3-tiny models by 1-2% mean average
precision (mAP) and YOLOv3 realized an improvement of up
to 17% mAP on attacked data. The second variant saw even
better results in some cases with improvements in robustness
of over 25% for YOLOv3. The Faster RCNN models also saw
improvement, however, less substantially at around 10-15%. Yet,
their mAP was improved on clean data as well.

Index Terms—machine learning, edge computing, adversarial
robustness, object detection

I. INTRODUCTION

Computer vision is a field that has applications in many
areas including surveillance, medicine, traffic management, au-
tonomous vehicles, manufacturing, and public safety. Reliable,
accurate and real-time object detection and identification are
crucial in order for these applications to function correctly.
For instance, a smart home security camera responsible for
detecting potential intruders must reliably detect and identify
people and suspicious behavior in its field of vision.

Computer vision applications are both data-intensive (e.g.,
involving continuous stream of images) and compute-intensive
(e.g., object detection and classification computations on these

stream of images). Although the cloud provides a resource-
rich environment to handle the computational needs of such
applications, the stringent response time requirements of these
applications (e.g., autonomous vehicles, navigational guidance
to the visually impaired) requires that the computations on the
critical path of these applications be deployed at the edge while
utilizing the cloud for longer time-scale computations, such as
aggregation and other forms of batch processing.

Realizing reliable and robust computer vision applications
at the computing edge is, however, fraught with many chal-
lenges. First, many of the inferencing tasks in such computer
vision applications rely on deep machine learning models.
For instance, object detection models based on convolutional
neural network (CNN) architectures like YOLO [1] are often
used in computer vision tasks due to their inference speed
and accuracy. However, these deep learning models are very
large and computationally intensive both for training and
inferencing. The constraints on the resources at the edge
therefore preclude the direct use of such models. Hence, recent
research has focused on techniques to define smaller versions
of these models to suit the edge devices, e.g., YOLO-Lite [2].

Second, although miniature versions of these deep learned
models exist, the computing edge illustrates significant hetero-
geneity in the types of available resources including a range of
hardware accelerator devices. For instance, devices like many
generations of Raspberry Pis and Beagle Bones along with
hardware accelerators, such as the Jetson Nano GPU, Neural
compute sticks like CORAL USB, and FPGAs like Ultra96v2,
are now commonplace. Although these devices are able to
execute the miniature versions of the deep learned models,
each device type demonstrates a different execution and energy
consumption profile as revealed by our prior preliminary
work [3]. Each device might also rely on a different deep
learning framework, which adds another layer of complexity.

Third, the problem with deep learning, especially as used in
computer vision, is the general vulnerability of these models
to adversarial machine learning (AML) attacks [4]. In these
attacks, often times one cannot tell that the image has been
changed, but only a slight perturbation that has been added
causes the deep learning model to make wrong predictions.
Although many of these attacks have been carried out on
image classification tasks, attacks on object detectors are also
receiving more attention lately, particularly with increasing
number of applications that utilize computer vision models,
e.g., in autonomous driving [5]. There have been several



documented attacks, such as ShapeShifter [6], Poltergeist [7],
DAG [8], Imperceptible Background Patches [9] and TOG
[10], [11] to name a few that have been very successful at
causing anything from vanishing labels to fabrication of labels.

Defending against AML attacks is a difficult problem; it
becomes even more difficult when solutions must be devised
to work effectively within the stringent constraints of edge
devices while ensuring availability, reliability, and timeliness
of the edge-based computer vision applications. This paper
addresses this urgent need and investigates defense and deploy-
ment approaches towards the robustness of these smaller, edge-
based models against adversarial machine learning attacks. To
that end, we make the following contributions:

1) Design and demonstrate a generalized adversarial ro-
bustness evaluation framework for edge-based object
detection models from both a software algorithm and
hardware capability perspective;

2) Propose two new variations of data augmentation-based
adversarial training methods which we call Quartet Ad-
versarial Training (QUAT (1.0) / QUAT (2.0)) that not
only create more robust edge-based models for object
detection, but can also be used to create more robust
cloud-based models;

3) Define an effective deployment approach to realize ro-
bust edge-based computer vision applications; and

4) Validate the efficacy of the proposed QUAT algorithms
using the Pascal VOC dataset [12].

The rest of the paper is organized as follows. Section II
provides background and related research comparing it to our
work; Section III presents the attack workflow and description
of our defense mechanism; Section IV presents the experimen-
tal testbed and evaluates the defense against multiple different
attacks; and finally Section V provides concluding remarks
and discusses future directions and threats to validity.

II. BACKGROUND AND RELATED WORK

To make this paper self-contained, we first provide back-
ground information on the use of deep learning in computer
vision focusing on object detection and adversarial machine
learning. We then describe related prior efforts comparing
them to our proposed ideas and highlight our contributions.

A. Overview of Object Detection in Computer Vision

Object detection in computer vision can be broken into
two categories: Two-stage and Single Shot, each with its
advantages and disadvantages. Two-stage object detectors like
Faster RCNN [13] have a region proposal network in the
first stage that narrows down the number of Regions of
Interests (ROIs) to approximately 2K. In the second stage,
classification is carried out on each ROI by first being fed
through a CNN and then to fully connected layers to complete
the classification and refine the bounding box. Sending each
detected ROI through a CNN, however, slows down training
and inferencing. Although two-stage detectors are accurate,
they are still considered slower.

