
On the Future of Cloud Engineering

David Bermbach∗, Abhishek Chandra†, Chandra Krintz‡, Aniruddha Gokhale§, Aleksander Slominski¶,
Lauritz Thamsen∗, Everton Cavalcante‖, Tian Guo∗∗, Ivona Brandic††, Rich Wolski‡

∗TU Berlin; Berlin, Germany; [david.bermbach,lauritz.thamsen]@tu-berlin.de
†University of Minnesota; Twin Cities, MN, USA; chandra@umn.edu

‡UC Santa Barbara; Santa Barbara, CA, USA; [ckrintz,wolski]@ucsb.edu
§Vanderbilt University; Nashville, TN, USA; a.gokhale@vanderbilt.edu

¶IBM T.J. Watson Research Center; Yorktown Heights, NY, USA; aslom@us.ibm.com
‖Federal University of Rio Grande do Norte; Natal, Brazil; everton.cavalcante@ufrn.br

∗∗Worcester Polytechnic Institute; Worcester, MA, USA; tian@wpi.edu
††Vienna University of Technology; Vienna, Austria; ivona.brandic@tuwien.ac.at

Abstract—Ever since the commercial offerings of the Cloud
started appearing in 2006, the landscape of cloud computing
has been undergoing remarkable changes with the emergence of
many different types of service offerings, developer productivity
enhancement tools, and new application classes as well as the
manifestation of cloud functionality closer to the user at the
edge. The notion of utility computing, however, has remained
constant throughout its evolution, which means that cloud users
always seek to save costs of leasing cloud resources while
maximizing their use. On the other hand, cloud providers try
to maximize their profits while assuring service-level objectives
of the cloud-hosted applications and keeping operational costs
low. All these outcomes require systematic and sound cloud
engineering principles. The aim of this paper is to highlight the
importance of cloud engineering, survey the landscape of best
practices in cloud engineering and its evolution, discuss many of
the existing cloud engineering advances, and identify both the
inherent technical challenges and research opportunities for the
future of cloud computing in general and cloud engineering in
particular.

Index Terms—Cloud Engineering, Cloud Computing

I. INTRODUCTION

Cloud Computing is a term coined for service-oriented com-

puting on cluster-based distributed systems. From a user per-

spective, it is an attractive utility-computing paradigm based

on Service-Level Agreements (SLAs), which has experienced

rapid uptake in the commercial sector. Following the lead of

Amazon Web Services (AWS)1, many Information Technology

vendors have since developed “utility,”“cloud,” or “elastic”

product and/or service offerings – from IaaS to SaaS [1] or

even human work as micro tasks [2], [3]. Apart from specific

feature set differences, all cloud computing infrastructures

share two common characteristics: they rely on operating sys-

tem virtualization (e.g., Xen, VMWare, etc.) for functionality

and/or performance isolation and they support per-user or per-

application customization via a service interface, which is

typically implemented using high-level language technologies,

APIs, and Web services.
This highly customizable, service-oriented methodology

offers many attractive features. Foremost, it simplifies the

1aws.amazon.com

use of large-scale distributed systems through transparent

and adaptive resource management, and simplification and

automation of configuration and deployment strategies for

entire systems and applications. In addition, cloud computing

enables arbitrary users to employ potentially vast numbers of

multicore cluster resources that are not necessarily owned,

managed, or controlled by the users themselves. By reducing

the barrier to entry on the use of such distributed systems,

cloud technologies encourage creativity and implementation

of applications and systems by a broad and diverse developer

base.

Today, cloud engineering, i.e., the process of building

systems and applications for cloud environments, can be

considered a relatively mature field. In fact, being “cloud-

based” can safely be assumed to be the default for the majority

of newly implemented applications. Also, there have been

years of research devoted to cloud engineering, e.g., published

in the IEEE International Conference on Cloud Engineering

(IC2E). The computing world, however, is constantly chang-

ing. New technologies such as Docker and Kubernetes, which

revolutionized application packaging and deployment, have

been developed. Emerging application domains such as IoT

and AI have imposed new requirements on the cloud beyond

those for traditional Web applications. Cloud engineers today

have access to a vast range of higher-level cloud services.

Clouds have become increasingly more decentralized with

geo-distributed cloud infrastructures; this trend being further

exacerbated by the emergence of edge computing. All this

means that cloud engineering as a discipline has undergone

major changes and continues to do so.

In this position paper, we – the organizers and the steering

committee members of IC2E – identify significant trends that

we expect to dramatically change, or which we have ob-

served already changing cloud engineering. We start by giving

an overview of today’s best practices in cloud engineering

(Section II). Then we discuss the main trends which we

have identified and their implications for cloud engineering

(Section III) before concluding the paper.

264

2021 IEEE International Conference on Cloud Engineering (IC2E)

978-1-6654-4970-0/21/$31.00 ©2021 IEEE
DOI 10.1109/IC2E52221.2021.00044

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lo
ud

 E
ng

in
ee

rin
g

(IC
2E

) |
 9

78
-1

-6
65

4-
49

70
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
2E

52
22

1.
20

21
.0

00
44

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

II. BEST PRACTICES IN CLOUD ENGINEERING

Cloud engineering introduces a number of new challenges in

a software engineering, operations, and maintenance context.

Cloud applications typically invoke existing network-facing

services through published API and amalgamate the resulting

functionality, possibly also serving it through an API. As

a result, APIs form the units of computational and storage

composition which raises the level of programming abstrac-

tion, and places reliability, performance, and maintenance

requirements on the services that export them [4], [5].

Thus, several new practices have emerged for engineering

cloud applications and services that take these new require-

ments into account. These practices principally address four

important characteristics of cloud-hosted services and applica-

tions: lifecycle, scale, composition, and cost.

Cloud services are often long-lived. At the same time,

because the software does not package and ship to a distributed

community of customers, it can be updated “on-the-fly” and

transparently to its users. Moreover, users interact with ser-

vices via APIs. As long as the APIs are stable (or accretive)

in terms of their functionality, users are unaware (and indeed

cannot become aware) of the service implementations. These

features allow cloud applications and services to be far more

responsive to changing user requirements than shipped and

packaged software.

As a result, Agile Software Engineering [6] processes have

become the predominant software engineering methodology.

An Agile development process is one in which small to

medium-sized teams constantly evolve the software to meet

an ever-changing set of requirements. Rather than engage in a

complete requirements gathering and then a software specifi-

cation process ahead of all development and testing, Agile de-

velopment gathers requirements constantly and incrementally

changes specifications, so that the software is never “too far”

out of step with the latest set of user needs and/or expectations.

Developers work with specifications (called tasks) that are

scoped so that they can be completed over short time durations

(typically two weeks or less). A set of tasks, once completed,

forms a user story which describes a specific user experience

that the software is designed to support. Ideally, user stories

can be completed during a single (short) development cycle.

As a result, the software is always ready to “release” partial

functionality (described by user stories) at the end of each

development period. Agile software engineering embodies the

notion that the lifecycle of the cloud service is typically

far longer than the lifetime of functionality associated with

any specific user requirements. That is, the software is never

“done,” but rather always in a constant state of modification

reflecting the changing needs of users and applications.

Technologies such as Continuous Integration/Continuous
Deployment (CI/CD) “pipelines” have emerged to support the

more responsive software engineering processes that cloud

engineering fosters. A CI/CD pipeline is a set of services

that developers use to make updates to a shared codebase.

Rather than “locking” the code base, CI/CD systems rely on

Agile
Development

CI/CD
Pipelines DevOps Microservices Infrastructure

as Code

Cloud Engineering

Resource
Management

Fig. 1: Main pillars of cloud engineering.

intelligent merging operations so that concurrent updates can

take place continuously and any conflict can be identified

immediately. The design of these merging operations is not

well-understood in a general sense. Ideally, all merges are

managed by the CI/CD pipeline automatically, but, in practice,

the development and testing teams must devote considerable

effort to designing merge operations and practices for each

software project.

Another feature of CI/CD technologies is that each soft-

ware merge triggers one or more delivery operations. Since

Agile promotes “ready-to-ship” development, the goal of most

CI/CD pipelines is to test the “readiness to ship” with each

merge event and to provide immediate feedback to developers

as to the status of their latest code contributions to the

codebase. Designing the altering and feedback mechanisms for

a specific CI/CD instantiation is also not a well-understood

general process. If developers use the CI/CD pipeline as

intended, they can merge contributions rapidly and frequently.