YOLO (You Only Look Once) [1] is a famous single
shot object detection technique with numerous versions being
published over the years: YOLOv1 [1] originally and most
recently YOLOv3 [14] and YOLOv4 [15]. In this paper, we
have utilized YOLOv3 as it is extremely fast and accurate.
Moreover, there is ample support and documentation available.
YOLOv3 uses DarkNet-53 with 53 convolutional layers as its
feature extractor backbone. YOLOv3 uses a Feature Pyramid
Network to detect objects that are near or far away. YOLOv3-
tiny is a smaller version of YOLOv3 with fewer weights but
this model trades off accuracy for speed.

B. Prior Work on Edge-based Computer Vision Applications

There have been several recent works, such as OpenData-
Cam [16] and Coral-Pie [17] that demonstrate different object
detection applications at the edge and the need for edge
accelerators. In Coral-Pie, the vehicle tracking application uses
two Raspberry Pis connected to a Coral USB. The authors did
not use YOLOv3 for object detection because it was too com-
putationally expensive for the CORAL USB. OpenDataCam
is an open source tool for monitoring and tracking moving
objects in a live video stream. This application uses YOLOv3
on a desktop machine and recommends using YOLOv3-tiny
for edge devices like Jetson Nano.

C. Prior Work on Adversarial Machine Learning Attacks and
Defenses

Adversarial machine learning (AML) attacks on deep learn-
ing is a relatively new field with its start in classic linear
regression models [18]. The work on adversarial evasion
attacks [19] led to the seminal work on adversarial attacks on
deep learning models [20]. It attracted much attention in recent
years given the rapid development in deep learning especially
in computer vision tasks [4], [21], [22]. Based on how much
information is known to the attacker, AML comprises both
white box and black box attacks. Most attacks are based on
the white box setting where the model details or full training
data is known. In contrast, the work in [23] implements these
attacks in a black-box scenario, where the attacker only has
access to the output of the model given an input. One important
property of AML is that adversarial examples usually have a
high transferability between models [24]. This has become
an important metric for attacks and defenses, i.e., whether a
defense can defend against multiple attack types or whether
an attack can break multiple model types.

There has been much work on finding suitable defenses
for these attacks. Defenses fall into two categories: reactive
and proactive, where the former corresponds to detection of
adversarial images and the latter to making the model more
robust. Currently, the most successful single-model defense is
the proactive method of adversarial training [25]. The idea is
to augment the training data with adversarial examples so that
the model will take into account the data distribution shifts
caused by perturbations, and be able to correctly classify the
adversarial image. There have been other defense mechanisms
that utilize data augmentation [26] and/or pre-processing [27],



[28] where the idea is to remove/destroy the perturbations to
mitigate the adversarial impact. The combination of these data
transformations with adversarial training [29] have also been
proposed as a set of defense strategies.

D. Prior Work on Object Detector Attacks and Defenses

Compared to misleading classification in image recogni-
tion tasks, object detectors combine both object localization
and recognition. This leads to more flexible attack settings
available in both phases. Some of the more recent attacks
include DAG [8], Imperceptible Background Patches [9],
ShapeShifter [6], Poltergeist [7], and TOG [10]. In this paper,
we have used the TOG attack suite for our adversarial training
(see Section III) as well as Poltergeist for evaluation.

Since adversarial ML attacks on object detectors is still a
relatively new field, literature on defense techniques is still
scarce. Efforts, such as [30], have used a two-stage adversarial
training algorithm to improve the robustness in safety-critical
scenarios. The authors use pre-trained models that they then
fine-tune on data that they attack using a multi-step PGD
method. In [31] the authors present a similar adversarial
training approach with a model trained on PGD attacked data.
They however only use one type of attack to augment their
training data. In a recent example [32], authors update the
adversarial examples dynamically during training by selecting
the strongest attacked image based on the image classifier and
localization branches while evolving with the detector.

E. Differentiating our Proposed Work from Prior Efforts

Our work focuses on edge-based (and thereby also cloud-
based) object detection adversarial machine learning defense
strategy, which to our knowledge has not been researched ex-
tensively. Since there has not been much work on the defense
side of object detection, we attempt defense strategies that
have worked on image classification tasks. We have devised
different forms of adversarial training where we augment the
training data with four types of attacks each having a different
purpose or swap out the clean image in the training set for a
random adversarial equivalent. Most attacks like PGD [25]
or C&W [22] attempt to cause the classifier to incorrectly
classify the object. In these object detection attacks, each
attack attempts to affect the loss function in a different way
to either cause vanishing, extra, or incorrect labels.

We evaluate the attacks and defenses on both edge-based
and traditional cloud-based object detection models. We also
evaluate how well these models perform on different cloud
and edge hardware. Our work builds upon the ideas from Sec-
tion II-D, where the attacks were devised using strategies from
TOG [10]. We follow the guidelines of adversarial machine
learning evaluation [33] to build a reliable attack evaluation
workflow for object detectors in edge/cloud scenarios.

III. DESIGN OF EDGE-BASED ADVERSARIALLY ROBUST
MODELS

This section presents our proposed QUAT defense strategy.