At the same time, such merges will not necessarily leave

the software in a “ready-to-ship” state. Accurately capturing

the state of the software from merge to merge is currently a

bespoke practice for most software projects. Another challenge

is how to assert quality of service of a group of software

artifacts [7]–[10].

Resource Management and scale (in terms of resource

count, i.e., scaling in/out as well as up/down) is also an

aspect of cloud engineering that has required new techno-

logical approaches. More properly, it is not the scale of the

resources that can be incorporated into a cloud service or

application but rather the speed with which the scale can

be changed up or down. In particular, clouds automate the

provisioning and de-provisioning of resources and services

under programmatic control. Because humans need not be “in

the loop” when resources are committed or released, cloud

engineering must consider how, when, and why resources are

automatically provisioned and/or de-provisioned. Thus, cloud

developers must often consider developing automation control

as part of their development activities [11], [12]. Further,

because scaling responses may be driven by user activity

(and not physics), successful feedback-control methodologies

from other disciplines (e.g., chemistry, aeronautics, signal

process, etc.) are often ineffective or failure-prone. Further,

unlike the services themselves, testing this control system, at

some level, can require a significant commitment of resources.

Future research that enables this development to take place

economically in conjunction with the development of service

functionality is needed.

Combining Agile development processes, CI/CD technolo-

265

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

gies to support those processes, and automated resource con-

trol has led to new maintenance practices for cloud engineered

services and applications. In particular, because developers

must create code that controls the operation of the services

when deployed and because CI/CD allows for frequent releases

and service updates, many engineering organizations use a

DevOps model [13]. In a DevOps setting, the development

team includes members with operational skills (ideally, all

developers on such a team have such skills) and the respon-

sibility for running the software for its users is shared by

the development staff rather than by a separate Information

Technology (IT) organization.

Conjoining development and operational responsibilities

within the same team both fits the Agile and CI/CD process

models more congruently (compared to a “traditional” siloed

development and IT organization) and improves the quality of

testing during development (since developers are ultimately

responsible for their code’s operational stability). The design

and composition of DevOps teams, however, varies consid-

erably from project to project. Ideally, all developers share

operational responsibilities equally. However, from a practical

perspective, developer and operational skill sets vary, often

substantially, within a team. The organizational principles that

lead to effective DevOps teams, particularly when geograph-

ically distributed and at scale, as well as the technologies

necessary to support such teams are both active areas of

research.

With service APIs (and not programming language primi-

tives) as the fundamental unit of application program compo-

sition, code reuse becomes a challenge for cloud-engineered

applications. Specifically, APIs are high-level and, thus, often

specialized to specific service functions; so, composing an

application from multiple, previously implemented APIs can

lead to sometimes unresolvable functional conflicts (between

service dependencies) within an application.

One approach to addressing this composition problem is

to structure services so that their APIs are as “narrow” and

simple as possible. These Microservices promote service

reuse and effective testing since individual APIs necessarily

implement simple functionality, but it creates challenges for

the applications that are composing the APIs. Specifically,

the proliferation of APIs creates the need for developers to

discover available microservices and determine the specific

functionality associated with each API. Because they are

services (and not library calls), they are often stateful. Thus,

an application that calls a microservice, encounters the current

“state” of the service (i.e., the service does not necessarily

restart from a known state when the application begins us-

ing it). Reasoning about the current state associated with a

proliferation of services within the application code creates

significant debugging challenges. Resolving these challenges

in a CI/CD context remains an important research question.

Finally, the rental model that most clouds implement as

a charging policy for cloud usage requires that developers

consider monetary cost as part of development. Fixed capacity

(non-cloud) data center resources operate on an amortization

basis with respect to accounting. The resources are charged for

when they are provisioned and the “up-front” cost is amortized

(often including depreciation) over time. Cloud resources,

famously, are available on a “pay-as-you-go” basis, meaning

that as applications automatically provision resources, their

owners are only charged for the resources that they provision.

Similarly, when an application releases resources, the recurring

rental charges for those resources also end.

The advantage of this approach is that, in principle, it

is possible for an application to optimize the cost of the

infrastructure it consumes well beyond what is possible in

a fixed-capacity/amortization model. The disadvantage is that

developers must now reason about application infrastructure

costs that fluctuate as the application uses cloud automation.

Furthermore, the adoption of microservices exacerbates this

problem since each service may carry its own unique rental

cost structure. Simply predicting what the monetary cost

associated with an application will be is a significant research

challenge. Finally, large-scale clouds often use eventually con-

sistent storage to implement their account reporting features.

Thus, even when a development team has engineered a cost

monitoring and predicting control system for its application,

it may need to rely on information that is many hours old.

If the automated resource provisioning features malfunction,

building a purely reactive system to detect and stop significant

cost overruns may not be possible. Thus, designing and im-

plementing cost control features for cloud-engineered services

and applications remains an important research challenge that

has not yet been fully addressed.

A side effect of the frequent provisioning and de-

provisioning of resources – both driven by the rental model

and CI/CD pipelines – is that cloud systems are deployed and

torn down frequently. This makes manual system deployment

prohibitively expensive and implies that the usual imperative

installation scripts will frequently encounter errors which

they are ill-equipped to cope with. As a solution, so-called

Infrastructure as Code (IaC) has emerged. In IaC, developers

specify the desired deployment outcome (resources, installed

systems) in a declarative way, while the IaC framework asserts

that the desired state is reached [14], [15]. Chef, Puppet,

Terraform, and Ansible are examples of widely used IaC

frameworks. See Fig. 1 for a high-level overview of the main

pillars of today’s cloud engineering.

III. ONGOING AND FUTURE TRENDS IN CLOUD

ENGINEERING

In this section, we will give an overview of what we

perceive as the main trends in clouds and how they affect

cloud engineering.

A. Decentralizing the world

Traditionally, the cloud is about economies of scale, thus

leading to centralization. This means that today a large part of

the world’s applications and data resides in the data centers of

a few major players. While this has obvious benefits, it also

has a number of disadvantages, which is why initiatives will

266

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

approach this from various angles or have already started to do

so. For one, government agencies in charge of antitrust laws

and regulations will be increasingly interested in the activities

of the leading cloud players. On the other hand, blockchains

as a grassroots movement towards decentralizing computation

have evolved. In either case, the implication is that future cloud

users will often work with multiple cloud providers – this is

usually referred to as cloud federation [16]. Typically, cloud

federation software abstracts the specifics of particular cloud

services, providing its own APIs and formats to use cloud

services and specify required service levels. This addresses

vendor lock-in, as users develop their applications less against

a specific cloud provider’s environment, but instead against

a federation library, having the federation software translate

and encapsulate the specifics of multiple cloud platforms.

Moreover, many cloud federation tools also automatically

select and combine cloud services from multiple providers,

given specifications of required services and service levels,

automating allocation tasks and raising the level of abstraction.

For example, cloud federation tools can provide access to

virtual machines, storage, networking, as well as higher-level

cloud services and APIs, taking into account prices, SLAs,

and data protection regulations [17]–[19]. The cloud federation

approach has recently received considerable attention in Eu-

rope, especially around the GAIA-X project2 and as a counter

proposal to the hypercentralization into very large data centers

and very few cloud providers. In this context, we expect

important research to be conducted and novel approaches to be

developed that help users make sense of and optimally utilize

multiple cloud offerings from edge to cloud infrastructures and

different providers.

B. Edge and fog: the cloud is no longer isolated

The cloud offers many highly useful properties such as

elastic scalability, on-demand billing, low total cost, and the

illusion of infinite resources. At the same time, however, the

cloud is often quite far from the end-users, which means that

end-users will often experience relatively high latency when

interfacing with the cloud. While this is acceptable for the

Web-based workloads native to the cloud, it introduces prob-

lems for emerging application domains such as interconnected

driving, e-health, or even smart homes [20]. Another problem

besides latency is bandwidth limitations: even today, it is

completely impossible to send all created data to the cloud for

processing. The majority of data are, hence, discarded [21],

[22]. Furthermore, this problem is bound to become more

pronounced since the number of sensors and IoT devices is

growing faster than network bandwidth. Finally, centralized

clouds are problematic from a privacy perspective: When all

data are stored in the same location in the cloud, linking

information from different sources can be done fast – even

at scale [23].

All these problems have at least partially been addressed

with the emergence of fog and edge computing in which

2https://www.gaia-x.eu/

Cloud Region

Intermediary Node

Edge Node

IoT Device

Edg
e

Edge

Cl
ou

d

Cloud

Fig. 2: A layered architecture of cloud, edge, intermediary fog

nodes, and IoT devices (Figure source: [24]).

additional compute nodes closer to end-users (“edge nodes”)

as well as on the way towards the cloud (see Figure 2)

are combined with existing cloud services [20]: Latency is

addressed by having parts of applications and data closer to

end-users, bandwidth limitations are addressed by preprocess-

ing and filtering data at the edge [25], [26], and privacy is

supported through strategies such as decoupled data hubs or

multi-staged filtering [23].

For cloud engineering, this means that the cloud is no

longer the only place where application code is running and

that runtime environments are becoming much more hetero-

geneous. In this sense, parts of the application and its data

may be deployed on the edge, in the network between edge

and cloud, or even on embedded devices [27], [28]. This

means that cloud systems need to be designed for various

runtime environments, need to be ready for migration without

much pre-warning, need to be able to disable resource-hungry

features when running on more constrained nodes, and need

to be able to tolerate much more frequent failures. For data

management, this is particularly challenging due to the wide

area replication [21], [29]–[31]. For this, we can likely reuse

past research on cloud federation, e.g., [16], [32].

C. LEO Internet: bringing data directly into the cloud

Traditionally, the connection from end-users and devices to

the cloud is via cables (and possibly via radio for the last mile).

This also allows network providers to insert edge and fog

intermediary nodes on the path from end device to cloud. On

an abstract level, the existing networks resemble a set of trees

that are interconnected near their root nodes via the Internet

backbone. Today, we see an alternative way emerging in which

low Earth orbit (LEO) satellites interconnected in a grid layout

can directly be accessed anywhere on Earth [33] (see Figure 4).

Such LEO constellations, e.g., the ones deployed by SpaceX’

Starlink (see Figure 3) or Amazon’s Project Kuiper, leverage

their low orbits to provide low latency, high bandwidth Internet

access. From a cloud provider perspective, this is highly

interesting because they can directly connect end devices to

the cloud while they are “yet another leaf” in the tree-based

fiber Internet. In fact, this might be one of the reasons behind

Amazon’s Project Kuiper.

267

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Overview of Starlink’s phase I LEO satellite constel-

lation (figure source: [39]).

The first generation of LEO satellites are essentially dumb

pipes: a ground station connects to a satellite, satellites forward

the requests via inter-satellite links until it is downlinked to

the destination ground station. It is, however, very likely that

the next generation of LEO satellites will include compute

infrastructure [34]–[38], e.g., for running application code

closer to end users [38], [39] or to reduce bandwidth usage

via a LEO-based content delivery network [40].

For cloud engineering, this means that existing systems

do not only need to be extended towards edge and fog (or

work together with dedicated systems), but that they also

have to be extended to the LEO edge, i.e., a LEO satellite

with compute capabilities. Key challenges there will be very

limited resources (e.g., due to space restrictions) and having no

physical access for servicing the device. Finally, LEO satellites

are permanently moving, i.e., are not geostationary. Many

systems rely on always connecting clients to the same server,

e.g., for caching or sticky sessions. Hence, creating virtual

geostationarity is arguably the main challenge.

D. IoT and AI are becoming the main applications

When the cloud started to become popular, it was primarily

used for Web-based applications, which could thus cope

with being slashdotted by quickly scaling their application

resources. The second application type that emerged in the

cloud was what was later called big data, e.g., the New York

Times’ TimesMachine [41], as large amounts of resources

could be provisioned and released on-demand. In the third

wave, we saw businesses move their traditional enterprise

systems to the cloud to save costs. While all these applications

still run in the cloud, we nowadays see many IoT and AI

(a) Traditional network topology. (b) LEO Internet topology.

Fig. 4: In traditional networks, requests traverse a hierarchical

tiered topology. In the LEO Internet, clients communicate

directly via ground-stations and inter-satellite links which form

a dynamic grid-like topology (figure source: [40]).

applications appear in the cloud. In the following, we will

briefly describe five types of such applications – both for

cloud-only and mixed cloud/edge environments.

1) Data collection at the edge: Currently, we are experi-

encing a paradigm shift towards the so-called tactile Internet

applications driven by the emergence of single-digit millisec-

ond latency in mobile 5G networks. In such applications, we

usually use IoT devices (e.g., sensors) that are rather tiny

and unable to run complex computation. Processing and data

storage is handled on more powerful edge nodes in the vicinity

of the IoT devices that are capable of running machine learning

(ML) models locally on the edge, e.g., as in edge ML [42].

After local decisions based on the IoT data, data are often

aggregated and moved to the cloud for further processing [23],

[24], e.g., to retrain ML models or for secondary use of such

data.

The main challenge for cloud engineering is that IoT devices

are often low-cost hardware with high failure rates. Further-

more, sensor aging, software failures, or various network

problems may lead to missing or incorrect data. In the short

term, such data failures will lead to wrong decisions on the

edge. When data, however, are propagated to the cloud, such

flawed data will affect decisions in the long term. Hence, data

forwarded from the edge to the cloud should always be taken

with a grain of salt and should never be assumed to be com-

plete, correct, and up to date. While there are first approaches

in this regard, e.g., [43] which uses ARIMA and exponential

smoothing, dealing with data quality issues remains a key

challenge for cloud engineering. Another challenge, in the

case of IoT applications which often rely on pub/sub, is the

question of data transport: Where are brokers deployed, where

are messages filtered, how do brokers interact, e.g., [44]–[46].

2) Geo-distributed Data Analytics: As more and more

data is generated by end-users and IoT devices, there is an

increasing need for analyzing this data to extract useful, timely

information. However, much of this data is generated at the

edge and is highly geo-distributed. Collecting and aggregating

all the data to a centralized data center is infeasible due to

bandwidth, cost, and latency constraints. As a result, there

have been research efforts towards building efficient geo-

268

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

distributed data analytics systems and algorithms [47]–[51].

Cost is an important consideration for cloud users; there

is a wide diversity in the cost of computing, storage, and

networking costs within and across cloud providers, that must

be taken into account [52]. A key research challenge is to

dynamically identify the right combination of cloud providers,

data centers, and edge resources for data analytics to provide

the user-desired cost-performance tradeoff.

For continuously-generated sensor and IoT data, timely

analysis is essential to generate actionable results. This re-

quires streaming analytics systems that are designed for geo-

distributed environments, with many dispersed data sources

as well as distributed computation resources. Such streaming

analytics systems must be able to utilize both edge resources

(for timely in-situ processing) and cloud resources (for ag-

gregating distributed data). Research efforts have focused on

designing stream computing systems for geo-distributed envi-

ronments [53]–[55] that can identify the best strategies to place

and schedule analytics tasks across multiple data centers. Re-

cent work has developed mechanisms for adaptability and fault

tolerance [56], multi-query optimizations [57] that can take

advantage of common data and operators, and algorithms to

achieve the best latency-traffic-accuracy tradeoff [58]–[60] in

generating timely results. A key research challenge is to extend

such efforts to highly heterogeneous edge-cloud environments

and to support diverse applications from traditional query

processing to video/image processing and machine learning.

3) Model training and distribution from cloud to edge: In a

geo-distributed setting, e.g., as in edge computing, ML models

are usually trained in the cloud before distributing a smaller

or reduced version of the model to the edge for inference in

the vicinity of end-users and devices [61]. When deploying

ML models over geographically distributed edge nodes, non-

stationarity arises as a challenging problem. Due to environ-

mental changes, models that have been learned and trained

and finally distributed to edge nodes might become inaccurate

and, in the worst case, not valid anymore. Inefficient model

(re-)distribution might become a performance bottleneck. In

traditional data centers, non-stationarity is solved using so-

called online learning, where models are trained in batches as

new data arrives. Applying online learning in a geo-distributed

setting bears several problems in terms of sustainability, where

distributed ML models can be independently trained and peri-

odically synchronized through a centralized parameter server.