A. Overview of the Proposed QUAT Approach

A high-level workflow of our proposed Quartet Adversarial
Training, or QUAT, approach is presented in Figure 1. The
intent is to develop adversarially robust, edge-based object
detection models. For this, we need a way to subject the
model(s) to a range of adversarial attacks. The TOG suite [10]
provides such a capability from which we derive adversarially
trained images as shown in Figure 1. These then serve as
the training data to define adversarially robust models suitable
for deployment at the edge using two variants of the QUAT
process that we have designed. These adversarially robust
models are then evaluated using a set of test data and compared
with regular models that are not adversarially robust.

Fig. 1. Worflow for Designing Edge-Based Adversarially Robust Models

B. Attack Injection and Adversarial Training using the TOG
Attack Suite

To help design a defense mechanism against adversarial
attacks on machine learned models, we first needed to under-
stand whether these attacks affect the losses differently and
if so, in what way. Thus, we sought a systematic approach
that could provide us a broad coverage of attacks on models
that could highlight these nuances. To that end we chose
TOG (Targeted Adversarial Objectness Gradient) [10], which
defines a suite of attacks on object detectors. TOG provides
a systematic adversarial robustness evaluation workflow for
object detection. Moreover, TOG works on both the One Shot
and Two Stage detectors, and further, the targeted attacks in
the TOG suite impact each model a little differently so that
the model under consideration can then be defended using a
more diverse adversarial training set.

The TOG suite ensembles several physics-based attacks
on object detectors and therefore provides a simple inte-
grated evaluation procedure for common object detectors, i.e.,
different loss functions. The object detection loss can be
broken down into three different losses: Lobj for detecting the
existence of an object, Lbbox for the location and dimension of
the bounding boxes, and Lcls for the detected object’s class.
Moreover, TOG can carry out four different types of attacks:

• Untargeted (U): Causes the model to incorrectly detect
and classify an image without targeting any specific
object.

• Vanishing (V): Causes the model to not detect any objects
in the image when there are objects.



• Mislabel (M): Causes objects to be detected, but classified
incorrectly.

• Fabricate (F): Causes additional false objects to be
detected with high confidence.

There are several hyperparameters that can be set for the
attack, such as number of iterations, confidence to filter
predictions, perturbation bound ε, and attack learning rate α.
ε is essentially the strength of the attack or the maximum
distortion. It is usually in the range of 8/255–32/255, where
255 comes from the fact that an 8-bit pixel has 256 possible
values. The confidence is in the range of 0.0-1.0, and is the
threshold that is used to output the detections based on the
confidence in the detection. The attack learning rate is the
step size of the attack and is set at 2/255, per convention.

C. Proposed Defense Strategy: QUAT

Although TOG provides systematic evaluation of attacks on
object detectors, it does not utilize the orthogonality property
underlying these attacks. We exploit this orthogonality in
the attack types to conduct adversarial data augmentation
for object detection model training and thereby seek more
adversarially robust models. Based on this idea, we then
propose a defensive strategy for object detection tasks at the
edge and the cloud. To minimize deployment costs, we make
use of pre-trained models and defensive techniques. To realize
our approach, we faced the following challenges:

Challenge 1: Although adversarial training is widely used
as the single-model deterministic inference defense to AML,
it causes the clean mean average precision (mAP) to drop. By
clean, we refer to data that has not been perturbed whereas the
attacked data is called adversarial data. While these defenses
are promising, our aim is to limit the decrease in clean mAP
as much as possible because we want to preserve the model’s
performance in normal circumstances. Since the technique is
compute-intensive, much more so for the full YOLOv3 model
than YOLOv3-tiny, we surmise that by combining all four
strong attack types from TOG into the adversarial training –
an approach we call QUAT shown in Figure 1 – will improve
the robustness of these models and the clean accuracy.

Challenge 2: Machine learned models require large training
datasets and compute power. Further, for adversarial train-
ing, the original model must encounter a range of perturba-
tions/corruptions so the model can generalize better to new
situations. The challenge is thus to find a diverse adversarial
training dataset without inducing more training costs. While
not initially important, this will be important when the models
need to be retrained with new data.

To address these challenges, we present two variants of a
defensive approach called QUAT, where the second variant
was developed based on lessons learned from the first.

1) QUAT (1.0): In the first variant, we added the attacked
images to the training set, which in turn formulates a type of
data augmentation technique [34]. The detailed operation of
QUAT (1.0) is described in Algorithm 1, where we split the
training data into four subsets U (untargeted), V (vanishing), M
(mislabeling) and F (fabrication) that are mutually exclusive

and correspond to the 4 attack types in TOG, but together
make up the full training set. This is shown on line 1. We then
attack each mutually exclusive subset with either untargeted,
mislabeling, vanishing, or fabrication attacks with ε values of
8/255, 16/255 and 32/255. The different epsilon values results
in models that are trained on different strengths of attacks
thereby allowing us to see how training is impacted with
different attack strengths. This operation is carried out on lines
2-11. After each image has been attacked, we save the attacked
images with the ground-truth bounding box information in the
traditional YOLO training format (class name, confidence, left,
top, right, bottom). The attacked datasets are combined by their
ε values so that we can train separate models on all 4 attacks
with the same epsilon value. On line 14 we then combine the
clean and attacked datasets for three QUAT (1.0) datasets of
different attack strengths.

Algorithm 1: Generation of QUAT (1.0) Images
Require: X: original training samples; ε: maximum

perturbation bounds (L∞ constraint); L: adversarial loss;
Lobj : objectness loss; Γ: sign function; O: auxiliary
target detection;

∏
x,ε[∗]: is the projection onto a

hypersphere with a radius ε centered at x ∈ X in Lp
norm; T : attack iterations; α: attack learning rate; W :
model weights

1: V ∪M ∪ F ∪ U = X s.t. V ∩M ∩ F ∩ U = ∅
2: for ε = 8, 16, 32 do
3: for v ∈ V,m ∈M,f ∈ F, u ∈ U do
4: for i = 1...T do
5: v′tε =

∏
x,ε

[
v′t−1 − αΓ

(∂Lobj(v′t−1; ∅;W )

∂v′t−1

)]
6: m′tε =

∏
x,ε

[
m′t−1 − αΓ

(∂L(m′t−1;O∗(x);W )

∂m′t−1

)]
7: f ′tε =

∏
x,ε

[
f ′t−1 + αΓ

(∂Lobj(f ′t−1; ∅;W )

∂f ′t−1

)]
8: u′tε =

∏
x,ε

[
u′t−1 + αΓ

(∂L(u′t−1; Ô(x);W )

∂u′t−1

)]
9: end for

10: end for
11: end for
12: v′tε ∈ V ′tε,m′tε ∈M ′tε, f ′tε ∈ F ′tε, u′tε ∈ U ′tε
13: V ′tε ∪M ′tε ∪ F ′tε ∪ U ′tε = X ′tε
14: Qε = X

⋃
X ′tε

2) QUAT (2.0): Our evaluation of QUAT (1.0) (see Sec-
tion IV-C) reveals long training times due to the training set
being two times the size of the regular training set and drop in
clean accuracy as its key drawbacks. Hence, we propose QUAT
(2.0), which is a rapid transfer-based adversarial tuning frame-
work for generalized object detection tasks under adversarial
settings. After implementing QUAT (1.0), we realized that
we could give the model even more diverse data by training
on multiple ε values as well as images created by attacking
different victim models. Our reasoning was that this would



also limit transferabililty of other adversarial examples as well
as different attack strengths.

Our framework makes use of a pretrained object detec-
tion model and fine-tunes it with precomputed adversarial
perturbations. We computed these perturbations in the same
way as in Algorithm 1 except that instead of splitting the
training set into four mutually exclusive subsets, we attack the
entire training set with each different attack. This way, when
randomly selecting the image to swap, it could be any of the
attacks with any bound on any victim model. It could also just
be a clean example. This transfer learning procedure induces
limited compute burden while seeking a more balanced perfor-
mance between natural robustness and adversarial robustness.
Compared to the normal object detection model training that
usually needs more than 100 iterations to reach an optimal
status, our framework only induces a limited 15− 25 number
of iterations.

As a result, we can formulate the optimization goal for the
proposed method as the following:

min
adv∈TOG

∑
Lnat(ObjDet) ∗ αnat + Ladv(ObjDet) ∗ αadv

subject to:
αnat + αadv = 1

(1)
In this way, we seek an overall goal through the minimiza-

tion of the empirical loss as a weighted-sum of adversarial
loss and natural loss. We solve this optimization problem in an
iterative way using the proposed adversarial parameter tuning
procedure.

Algorithm 2: Swap of Clean Images During Data
Loading

Require: X: original training samples; ε: perturbation
bounds (8,16,32); M : victim model (FRCNN, YOLO,
SSD); T : type of TOG attack (fab, van, mis, un, clean);
AεMT : adversarial training samples; Rand: random
selection function; load: load data for training.

1: for x ∈ X do
2: e = Rand(ε)
3: m = Rand(M)
4: t = Rand(T )
5: if t == clean then
6: load(x)
7: else
8: load(aemt) where aemt ∈ AεMT

9: end if
10: end for

Instead of adding images to the training set, we randomly
swap out a clean image for an adversarially attacked image.
We hypothesized this would help the models generalize better
to unseen attacks, as well as cut down the training time by
cutting the adversarial dataset in half. We show the QUAT (2.0)
data loading process in Algorithm 2. On lines 2,3,4 we show

TABLE I
DESCRIPTION OF DATASETS USED FOR EACH QUAT ITERATION (IT.)

(F=FABRICATION, M=MISLABELING, U=UNTARGETED, V=VANISHING,
Y=YOLOV3, FR=FASTERRCNN, S=SSD300)

QUAT It. Dataset Target Model Attack Strength Total #
1.0, 2.0 Clean VOC Train N/A N/A N/A 1
1.0 Adversarial VOC Train Y F,M,U,V 8,16,32 12
2.0 Adversarial VOC Train Y,FR,S F,M,U,V 8,16,32 36
1.0, 2.0 Clean VOC Test N/A N/A N/A 1
1.0, 2.0 Adversarial VOC Test Y,FR,S F,M,U,V 8,16,32 36
2.0 Clean VOC Test Edge N/A N/A N/A 1
2.0 Adversarial VOC Test Edge Y,FR,S F,M,U,V 8,16,32 36

how for each image in the training set, it is random whether
a clean or attacked image is loaded. If it is clean then, the
normal image is loaded on line 6. If it is to be an adversarial
image, then it is loaded based upon the victim model, attack
type, and ε, shown on line 8.