The frequency of such synchronization controls a tradeoff

between model staleness and network load. While there are

some approaches for this, e.g., [62], [63], a key challenge for

cloud engineering is the question of when and where to train

and update models and how to distribute them to the edge [64].

4) Training deep learning models in the cloud: As cloud

providers started to provide GPU access, it enabled deep

learning practitioners to train larger deep neural networks

(DNNs) which are otherwise difficult to train with limited

cluster GPU resources. To leverage distributed resources for

training larger DNNs with terabytes of data, practitioners

often need to resort to either model parallel or data parallel

Edge
Centralized Clouds

(Hardware
accelerators)

C
ol

le
ct

ed
 a

nd
 la

be
le

d
da

ta

Edge

Edge

Geographically Distributed Clouds

Aggregated
data

Training Scripts &
Trained Models

Edge

Edge

Edge
Deployed
Models

Specialized Edges

Fig. 5: Clouds play an integral role in supporting ML lifecycles

from data collection, model training, and model storage to

inference serving (figure is adapted from [65]).

model learning approaches. The former is often used when

model memory requirements surpass the single-GPU memory,

while the latter allows distributing processing of mini-batches

to different GPU nodes. As such, one of the key questions

is how to synchronize model parameters among different

nodes for high training throughput and converged accuracy.

Prior work innovated in the SGD protocol design space and

investigated questions such as when to send gradients [66]–

[68] and what gradients to send [69]–[71]. With the need for

training DNNs beyond convolutional neural networks [72],

[73], DNN training remains a challenging cloud engineering

problem – even with the emergence of serverless training

services [74], [75]. Additionally, as the training scenario shifts

from dedicated clusters (one training job per cluster) to shared

clusters, problems such as resource provisioning (with cheap

transient resources) [76], [77] and GPU scheduling [78]–[80]

still remain unresolved to effectively trade-off cluster utiliza-

tion and training accuracy and throughput. Edge resources and

micro-data centers close to data sources can be utilized for

distributed DL training [81], which requires solving challenges

of data distribution and resource heterogeneity.

5) Deep learning inference in the cloud: As deep learning

models are widely deployed for user-facing cloud applica-

tions, we are witnessing a surge of inference workload. We

define inference workload as executing one or many deep

learning models to produce results for end-users [82]–[86].

Regardless of whether we are using CPUs or GPUs for

inference executing, an inference request often goes through

logical steps of loading models and waiting in queues. As

prior studies demonstrate, model loading time can be orders

of magnitude higher than other inference time components

using current deep learning frameworks like TensorFlow or

with serverless computing [86]–[90]. One naı̈ve solution to

reduce model loading time is to keep models in memory;

this might work well for popular models but can lead to

low resource utilization for less popular models. The resource

utilization problem is further exacerbated in the cloud when

needing to manage many deep learning models of different

popularity in parallel. An interesting research question is then

how to manage a large number of deep learning models given

269

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

dynamic workload to satisfy performance objectives while
lowering resource costs [91]. One promising direction is to

design deep learning-specific caching algorithms to manage

main memory resources and minimize the performance impact

of the model cold start problem [87]. Formulating the model

management problem as a caching problem allows leveraging

rich literature on caching; however, questions such as how

to incorporate the relatively slow PCIe transfer to GPUs and

effectively use virtual GPU memory remain unsolved. Other

potential directions for addressing model loading performance

include devising partition schemes for unified memory and

dynamic resource provisioning.

The accuracy of deployed deep learning models might

gradually deteriorate due to reasons such as concept shift-
ing [92]. To maintain desired accuracy level, recent work often

employs online training or offline retraining, sometimes called

continual learning [93]. Despite the algorithm advancement

for continuous learning, key questions such as how to monitor

and detect accuracy degradation, when to schedule continuous

learning jobs, and how to balance the resource requirements

of training and inference jobs in shared clusters remained

unsolved. One challenge in detecting accuracy degradation

is the lack of ground truth data. Recently, researchers have

leveraged offline powerful deep learning models to exploit

the “benefit of hindsight” to reduce the efforts in data la-

beling [94]. Such approaches promise to prioritize improving

model performance on more difficult corner cases by detecting

errors after the fact and supplying new labeled data. As real-

time detection of accuracy degradation is challenging, prior

work often resorts to heuristic approaches (e.g., periodically

or driven by new training data) in determining when to trigger

retraining [95]. Given that the benefit of continuous training is

hard to quantify, it can be interesting to treat it as a best-effort

workload and devise scheduling algorithms to manage shared

clusters with a mix of interactive and best-effort workload.

While the question of retraining in mixed cloud/edge cases is

mostly driven by the tradeoff between staleness and network

load, the focus in cloud-only scenarios lies in detecting the

need to retrain.

E. Going serverless: FaaSification of the cloud

Function-as-a-Service (FaaS, also known as cloud func-

tions), is an emerging paradigm for cloud software devel-

opment and deployment in which software engineers express

arbitrary computations as simple functions that are automati-

cally invoked by a cloud platform in response to cloud events

(e.g., HTTP requests, performance or availability changes in

the infrastructure, data storage and production, log activity,

etc.) – see also Figure 6 for a high-level architecture overview.

FaaS is the main building block of serverless computing,

which is hence often used as a synonym for FaaS but com-

bines FaaS with additional cloud services. FaaS platforms

automatically set up and tear down function execution envi-

ronments on-demand (typically using Linux containers [96],

[98] or sometimes micro VMs [97]), precluding the need for

developers explicitly to provision and manage servers and

Function
Container

VM

Function
Container

Function
Container

Function
Container

Function
Container

VM

Function
Container

Function
Container

Function
Container

Router

Request

Fig. 6: High-level overview of typical FaaS platforms: Re-

quests are sent to a router component responsible for load

balancing and authorization before being sent to a function

container (either an actual Linux container [96] or a mi-

croVM [97]) for execution on a VM or physical machine.

configure software stacks. Developers construct and upload

functions and specify triggering events. Functions are typically

written in high-level languages including Python, Java, or

Node.js, leverage cloud services for their implementation, and

communicate via HTTP or similar protocols.

FaaS applications are characterized by large numbers of

transient, short-lived, concurrent functions. Because the cloud

(and not the developer) provisions the necessary resources,

and such functions (by definition) can tolerate a high degree

of multi-tenancy, application owners pay a very small fee (after

any “free tier” usage) for CPU, memory, and cloud service use

(e.g., $0.20 per 1M invocations per month, and $0.00001667

per memory * execution time). To facilitate scale at a low price

point relative to virtual server rental, cloud providers restrict

function size (i.e., memory, code size, disk) and execution

duration (e.g., 5 minutes maximum).

Amazon Web Services (AWS) released the first commer-

cially viable FaaS, called AWS Lambda, in 2014 [99], [100].

Since that time, the model has received widespread adoption

because of its simplicity, low cost, scalability, and fine-grained

resource control versus traditional cloud services. Its popular-

ity has spawned similar offerings in other public clouds (e.g.,

Google and Azure Functions) and open source settings, e.g.,

knix.io (previously known as SAND [101]), OpenWhisk [96],

OpenLambda [102], or the Serverless Framework [103]. To-

day, FaaS is used to implement a wide range of scalable,

event-driven, distributed cloud applications, including websites

and Cloud APIs, Big Data analytics, microservices, image

and video processing, log analysis, data synchronization and

backup, and real-time stream processing.

The FaaS programming paradigm simplifies parallel and

concurrent programming. This is a significant step toward

enabling efficiency and scale for the next-generation (post-

Moore’s-Law era) of advanced applications, such as those that

interact with data and the physical world (e.g., the Internet

of Things (IoT)) [104], [105]. However, the complexity of

asynchronous programming that these new applications em-

body requires tools that developers can use to reason about,

debug, and optimize their applications. Today, some simple

logging services are available from serverless platforms to aid

270

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

debugging.

FaaS opens up several cloud engineering questions regard-

ing the operation and the use of FaaS platforms. Operators

of FaaS platforms have to deal with the cold start prob-

lem [106]–[109], which occurs when a request does not meet

an idle function container/VM, and corresponding challenges

in predicting request arrival. Further challenges lie in function

scheduling, especially under consideration of data and possibly

with locally stateful functions [110], [111], and in function

placement when the FaaS platform spans cloud and edge [27],

[112], [113]. We also expect developments that will close the

gap between FaaS and streaming systems [22], [114]. From

the developer side, the main challenges are how to size func-

tions or how to build applications using various composition

approaches [115], [116], especially cross-provider, or how to

benchmark FaaS platforms [117], [118].

F. Ease of Cloud use: simplicity of serverless computing
beyond FaaS

Today, there is an abundance of cloud services and open-

source tools available for developers. This, however, does not

make their life easier. It rather increases complexity since

having so many options creates cognitive load (sometimes

called choice overload or overchoice), which may lead to

analysis paralysis: how can developers know that the choice

they made is optimal? At the same time, developers are

asked to deliver more functionality faster. This can only be

achieved when using cloud services that are easy to use

for developers. The majority of developers are not cloud

engineering experts (and do not have time to become cloud

engineering experts). It is estimated that there are about 27

million developers and only “4 million developers use cloud-

based development environments” [119] – that means that the

majority of professional developers (almost 75%) are not cloud

engineering experts.

From the beginning, the cloud promised on-demand access

to computing resources [120] but did not address how to

manage them when they are not used (the so-called “scale

to zero”) or how to easily scale up and down in response

to demand. The engineering tools were eventually provided,

but developers were left with low-level building blocks –

for example, Netflix developed an internal tool to deal with

AWS auto-scaling groups called Asgard that was eventually

deprecated by Spinnaker [121] and complemented by Titus

container management [122] also developed by Netflix. Only

big companies may afford to invest in building custom tools

used by their developers to fully take advantage of cloud

services.

There is a clear need to make the consumption of cloud

services simpler for developers which is arguably the main

driving force behind serverless computing gaining popularity.

As described above in the FaaSification section, developers,

when using FaaS, only need to write functionality as functions

that are invoked when needed and they are charged only for

time when function code is running with (auto)scaling taken

care of by cloud providers. The desire for simplicity is not

limited to the business domain as similar complexities exist in

the scientific domain [123].

Serverless computing goes beyond FaaS and the same

approach (pay-only-when-functionality-used and auto-scaling)

is gaining popularity for other cloud services: cloud vendors

are now marketing many of their services as serverless in areas

such as Compute, Storage, Integration, Monitoring, Work-

flows, Devops, etc. Examples include AWS Serverless3, Azure

Serverless4, or Google Cloud Serverless5. Essentially, server-

less computing makes building cloud applications as easy as

building with LEGO: prefabricated bricks are assembled and

connected with small custom code parts (FaaS functions) and

most of the operational aspects (low-level cloud engineering)

is left to the cloud providers.

For cloud engineering research, the key challenge is focus-

ing on ease of use of cloud computing (and hence serverless

computing). The ultimate goal is to allow developers who

do not have cloud engineering expertise to get started and

be productive in building cloud-native applications without

becoming cloud experts. Only this way, the long-term promise

of the cloud becoming like other utilities, such as the electrical

grid, will be realized.

G. Machine Learning plays an increasing role for cloud
systems

Given the scale of today’s cloud infrastructures, the large

number of cloud services and application components that

cooperatively respond to the requests of thousands of users,

as well as the massive amount of concurrent tasks in parallel

cloud jobs, cloud systems cannot be efficiently managed by

human operators without appropriate tools. Therefore, in-

creasing automation of management and operation tasks is

required [61]. For this, research and practice are increasingly

turning to ML, training and applying new models for cloud

resource management and cloud operation. Significant prob-

lems that have been addressed in this way include capacity

planning, dynamic scaling and load balancing, scheduling

and placement, log analysis, anomaly detection, and threat

analysis.

A key area of work in this context focuses on having

resource managers automatically adapt resource allocation, job

scheduling, and task placement to the specifics of workloads,

computing infrastructures, and user requirements. The goal

is to reserve an adequate amount and type of resources for

the required performance of jobs and have resource managers

adjust to workload characteristics continuously by re-scaling

resource allocation and scheduling jobs based on their resource

demands onto shared cloud resources. Several approaches

use performance models to provision and dynamically scale

resources for data processing jobs [124]–[126], using either

profiling runs or historic executions of recurring jobs to

train scale-out models. Many other works apply reinforcement

learning to integrate the exploration of potential solution

3aws.amazon.com/serverless
4azure.microsoft.com/solutions/serverless
5cloud.google.com/serverless

271

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

spaces directly with an optimization towards given objectives

such as high resource utilization, low interference, and cluster

throughput. In this way, several novel cluster schedulers use

either classical or deep reinforcement learning methods to

schedule various types of cluster jobs in large data center

infrastructures [127]–[129]. Other systems use reinforcement

learning, for example, to re-provision and scale microservices

towards given service-level objectives [130]. Another possi-

bility is to apply techniques commonly utilized with recom-

mender systems, such as collaborative filtering, for scheduling

and placement in large cloud infrastructures [131], [132].

While there is no consensus yet as to which methods work

best for the different possible objectives and workloads, there

is a clear trend towards using ML and increasingly also deep

learning to optimize all aspects of resource management in

data centers.

The second area of active research and development focuses

on continuous monitoring, log analysis, and anomaly detec-

tion. Due to the scale of infrastructures and systems, human

operators increasingly have difficulties to work with the sheer

amount of monitoring data and logs generated in today’s data

centers. Therefore, a major trend is using ML to support cloud

operations, also referred to as AIOPs, in which extensive mon-

itoring is combined with stream processing and ML methods

to automate operational tasks based on the state of systems.

A central task is noticing any performance degradations and

failures early on. Many specific examples of works in this

area identify anomalies using time-series forecasting, online

clustering, and other unsupervised methods on monitoring

data, traces, and logs [133]–[136]. Other approaches use, for

instance, graph neural networks to identify and locate issues

in connected microservices [137], [138]. A closely related

task is to automatically remediate issues and threats once

they have been identified and before they lead to severe

outages, so that downtimes can be reduced and the availability

of cloud services is improved. For this task, reinforcement

learning has been proposed before [139], [140], to explore and

select remediation actions. However, having systems learn the

selection of remediation actions such as migrating or restarting

appliances through experimentation at runtime will not be an

option in many production environments. On the other hand,

reinforcement learning also might not always deal well with

the large solution spaces in any case. Therefore, other works

match problem cases and remediation actions based on what

has successfully resolved specific issues in the past [141],

even though there has not been much work on applying super-

vised learning methods in a similar manner, training models

on actions that have successfully resolved specific problems

previously. This is likely the case because training a model

for a supervised approach to automatic remediation requires a

sizable amount of training samples. Moreover, both case-based

approaches and supervised learning methods also assume that

what has worked to resolve issues in the past will work again

in similar situations in the future, which is not necessarily

a valid assumption for failures in large and complex cloud

systems. That is, while using ML for problem detection has

2000 2010 2020 2030 Beyond 2030

Edge and Fog Computing

LEO Internet

Decentralization in Cloud Engineering

Machine Learning for Cloud Management

Serverless Computing

IoT and AI as Main Applications

Fig. 7: An attempt at a timeline of the discussed trends.

gained significant attention and produced good results, ML for

problem resolution is still only at the beginning.

Several key challenges remain for ML-supported cloud

resource management and operation in general. These include

the explainability and trust in model-based resource man-

agement decisions, security and safety of ML model-based

cloud operations, as well as efficiently adapting large trained

models to new contexts as workloads and infrastructures

evolve. We, therefore, expect using monitoring data, stream

processing, and ML to automate and improve the performance,

dependability, and efficiency of cloud systems to continue to

be a major trend in research and practice.

H. Summary

To recap, this paper makes the case for the following

challenges and opportunities in cloud engineering over the next

decade that will involve significant new research and products.

• Cloud as a continuum of resources from the edge to the

fog to the traditional data center,

• Constellation of Low Earth Orbit satellites providing

space-based clusters of dynamically changing topology

of cloud resources,

• Increased integration of Distributed Ledgers and

Blockchains with the Cloud,

• Internet of Things and Artificial Intelligence becoming

the mainstay in Cloud Computing bringing increased

intelligence and automation,

• Relieving users from deployment and provisioning chal-

lenges through increased use of serverless computing,

• Data-driven machine learning modeling and control of

critical applications

See also Figure 7 for an overview of these trends over time.