IV. EXPERIMENTAL EVALUATION

This section evaluates the efficacy of our proposed QUAT
approach validating the claims we made.

A. Object Detection Datasets and Models Used in Evaluation

We have used the PASCAL Visual Object Classes
(VOC) [12] benchmark for object detection in the evaluations.
The VOC 2007 train/validation/test set contains 9,963 images
with 26,640 annotated objects. We also used the VOC 2012
data for which the train/validation data has 11,530 images with
27,450 region of interest (ROI) annotated objects. The VOC
2007 is split around 50% and then combined with the 2012
train/validation data for the full training set per convention.

To simplify the experimentation, for QUAT (1.0), we used
object detectors YOLOv3 and YOLOv3-tiny because these
models are known for their inference speed as well as high
mAP. For QUAT (2.0), we used YOLOv3, YOLOv3-tiny, and
also Faster R-CNN with either ResNet50, MobileNet v3-large
or MobileNet v3-large-320 backbones because of the ease
of deployment of these models as well as their performance
improvements over older methods. The ResNet50 model is
used as the cloud-based model while the MobileNet models
constitute the edge-based models. Tensorflow is used as the
Deep Learning framework for the attacks, Darknet is used to
train the YOLOv3 models, and Pytorch is used for training
the Faster R-CNN models.

B. General Evaluation Methodology

To determine how well the object detection models perform
on datasets like PASCAL-VOC, they are judged on their infer-
ence time and their mean average precision (mAP). The mAP
is calculated using a metric called Intersection over Union
(IoU). The higher the mAP the better, but its semantics for
object detection are different compared to image classification
accuracy, where the classification is either correct or incorrect.
In contrast, the goal of object detection is to draw bounding
boxes around objects and then correctly classify the object(s).
To calculate the mAP, the analyst needs the ground-truth and
predicted bounding box coordinates, which can then be used
to calculate the IoU. The IoU is calculated as the amount



the predicted bounding box overlaps with the ground-truth
bounding box divided by the total area of the union of both
boxes.

To determine the efficacy of the model, the analyst sets a
threshold percentage for the overlap. The threshold is usually
set at 0.5 per convention and because of the fact that humans
can barely tell the difference between 0.3 and 0.5 IoU. For
some different datasets or competitions, a different confidence
threshold is used. The mAP is then calculated by drawing
precision-recall curves with the IoU set at different thresholds.
This is done for each class, and at this point it is just the
average precision (AP). The average AP across all classes is
then the mAP. The hypothesis is that the mAP value of the
adversarially robust model will be larger than the mAP value
of the original, adversarially vulnerable model.

To that end, we trained all YOLOv3 models from scratch,
both for QUAT and non adversarial, on the PASCAL-VOC
dataset. We utilized networks that had been pre-trained on
ImageNet and COCO for the Faster R-CNN QUAT (2.0)
models. All of the training was conducted on a desktop
(Server) with a 12 Core/24 Thread AMD Ryzen 9 3900x
processor, 32 GB RAM, an 8 GB NVIDIA RTX 2060 Super
GPU, and 2TB of SSD. The testing was carried out on the
server (representing a cloud server) as well as a Jetson TX2
device (representing the edge device).

To evaluate how well these models, i.e., QUAT (1.0)/(2.0)
versus regular, performed, we calculated the average precision
(AP) and mean Average Precision (mAP) at 0.5 confidence
(per convention), and recorded the inference time.

C. QUAT (1.0) Evaluation

The combined PASCAL VOC train/validation dataset has
16,551 images and their associated annotated bounding boxes.
The adversarial datasets for QUAT (1.0) vary in the number of
images because only certain successful attacked images were
saved. The adversarial PASCAL VOC train/val dataset then
has a total of either 27,232, 26,592, or 26,312 images. The
random sampling in this hybrid dataset manipulates the ratio
of natural and adversarial loss in the overall empirical loss
minimization optimization.

We trained each tiny model for 100 and 200 iterations,
and each full model for 50,000 iterations using the DarkNet
framework including the adversarial images into the training
data. We chose 100, 200 and 50,000 iterations, respectively,
because we wanted to train all of our models for the same
number of iterations to get a baseline. We also noticed that
the model was trained well enough after this point to gain
valuable insights.

We ran all tests with a detection confidence of 0.5, and
set the input resolution of the network to 416 pixels for both
YOLOv3 and YOLOv3-tiny. These are each standard values to
use for the PASCAL VOC dataset. There are different numbers
that can be used for the input resolution. We chose to go with
a lower number because with an edge scenario we wanted the
model to predict faster and be in a more constrained scenario.

1) Processing Time: The YOLOv3-tiny models processed
the images faster, which was to be expected. It is apparent that
the attack strength and time to process images are related.
The stronger attacks (i.e. ε = 32/255) resulted in a shorter
processing time, while the clean data took the longest to
process. This may be due to the fact that the models found
less objects in the attacked images which could lead to shorter
processing time. The YOLOv3-tiny QUAT (1.0) models were
able to process the images faster on average than the regularly
trained model. We noticed the opposite to occur for the
YOLOv3 models. We discuss this along with other resource-
aware defense approaches in Section V.