IV. CONCLUSION

This paper focuses on the importance of cloud engineering

in the realm of Cloud Computing. It first lays out the con-

temporary landscape of cloud engineering, and then delves

into the numerous challenges and opportunities for cloud en-

gineering as new advances in both hardware and software give

272

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

rise to increasingly feature-rich cloud offerings and complex

distributed services.

REFERENCES

[1] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s inside
the cloud? an architectural map of the cloud landscape,” in Proc. of
ICSE Workshops, 2009.

[2] D. Bermbach, R. Kern, P. Wichmann, S. Rath, and C. Zirpins, “An
extendable toolkit for managing quality of human-based electronic
services,” in Proc. of HCOMP. AAAI Press, 2012.

[3] G. Paolacci and J. Chandler, “Inside the turk: Understanding mechan-
ical turk as a participant pool,” CDP, 2014.

[4] D. Bermbach and E. Wittern, “Benchmarking web api quality,” in Proc.
of ICWE. Springer, 2016.

[5] ——, “Benchmarking web api quality – revisited,” J. of Web Eng.,
2020.

[6] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” 2001.

[7] M. Grambow, F. Lehmann, and D. Bermbach, “Continuous bench-
marking: Using system benchmarking in build pipelines,” in Proc. of
SQUEET. IEEE, 2019.

[8] A. Van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in
Proc. of ICPE, 2012.

[9] M. Grambow, L. Meusel, E. Wittern, and D. Bermbach, “Benchmarking
Microservice Performance: A Pattern-based Approach,” in Proc. of
SAC. ACM, 2020.

[10] M. Grambow, E. Wittern, and D. Bermbach, “Benchmarking the
Performance of Microservice Applications,” SIGAPP ACR, vol. 20,
2020.

[11] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the
Cloud using Predictive Models for Workload Forecasting,” in Proc.
of CLOUD. IEEE, 2011.

[12] S. Shekhar, H. Abdel-Aziz, A. Bhattacharjee, A. Gokhale, and X. Kout-
soukos, “Performance Interference-aware Vertical Elasticity for Cloud-
hosted Latency-sensitive Applications,” in Proc. of CLOUD. IEEE,
2018.

[13] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s per-
spective. Addison-Wesley, 2015.

[14] T. Kuroda and A. Gokhale, “Model-based IT Change Management for
Large System Definitions with State-related Dependencies,” in Proc.
of EDOC. IEEE, 2014.

[15] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, “A Model-
driven Approach to Automate the Deployment and Management of
Cloud Services,” in Proc. of UCC Workshops. IEEE, 2018.

[16] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze,
“Cloud federation,” in Proc. of CLOUD COMPUTING, 2011.

[17] M. Salama and A. Shawish, “A qos-oriented inter-cloud federation
framework,” in Proc. of COMPSAC. IEEE, 2014.

[18] S. Rebai, M. Hadji, and D. Zeghlache, “Improving profit through cloud
federation,” in Proc. of CCNC. IEEE, 2015.

[19] J. Hiller, M. Kimmerlin, M. Plauth, S. Heikkila, S. Klauck, V. Lind-
fors, F. Eberhardt, D. Bursztynowski, J. L. Santos, O. Hohlfeld, and
K. Wehrle, “Giving customers control over their data: Integrating a
policy language into the cloud,” in Proc. of IC2E. IEEE, 2018.

[20] D. Bermbach, F. Pallas, D. G. Perez, P. Plebani, M. Anderson, R. Kat,
and S. Tai, “A research perspective on fog computing,” in Proc. of
ISYCC. Springer, 2017.

[21] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. Lee, and J. Kubiatowicz, “The cloud is not enough:
Saving iot from the cloud,” in Proc. of USENIX HotCloud, 2015.

[22] T. Pfandzelter and D. Bermbach, “IoT Data Processing in the Fog:
Functions, Streams, or Batch Processing?” in Proc. of DaMove. IEEE,
2019.

[23] F. Pallas, P. Raschke, and D. Bermbach, “Fog computing as privacy
enabler,” in Internet Computing. IEEE, 2020.

[24] T. Pfandzelter, J. Hasenburg, and D. Bermbach, “From zero to fog:
Efficient engineering of fog-based internet of things applications,”
Software: Practice and Experience, 2021.

[25] S. Shekhar, A. D. Chhokra, A. Bhattacharjee, G. Aupy, and A. Gokhale,
“INDICES: Exploiting Edge Resources for Performance-aware Cloud-
hosted Services,” in Proc. of ICFEC. IEEE, 2017.

[26] S. Shekhar, A. Chhokra, H. Sun, A. Gokhale, A. Dubey, and X. Kout-
soukos, “URMILA: A Performance and Mobility-aware Fog/Edge
Resource Management Middleware,” in Proc. of ISORC. IEEE, 2019.

[27] G. George, F. Bakir, R. Wolski, and C. Krintz, “Nanolambda: Imple-
menting functions as a service at all resource scales for the internet of
things.” in Proc. of SEC. IEEE, 2020.

[28] X. Qiu, A. Keerthi, T. Kotake, and A. Gokhale, “A Monocular Vision-
based Obstacle Avoidance Android/Linux Middleware for the Visually
Impaired,” in Proc. of Middleware Posters, 2019.

[29] J. Hasenburg, M. Grambow, and D. Bermbach, “Towards A Replication
Service for Data-Intensive Fog Applications,” in Proc. of SAC. ACM,
2020.

[30] ——, “FBase: A Replication Service for Data-Intensive Fog Applica-
tions,” in Tech. Rep. MCC.2019.1. TU Berlin, MCC Group, 2019.

[31] B. Confais, A. Lebre, and B. Parrein, “An object store service for a
fog/edge computing infrastructure based on ipfs and a scale-out nas,”
in Proc. of ICFEC. IEEE, 2017.

[32] D. Bermbach, T. Kurze, and S. Tai, “Cloud federation: Effects of
federated compute resources on quality of service and cost,” in Proc.
of IC2E. IEEE, 2013.

[33] T. Pultarova, “Telecommunications - space tycoons go head to head
over mega satell. netw. [news briefing],” Engineering Technology, 2015.

[34] W. R. Otte, A. Dubey, S. Pradhan, P. Patil, A. Gokhale, G. Karsai, and
J. Willemsen, “F6com: A component model for resource-constrained
and dynamic space-based computing environments,” in Proc. of ISORC.
IEEE, 2013.

[35] T. Levendovszky, A. Dubey, W. R. Otte, D. Balasubramanian,
A. Coglio, S. Nyako, W. Emfinger, P. Kumar, A. Gokhale, and
G. Karsai, “Distributed real-time managed systems: A model-driven
distributed secure information architecture platform for managed em-
bedded systems,” IEEE software, 2013.

[36] D. Balasubramanian, A. Dubey, W. Otte, T. Levendovszky, A. Gokhale,
P. Kumar, W. Emfinger, and G. Karsai, “DREMS ML: A Wide
Spectrum Architecture Design Language for Distributed Computing
Platforms,” Science of Computer Programming, 2015.

[37] D. Bhattacherjee, S. Kassing, M. Licciardello, and A. Singla, “In-
orbit computing: An outlandish thought experiment?” in Proc. of ACM
HotNets, 2020.

[38] V. Bhosale, K. Bhardwaj, and A. Gavrilovska, “Toward loosely coupled
orchestration for the LEO satell. edge,” in Proc. of USENIX HotEdge,
2020.

[39] T. Pfandzelter, J. Hasenburg, and D. Bermbach, “Towards a Computing
Platform for the LEO Edge,” in Proc. of EdgeSys. ACM, 2021.

[40] T. Pfandzelter and D. Bermbach, “Edge (of the Earth) Replication:
Optimizing Content Delivery in Large LEO Satellite Communication
Networks,” in Proc. of CCGrid. IEEE, 2021.

[41] D. Gottfrid, “The new york times archives + amazon web services =
timesmachine,” in https://open.blogs.nytimes.com/2008/05/21/the-new-
york-times-archives-amazon-web-services-timesmachine/ (accessed on
June 4, 2021), 2008.

[42] Machine learning with model filtering and model mix-
ing for edge devices in a heterogeneous environment,
https://patents.google.com/patent/US20160217387A1/en, google
patent, 2016.

[43] I. Lujic, V. D. Maio, and I. Brandic, “Resilient edge data management
framework,” IEEE TSC, 2020.

[44] J. Hasenburg and D. Bermbach, “DisGB: Using geo-context informa-
tion for efficient routing in geo-distributed pub/sub systems,” in Proc.
of UCC. IEEE, 2020.

[45] ——, “GeoBroker: Leveraging geo-context for IoT data distribution,”
Elsevier Comp. Comm., 2020.

[46] J. Hasenburg, F. Stanek, F. Tschorsch, and D. Bermbach, “Managing
latency and excess data dissemination in fog-based publish/subscribe
systems,” in Proc. of ICFC. IEEE, 2020.

[47] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in Proc. of
SIGCOMM. ACM, 2015.

[48] B. Heintz, A. Chandra, R. K. Sitaraman, and J. Weissman, “End-to-end
optimization for geo-distributed mapreduce,” IEEE TCC, 2016.

[49] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos,
J. Padhye, and G. Varghese, “Wanalytics: Geo-distributed analytics for
a data intensive world,” in Proc. of SIGMOD. ACM, 2015.

273

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

[50] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet: Wan-
aware optimization for analytics queries,” in Proc. of OSDI. USENIX,
2016.

[51] C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and
M. Zhang, “Wide-area analytics with multiple resources,” in Proc. of
EuroSys. ACM, 2018.

[52] K. Oh, A. Chandra, and J. B. Weissman, “A network cost-aware geo-
distributed data analytics system,” in Proc. of CCGRID. IEEE, 2020.

[53] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggre-
gation and degradation in jetstream: Streaming analytics in the wide
area,” in Proc. of USENIX NSDI. USENIX, 2014.

[54] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing grouped
aggregation in geo-distributed streaming analytics,” in Proc. of HPDC.
ACM, 2015.

[55] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“AWStream: Adaptive Wide-Area Streaming Analytics,” in Proc. of
SIGCOMM. ACM, 2018.

[56] A. Jonathan, A. Chandra, and J. Weissman, “Wasp: Wide-area adaptive
stream processing,” in Proc. of Middleware. ACM, 2020.

[57] ——, “Multi-query optimization in wide-area streaming analytics,” in
Proc. of SoCC. ACM, 2018.

[58] B. Heintz, A. Chandra, and R. K. Sitaraman, “Trading timeliness and
accuracy in geo-distributed streaming analytics,” in Proc. of SoCC.
ACM, 2016.

[59] ——, “Optimizing timeliness and cost in geo-distributed streaming
analytics,” IEEE TCC, 2020.

[60] D. Kumar, J. Li, A. Chandra, and R. Sitaraman, “A ttl-based approach
for data aggregation in geo-distributed streaming analytics,” in ACM
SIGMETRICS, 2019.

[61] A. Bhattacharjee, Y. Barve, S. Khare, S. Bao, A. Gokhale, and
T. Damiano, “Stratum: A Serverless Framework for the Lifecycle
Management of Machine Learning-based Data Analytics Tasks,” in
Proc. of {USENIX} OpML, 2019.

[62] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton,
and E. P. Xing, “Solving the straggler problem with bounded staleness,”
in HotOS. USENIX, 2013.

[63] A. Aral, M. Erol-Kantarci, and I. Brandic, “Staleness control for edge
data analytics,” ACM POMACS, 2020.

[64] A. Bhattacharjee, A. D. Chhokra, H. Sun, S. Shekhar, A. Gokhale,
G. Karsai, and A. Dubey, “Deep-Edge: An Efficient Framework for
Deep Learning Model Update on Heterogeneous Edge,” in Proc. of
ICFEC. IEEE, 2020.

[65] J. E. Gonzalez, “AI-Systems: Machine Learning Lifecycle,” in
https://ucbrise.github.io/cs294-ai-sys-fa19/assets/lectures/lec03/03 ml-
lifecycle.pdf (accessed on July 22, 2021).

[66] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale synchronous
parallel distributed training for deep learning,” in Proc.of ICDCS, 2019.

[67] S. Dutta, J. Wang, and G. Joshi, “Slow and stale gradients can win the
race,” arXiv preprint arXiv:2003.10579, 2020.

[68] S. Li, O. Mangoubi, L. Xu, and T. Guo, “Sync-switch: Hybrid
parameter synchronization for distributed deep learning,” in Proc.of
ICDCS, 2021.

[69] A. F. Aji and K. Heafield, “Sparse Communication for Distributed
Gradient Descent,” arXiv preprint arXiv:1704.05021, 2017.

[70] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li,
“TernGrad: Ternary Gradients to Reduce Communication in Distributed
Deep Learning,” NeurIPS, 2017.

[71] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-Efficient SGD via Gradient Quantization and Encod-
ing,” NeurIPS, 2017.

[72] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora,
R. Netravali, M. Kim, and Others, “Dorylus: Affordable, Scalable, and
Accurate GNN Training with Distributed CPU Servers and Serverless
Threads,” in Proc.of OSDI, 2021.

[73] M. Wang, C.-C. Huang, and J. Li, “Supporting Very Large Models
using Automatic Dataflow Graph Partitioning,” in Proc.of EuroSys.
ACM, 2019.

[74] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus:
a Serverless Framework for End-to-end ML Workflows,” in Proc.of
SoCC. ACM, 2019.

[75] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards Demystifying Serverless Machine
Learning Training,” in Proc.of SIGMOD. ACM, 2021.

[76] S. Li, R. J. Walls, and T. Guo, “Characterizing and Modeling Dis-
tributed Training with Transient Cloud GPU Servers,” in Proc.of
ICDCS, 2020.

[77] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons,
“Proteus: Agile ML Elasticity Through Tiered Reliability in Dynamic
Resource Markets,” in Proc.of EuroSys. ACM, 2017.

[78] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An Efficient
Dynamic Resource Scheduler for Deep Learning Clusters,” in Proc.of
EuroSys. ACM, 2018.

[79] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A GPU Cluster Manager for Distributed Deep
Learning,” in Proc.of USENIX NSDI 19, 2019.

[80] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive
Cluster Scheduling for Goodput-Optimized Deep Learning,” in Proc.of
USENIX OSDI, 2021.

[81] R. Hong and A. Chandra, “Dlion: Decentralized distributed deep
learning in micro-clouds,” in Proc. of HPDC. ACM, 2021.

[82] D. Crankshaw, G.-E. Sela, X. Mo, C. Zumar, I. Stoica, J. Gonzalez,
and A. Tumanov, “InferLine: latency-aware provisioning and scaling
for prediction serving pipelines,” in Proc.of SoCC. ACM, 2020.

[83] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski,
A. Khurana, R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and
J. Mars, “Sirius: An open end-to-end voice and vision personal assistant
and its implications for future warehouse scale computers,” in Proc.of
ASPLOS. ACM, 2015.

[84] T. Capes, P. Coles, A. Conkie, L. Golipour, A. Hadjitarkhani, Q. Hu,
N. Huddleston, M. Hunt, J. Li, M. Neeracher et al., “Siri on-device
deep learning-guided unit selection text-to-speech system.” in Proc.of
INTERSPEECH, 2017.

[85] O. Good, “How google translate squeezes deep learning onto a
phone,” in Google AI Blog, https://ai.googleblog.com/2015/07/how-
google-translate-squeezes-deep.html, 2015.

[86] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “Barista: Efficient and Scalable Serverless Serving System
for Deep Learning Prediction Services,” in Proc. of IC2E. IEEE, 2019.

[87] G. R. Gilman, S. S. Ogden, R. J. Walls, and T. Guo, “Challenges and
Opportunities of DNN Model Execution Caching,” in Proc. of DIDL.
ACM, 2019.

[88] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “INFaaS:
Automated Model-less Inference Serving,” in Proc.of USENIX ATC,
2021.

[89] A. Fuerst and P. Sharma, “FaasCache: keeping serverless computing
alive with greedy-dual caching,” in Proc. of ASPLOS. ACM, 2021.

[90] X. Zhou, R. Canady, S. Bao, and A. Gokhale, “Cost-effective Hard-
ware Accelerator Recommendation for Edge Computing,” in Proc. of
{USENIX} HotEdge, 2020.