2) mAP on Clean Data: We refer to clean data as the non
perturbed or non attacked data. The models we trained did
not attain state of the art (SOTA) mAP. This is due to the
fact that we wanted to train each model from scratch to get
a baseline robustness, and to be able to compare the effects
of QUAT versus traditional training. Although they are not
reporting the highest mAP, we believe using these to be a better
comparison than using SOTA pre-trained models against the
QUAT models. In the future, with the knowledge of whether
QUAT is effective, we will try to fine-tune the models to
achieve SOTA results.

Fig. 2. Comparison of each QUAT(1.0) model to the regularly trained
model [mAP (QUAT ) − mAP (REG)]. These results demonstrate the
improvement QUAT(1.0) had over the regularly trained models on attacked
data

3) mAP on Adversarial Data: We now discuss the results
of evaluating QUAT (1.0) models on the attacked data. We
include a figure (see. Figure 2) that shows how each QUAT
(1.0) model compared to the regularly trained model for each
attack. If there is a negative value, then the regular model has a
higher mAP and if it is a positive value, the QUAT (1.0) model
has a higher mAP. All of the attacks are very effective against
the YOLOv3-tiny models in terms of decreasing their mAP.
The regtrain tiny model has the highest clean mAP but then
records the lowest mAP for each attack. While the regularly
trained model did achieve higher mAP on the clean data by 1-
3%, the QUAT (1.0) models achieved higher mAP up to 17%,
on each attacked dataset.

The ε of the attack appears to have affected the regular



models more than the QUAT (1.0) models meaning that for ε
of 32 the AP decreased more for the regularly trained model
than for the QUAT (1.0) models. This was the same pattern
for each attack. It should be noted that the ε=32/255 attacks
were the most effective attacks against each model. We also
found that the tiny and full models trained on data that had
been perturbed with ε=16/255 performed the best across the
models.

The QUAT (1.0) YOLOv3 models show that the technique
does improve robustness as seen in Figure 2. It can also be
seen in the YOLOv3-tiny models as well, but by not as wide
of a margin.

4) Transferability of Defense: To study the transferability
of the defense to other attacks, we evaluated the models against
attacks designed for SSD-300, SSD-512 and Faster R-CNN.
For these attacks we only use ε=8/255. As can be seen in
Figure 3, the attacks had roughly the same effect on the
YOLOv3-tiny models as the attacks tailored specifically for
YOLO. The transfer attacks are however not as successful on
the regularly trained Full YOLO model as well as the QUAT
(1.0) YOLO models. The QUAT (1.0) models outperformed
the regularly trained model against these transfer attacks. This
shows that the QUAT (1.0) defense does transfer to other
attacks targeting different victim models.

Fig. 3. Transfer Attack Results for both YOLOv3 and YOLOv3-tiny

D. QUAT (2.0) Evaluation
Now we will discuss how QUAT(2.0) performed against

clean and adversarial data in terms of mAP as well as inference
time. The models were evaluated on the Server as well as the
Jetson TX2.

1) Processing Time: As can be seen in Figures 4 and 5, the
Cloud-based and Edge-based YOLOv3 were faster than their
equivalent Faster RCNN models. This was to be expected due
to the fact that Faster RCNN is a two stage object detector
compared to YOLOv3 being a one shot detector. Comparing
each Faster RCNN to their QUAT (2.0) counterpart, we saw
the Faster RCNN models oscillate in terms of faster processing
speed depending on the attack. We saw something different
with YOLOv3 models, meaning the regularly trained models
processed their detections more quickly than the QUAT (2.0)
model.

Fig. 4. Averaged Evaluation Time of Server and Edge-Based Models on
Server for QUAT (2.0). This is here to help understand the processing speed
and potential trade-offs of using Faster RCNN or YOLOv3.

Fig. 5. Averaged Evaluation Time of Edge-Based Models on Edge Device
for QUAT (2.0). This is here to help understand the processing speed and
potential trade-offs of using Faster RCNN or YOLOv3.

Another point that should be noted is the increase in
processing time on the Jetson TX2 which can be seen in
Figures 4 and 5. While it is to be expected that the Jetson TX2
would take longer during inference, it is important to know
how much and directly to compare it to the same model on a
Server-type machine. Some of the models on the Server were
able to evaluate images in between 10−15ms and 75−80ms
whereas the same models on the Edge Device were only able
to evaluate images between 50ms and 350ms.

Another thing to note is that for the YOLOv3 and somewhat
for the YOLOV3-tiny models, their inference time decreased
as the attack strength increased. We hypothesize this is due to
the fact that the model was making less predictions than the
QUAT (2.0) models which stayed fairly consistent.

2) mAP on Clean Data: As can be seen in Figures 6 and
7, the QUAT (2.0) YOLOV3 models slightly underperformed



compared to their regularly trained counterparts. The QUAT
(2.0) Faster RCNN models actually performed the same, or
better than their clean counterpart on clean data. This is not
usually the case, and was not even the case for QUAT (1.0).
One hypothesis could be that the QUAT(1.0) models over-
fitted to the adversarial training data because it was twice the
size as the original training data. This has been one of the
major downfalls of Adversarial Training and a very positive
result for this research area. This shows that we may not
always have to sacrifice clean accuracy for robustness, which
is an important step in deploying deep learning applications
in safety-assured situations.