[91] Y. D. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee,
Z. Kang, H. Sun, and A. Gokhale, “FECBench: A Holistic Interference-
aware Approach for Application Performance Modeling,” in Proc. of
IC2E. IEEE, 2019.

[92] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under
Concept Drift: A Review,” IEEE Transactions on Knowledge and Data
Engineering, 2019.

[93] T. Diethe, T. Borchert, E. Thereska, B. Balle, and N. Lawrence,
“Continual Learning in Practice,” 2019.

[94] “Andrej karpathy’s keynote,” https://youtu.be/g6bOwQdCJrc, 2021.

[95] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” 2019.

[96] I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah,
P. Suter, and O. Tardieu, “The Serverless Trilemma: Function Compo-
sition for Serverless Computing,” in Proc. of Onward! ACM, 2017.

[97] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in Proc. of {USENIX} {NSDI}. USENIX,
2020.

[98] T. Pfandzelter and D. Bermbach, “tinyFaaS: A Lightweight FaaS
Platform for Edge Environments,” in Proc. of ICFC. IEEE, 2020.

[99] “AWS Lambda,” https://aws.amazon.com/lambda/, [accessed 8-Apr-
2021].

[100] “AWS Lambda Pricing Model,” https://aws.amazon.com/lambda/pricing/,
[accessed 8-Apr-2021].

274

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

[101] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: Towards high-performance serverless computing,”
in Proc. of USENIX ATC, 2018.

[102] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” in Proc. of USENIX HotCloud, 2016.

[103] “Serverless Framework,” [accessed 10-Feb-2021] www.serverless.com.

[104] “Exploiting Parallelism and Scalability: Report on an NSF-Sponsored
Workshop,” http://people.duke.edu/ bcl15/documents/xps2015-
report.pdf, [accessed 14-September-2017].

[105] G. McGrath and P. R. Brenner, “Serverless Computing: Design, Im-
plementation, and Performance,” in Proc. of ICDCS Workshops, 2017.

[106] J. Manner, M. Endress, T. Heckel, and G. Wirtz, “Cold start influencing
factors in function as a service,” in Proc. of UCC Workshops. IEEE,
2018.

[107] H. Puripunpinyo and M. H. Samadzadeh, “Effect of optimizing java
deployment artifacts on aws lambda,” in Proc. of DCPerf. IEEE, 2017.

[108] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing mi-
croservice performance,” in Proc. of IC2E. IEEE, 2018.

[109] W. Lloyd, M. Vu, B. Zhang, O. David, and G. Leavesley, “Improv-
ing application migration to serverless computing platforms: Latency
mitigation with keep-alive workloads,” in Proc. of WoSC. IEEE, 2018.

[110] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One
step forward, two steps back,” Proc. of CIDR, 2019.

[111] V. Sreekanti, C. W. X. C. Lin, J. M. Faleiro, J. E. Gonzalez, J. M.
Hellerstein, and A. Tumanov, “Cloudburst: Stateful functions-as-a-
service,” Proc. of VLDB, 2020.

[112] D. Bermbach, S. Maghsudi, J. Hasenburg, and T. Pfandzelter, “Towards
auction-based function placement in serverless fog platforms,” in Proc.
of ICFC. IEEE, 2020.

[113] L. Baresi and D. F. Mendonca, “Towards a serverless platform for edge
computing,” in Proc. of ICFC. IEEE, 2019.

[114] A. Jain, A. F. Baarzi, G. Kesidis, B. Urgaonkar, N. Alfares, and
M. Kandemir, “Splitserve: Efficiently splitting apache spark jobs across
faas and iaas,” in Proc. of Middleware, 2020.

[115] D. Bermbach, A.-S. Karakaya, and S. Buchholz, “Using Application
Knowledge to Reduce Cold Starts in FaaS Services,” in Proc. of SAC.
ACM, 2020.

[116] S. Ristov, S. Pedratscher, and T. Fahringer, “Afcl: An abstract function
choreography language for serverless workflow specification,” Elsevier
FGCS, 2021.

[117] J. Scheuner and P. Leitner, “Function-as-a-service performance evalu-
ation: A multivocal literature review,” Elsevier JSS, 2020.

[118] M. Grambow, T. Pfandzelter, L. Burchard, C. Schubert, M. Zhao,
and D. Bermbach, “BeFaaS: An Application-Centric Benchmarking
Framework for FaaS Platforms,” in Proc. of IC2E. IEEE, 2021.

[119] Daxx, “How Many Software Developers Are There in the
World?” in https://www.daxx.com/blog/development-trends/number-
software-developers-world, 2020.

[120] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” CACM, 2010.

[121] Netflix Tech Blog, “Moving from asgard to spinnaker,” in
https://netflixtechblog.com/moving-from-asgard-to-spinnaker-
a000b2f7ed17, 2015.

[122] ——, “The evolution of container usage at netflix,” in
https://netflixtechblog.com/the-evolution-of-container-usage-at-netflix-
3abfc096781b, 2017.

[123] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: distributed computing for the 99%,” in Proc. of SoCC. ACM,
2017.

[124] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient Performance Prediction for Large-Scale Advanced
Analytics,” in Proc. of USENIX NSDI. USENIX, 2016.

[125] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively Unearthing the Best Cloud Config-
urations for Big Data Analytics,” in Proc. of USENIX NSDI. USENIX,
2017.

[126] L. Thamsen, I. Verbitskiy, J. Beilharz, T. Renner, A. Polze, and O. Kao,
“Ellis: Dynamically Scaling Distributed Dataflows to Meet Runtime
Targets,” in Proc. of CloudCom. IEEE, 2017.

[127] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc.of HotNets. ACM,
2016.

[128] M. Cheong, H. Lee, I. Yeom, and H. Woo, “Scarl: Attentive rein-
forcement learning-based scheduling in a multi-resource heterogeneous
cluster,” IEEE Access, 2019.

[129] L. Thamsen, J. Beilharz, V. T. Tran, S. Nedelkoski, and O. Kao,
“Mary, hugo, and hugo*: Learning to schedule distributed data-parallel
processing jobs on shared clusters,” Concurrency and Computation:
Practice and Experience, 2020.

[130] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, “FIRM:
An intelligent fine-grained resource management framework for slo-
oriented microservices,” in Proc. of OSDI). USENIX, 2020.

[131] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware Scheduling for
Heterogeneous Datacenters,” in Proc. of ASPLOS. ACM, 2013.

[132] ——, “Quasar: Resource-Efficient and QoS-aware Cluster Manage-
ment,” in Proc. of ASPLOS. ACM, 2014.

[133] A. Gulenko, M. Wallschläger, F. Schmidt, O. Kao, and F. Liu, “Eval-
uating machine learning algorithms for anomaly detection in clouds,”
in Proc.of Big Data. IEEE, 2016.

[134] C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei, and Z. Xiang, “Time
series anomaly detection for trustworthy services in cloud computing
systems,” IEEE Transactions on Big Data, 2017.

[135] O. Ibidunmoye, A.-R. Rezaie, and E. Elmroth, “Adaptive anomaly de-
tection in performance metric streams,” IEEE Transactions on Network
and Service Management, 2018.

[136] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao,
“Self-attentive classification-based anomaly detection in unstructured
logs,” in Proc. of ICDM. IEEE, 2020.

[137] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause
localization of performance issues in microservices,” in Proc. of NOMS.
IEEE, 2020.

[138] D. Scheinert and A. Acker, “Telesto: A graph neural network model for
anomaly classification in cloud services,” in Proc. of ICSOC. Springer,
2020.

[139] C. Yuan and Q. Zhu, “A reinforcement learning approach to automatic
error recovery,” in Proc.of DSN. IEEE, 2007.

[140] H. Ikeuchi, A. Watanabe, T. Hirao, M. Morishita, M. Nishino, Y. Mat-
suo, and K. Watanabe, “Recovery command generation towards auto-
matic recovery in ict systems by seq2seq learning,” in Proc.of NOMS.
IEEE, 2020.

[141] S. Montani and C. Anglano, “Case-based reasoning for autonomous
service failure diagnosis and remediation in software systems,” in Proc.
of ECCBR. Springer, 2006.

275

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 29,2023 at 00:33:15 UTC from IEEE Xplore. Restrictions apply.