3) mAP for Adversarial Data: The QUAT (2.0) models
also performed better than their clean counterpart on adver-
sarial data (see Figures 6 and 7). It is interesting to look at
how the models performed on adversarial data generated for
different victim models. It appears that the SSD300 attacks
were strongest across each model, in particular, the Untargeted
attack with ε = 32. Also, a closer look at Figures 6 and 7
reveal that the ε of the attack affected the models trained on
clean data more than the QUAT (2.0) models. There is a much
steeper drop off in adversarial accuracy when going from 8-16
and then from 16-32. This shows that the QUAT (2.0) models
were able to generalize better to the attacks overall but also
to attacks of different perturbation bounds. Seen in Figure 7,
the models evaluated on the Jetson TX2 mirror the results of
the models ran on the Server in terms of mAP. As discussed
earlier, there were differences in their inference time.

4) mAP on Poltergeist Adversarial Data: The last evalu-
ation we did of our QUAT (2.0) approach was on a purely
black-box as well as physical attack called Poltergeist [7]. A
physical attack is carried out on the sensor or detected objects
instead of attacking through software. This particular attack
causes misclassification by using acoustic signals directed
at the inertial sensors. The authors of Poltergeist used it
in an autonomous driving scenario, but for this paper it is
a good example of a natural style corruption because it is
representative of a camera shaking due to wind or being out
of focus. There are three values that can be changed to cause
different variations of the corruption. They help determine
whether the corruption will be a radial, linear, or rotational
motion blur as well as the extent to which the image is blurred.

The attack was able to drop the QUAT(2.0) and regular
YOLOV3-tiny models to 0% mAP across all variations of
corruption. The YOLOV3 models were still able to detect
some objects correctly, but their mAP did decrease. The
highest mAP that QUAT (2.0) YOLOV3 was able to reach
was 28.6% while the best mAP for regular YOLOV3 was
only 14.3%. The QUAT (2.0) Faster RCNN models with
ResNet50, Mobilenet-v3-large, Mobilenet-v3-large-320 were
able to achieve on average 7.7%, 6.2%, and 8.1% mAP,
respectively, while their regular counterparts were able to
achieve 7.4%, 5.7%, and 6.0% mAP, respectively. The QUAT
(2.0) models saw a less substantial performance gain than
in the previous sections, but still outperformed their regular
counterparts.

(a)

(b)

(c)

Fig. 6. Evaluation of Server and Edge-Based Models on Server Using Data
Attacked with (a) Faster RCNN (b) SSD300 and (c) YOLO Architecture. This
shows the efficacy of the proposed QUAT(2.0) algorithm.



(a)

(b)

(c)

Fig. 7. Evaluation of Edge-Based Models on Edge Device Using Data
Attacked with (a) Faster RCNN (b) SSD300 and (c) YOLO Architecture.
This shows the efficacy of the proposed QUAT(2.0) algorithm.

E. Further discussion on mAP improvement in Comparison to
other Defense Methods

In a related defense work [32] for object detection, the
authors report mAP improvements of 1.1% mAP on the COCO
dataset. While this is not directly comparable because we
are looking at the Pascal VOC dataset, we wanted to show
what improvements others were able to make on similar tasks.
It also shows why the improvement in mAP for the QUAT
models was more significant than the raw numbers.

The YOLOv3-tiny QUAT (1.0) and (2.0) models mostly
performed better than their regular counterpart, but the adver-
sarial training was not as successful as it was for the YOLOv3
QUAT(1.0) or the YOLOv3 and Faster RCNN QUAT(2.0)
models. We hypothesize that this is because the YOLOv3-
tiny model is smaller and has less weights to train on and so
the extra data was less beneficial. Instead of getting a 17%
increase, we got an improvement between 1 − 2%. While
this may seem very low, it is similar to the improvements
that were obtained in the aforementioned paper. Also, the
YOLOv3-tiny models were only able to achieve 20 − 25%
mAP on clean data. If we were to make that our baseline
for the YOLOv3-tiny models, the improvement is much more
significant, than if our baseline were set at 75−100%. This also
makes the YOLOv3 and Faster RCNN models improvement
more significant because even though the baseline is at around
45% and 60 − 70% mAP, it improved by up to 17% and up
to 20%.

V. DISCUSSION AND CONCLUSIONS

In this paper, we presented an evaluation framework for
robust object detection as well as a defense technique for
the edge and cloud level. We went through two different
iterations of this process for our defense with our second
iteration being much more resource and time-friendly. This
is an important area to explore given the rising number of
edge-based applications that could benefit from robust machine
learning solutions.

The two techniques we described both had promising re-
sults. The YOLO models were in general faster at processing
than the QUAT YOLO models. However, we saw the opposite
occur for YOLOv3-tiny models, and there was not much
difference for the Faster R-CNN models. In most cases, the
QUAT approach improved the adversarial accuracy. The very
promising result was that QUAT (2.0) actually increased clean
accuracy as well as improved adversarial accuracy. This is not
usually the case with adversarial training. We hypothesize that
this is due to the fact that instead of augmenting the training
set with more data, we swapped out clean training images for
a diverse set of adversarial images. One potential issue with
the augmentation approach could be the model over-fitting to
the training set and this is why clean accuracy dropped.

Our work serves as a step towards deploying adversarially
robust deep learning object detection models at the edge as
well as the cloud.



A. Future Work

For future work, we plan to evaluate our QUAT approach
on other Object Detection models and a range of edge de-
vices. Further, we plan to define an approach to robustly and
efficiently offload computation when necessary. The offload
could serve as a robustness check because of the fact that
the smaller edge-based models lack the performance of the
cloud-based models on clean data as well as adversarial data.
We also plan to implement other object detection defenses and
see how they compare to QUAT against a variety of attacks
either physically or through software. The ultimate goal of
further research will be to construct a closed loop system for
edge-based deep learning that assures robustness and latency
demands are met. We plan to start testing on a larger scale with
real-life situations like a connected neighborhood, autonomous
driving scenario, navigational aid to the visually impaired, or
AI-assisted augmented reality for smart manufacturing.

B. Code

Code will be made available on github at
https://github.com/canadyre/quat.

ACKNOWLEDGMENTS

This work was supported in part by the US NSF’s Smart and Connected
Communities Program under Award 1952029. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the sponsor.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 779–788.

[2] R. Huang, J. Pedoeem, and C. Chen, “Yolo-lite: a real-time object
detection algorithm optimized for non-gpu computers,” in 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018, pp.
2503–2510.

[3] X. Zhou, R. Canady, S. Bao, and A. Gokhale, “Cost-effective hardware
accelerator recommendation for edge computing,” in 3rd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 20), 2020.

[4] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2020.

[5] J. Yang, A. Boloor, A. Chakrabarti, X. Zhang, and Y. Vorobey-
chik, “Finding physical adversarial examples for autonomous driv-
ing with fast and differentiable image compositing,” arXiv preprint
arXiv:2010.08844, 2020.

[6] A. D. Lascorz, S. Sharify, I. Edo, D. M. Stuart, O. M. Awad, P. Judd,
M. Mahmoud, M. Nikolic, K. Siu, Z. Poulos, and A. Moshovos,
“Shapeshifter: Enabling fine-grain data width adaptation in deep learn-
ing,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 28–41.

[7] X. Ji, Y. Cheng, Y. Zhang, K. Wang, C. Yan, W. Xu, and K. Fu,
“Poltergeist: Acoustic adversarial machine learning against cameras and
computer vision,” in 2021 IEEE Symposium on Security and Privacy
(SP), 2021, pp. 160–175.

[8] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. L. Yuille,
“Adversarial examples for semantic segmentation and object detection,”
Arxiv preprint arxiv:1703.08603, vol. abs/1703.08603, 2017.

[9] Y. Li, X. Bian, and S. Lyu, “Attacking object detectors via imperceptible
patches on background,” Arxiv preprint arxiv:1809.05966, 2018.

[10] K.-H. Chow, L. Liu, M. Loper, J. Bae, M. Emre Gursoy, S. Truex,
W. Wei, and Y. Wu, “Adversarial objectness gradient attacks in real-time
object detection systems,” in IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems, and Applications, 2020, pp.
263–272.

[11] K.-H. Chow, L. Liu, M. E. Gursoy, S. Truex, W. Wei, and Y. Wu, “Un-
derstanding object detection through an adversarial lens,” in European
Symposium on Research in Computer Security. Springer, 2020, pp.
460–481.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

[13] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” Arxiv preprint
arxiv:1506.01497, 2015.

[14] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
Arxiv preprint arxiv:1804.02767, 2018.

[15] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020.

[16] OpenDataCam, “opendatacam/opendatacam.” [Online]. Available:
https://github.com/opendatacam/opendatacam

[17] Z. Xu, H. S. Shah, and U. Ramachandran, “Coral-pie: A geo-distributed
edge-compute solution for space-time vehicle tracking,” in Middleware
’20: Proceedings of the 21st International Middleware Conference,
2020, pp. 400–414.

[18] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Arxiv preprint arxiv:1712.03141, 2017.

[19] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” Arxiv preprint arxiv:1708.06131, 2017.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[21] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” Arxiv preprint arxiv:
1511.04599, 2015.

[22] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” Arxiv preprint arxiv:1608.04644, 2016.

[23] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” 2017.

[24] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability in
machine learning: from phenomena to black-box attacks using adversar-
ial samples,” vol. Arxiv preprint arxiv:1605.07277, 2016.

[25] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2019.

[26] R. G. Lopes, D. Yin, B. Poole, J. Gilmer, and E. D. Cubuk, “Improving
robustness without sacrificing accuracy with patch gaussian augmenta-
tion,” Arxiv preprint arxiv:1906.02611, 2019.

[27] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating adver-
sarial effects through randomization,” Arxiv preprint arxiv:1711.01991,
2017.

[28] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Barrage of random
transforms for adversarially robust defense,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[29] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He, “Feature
denoising for improving adversarial robustness,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 501–509.

[30] Z. Hu and Z. Zhong, “Towards practical robustness improvement for
object detection in safety-critical scenarios,” in Deployable Machine
Learning for Security Defense, G. Wang, A. Ciptadi, and A. Ah-
madzadeh, Eds., 2020.

[31] H. Zhang and J. Wang, “Towards adversarially robust object detection,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[32] X. Chen, C. Xie, M. Tan, L. Zhang, C.-J. Hsieh, and B. Gong, “Robust
and accurate object detection via adversarial learning,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2021.

[33] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. J. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” CoRR, vol. Arxiv preprint arxiv:1902.06705, 2019.

[34] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lak-
shminarayanan, “Augmix: A simple data processing method to improve
robustness and uncertainty,” 2020.


