
Heuristics and Genetic Algorithms for Adaptive Deployments in Large-scale,
Real-time Systems

James Edmondson and Aniruddha Gokhale and Sandeep Neema
Dept of EECS, Vanderbilt University

Nashville, TN 37212, USA
{james.r.edmondson,a.gokhale,sandeep.neema}@vanderbilt.edu

Abstract

Distributed, real-time and embedded (DRE) applications are
often deployed into mission-critical scenarios where money
or lives are at stake. Examples of these types of scenarios
include search-and-rescue missions, shipboard computing,
satellite infrastructure, power grids, and air traffic control.
Once deployed, these DRE applications must service impor-
tant requests continuously and perpetually, but over time, the
environment may change. Hardware may fail or degrade in
performance. Computers may move to other locations where
latency is worse between important parts of the DRE appli-
cation. Despite these changes in the environment, the DRE
application needs to adapt and continue to respond and op-
erate. In the past, developers or system administrators were
required to manually update or reboot the DRE application,
analyze or guess the best remaining configurations, and move
important processing to the best hardware available. Each
of these steps are prone to human error that may result in
unacceptable configurations of the DRE application. In this
paper, we discuss ongoing work in the context of redeploy-
ment of adaptive, mission-critical DRE applications via new
heuristics and genetic algorithms that approximate the sub-
graph isomorphic problem, a known NP complete problem,
and middleware and tools that use the results of these heuris-
tics to automate the redeployment process. We provide results
that show some of the scenarios that result in perfect deploy-
ment approximations, and we also motivate future work to
address the blind spots in our approximation techniques.

1 Introduction
Distributed, real-time and embedded (DRE) systems are of-
ten characterized by stringent quality-of-service needs de-
spite scarce resources (e.g., CPU, memory, or network ca-
pacity). Of the types of DRE systems, none are harder to
meet quality-of-service requirements than continuous, adap-
tive large-scale systems—which require online solutions to
meet their needs. In this paper, it is within this context that
we motivate our work in distributed middleware develop-
ment.

We are creating a suite of open-source tools called
the Multi-Agent Distributed Adaptive Resource Allocation
(MADARA) suite, which currently includes a high perfor-
mance knowledge and reasoning engine, and an automated

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

testing and deployment toolset for large-scale DRE systems.
We focus our description on our ongoing work with the de-
ployment engine to accomodate online, continuously opti-
mized redeployments according to a high-level application
data-flow.

Figure 1: Satellite-connected real-time system deployment
consisting of flying drones in a search and rescue mission

In this section, we motivate our work with the scenario
shown in Figure 1. In this situation, a search-and-rescue op-
eration is underway to detect and aid survivors of an earth-
quake or other catastrophic event. Thousands of airborne
drones are deployed into a massive disaster area. The drones
are fitted with cameras and sensors to aid in their search for
stranded or trapped survivors, but drone operators have to
balance data and power concerns with how they deploy these
mission-critical drones.

Disaster areas, like those that occur after earthquakes,
rarely have full network connectivity (e.g., internet), charg-
ing stations, and power. Additionally, gas leaks or even ra-
diation leaks (e.g., recently after the earthquake and tsunami
that disabled the Fukushima reactors) may make the area
unapproachable to the drone operators or rescue personnel
and may also disrupt long-range communications (e.g., ra-
dio links and line-of-sight based communications), causing
blackout zones in the search area without the aid of au-
tonomous agents like the drones.



Consequently, human-based drone operators and analyz-
ers of the drone data are likely to be restricted to a satel-
lite link or a set number of low-bandwidth radio links into
the disaster zone, and using this link is constrained and
expensive—in terms of power usage for the drones. Drone
operators will be unable to receive direct feeds from each of
the thousands of drones in the area, and are going to need to
receive video or sensor data from a small subset of drones—
possibly from only a handful, if the satellite or radio band-
width available is in the kilobytes per second range.

In order to maximize the time that these drones can ser-
vice the disaster area, the operators create a data workflow
that describes the way that video and sensor data will be col-
lected and how the drones will need to self-organize in the
field so that one of them out of a large group can commu-
nicate with the operators, and the number of such special
drones that serve as collection points will be dependent on
the available bandwidth and estimated power usage of the
communication mechanism available between human oper-
ators and the disaster area. An example of such a workflow
is shown in Figure 2.

collector 

Figure 2: Example data workflow for one of the dynamically
formed drone subgraphs

A short path between the collector drone and the drones it
services is important because the longer the path between
them, the more likely that data resends are required and
the longer that communication takes, which again is the
highest drain on the drone’s battery-life. If we can mini-
mize the latencies that exist in deployments like Figure 2,
which in turn compromise the subgraphs of the thousands of
drones deployed in the configuration shown in Figure 1, then
we can increase the longevity of the drones and potentially
find more survivors with less downtime due to returning the
drones to a demarcation point for recharging and also al-
low for the drones to collect data locally and only sending
data, images or video that has a high likelihood of locating a
survivor. An initial deployment is unlikely to remain the op-
timal one because drones may move away from their group
when they find structures that may have humans in them,
hear sounds or have sensors for bodyheat, or even to avoid
obstacles, which means that any deployment will have to be

elastic to change and must be solved continuously and on-
line.

The real problem with creating an online, continuous so-
lution to this scenario is that this is a provably NP complete
problem. Specifically, this motivating scenario is a type of
subgraph isomorphism problem (Garey and Johnson 1979)
where two graphs are given as input and one must deter-
mine if one of the graphs (like the one in Figure 2) is con-
tained in the larger one (in this case, the overall cloud of
drones that are available for the subgraph as shown in Fig-
ure 1 but at a larger scale of thousands). When you add mul-
tiple subgraphs, as we do in this scenario, it compounds the
intractibility. This is also an optimization problem because
out of all the possible subgraphs, we are interested in finding
the best one (the one with the lowest total latency—which
directly reflect radio transmission times and power usage for
the drones) that fits with all of the other data workflows in
the overall network.

In this paper, we discuss our work in approximating this
problem with heuristics and genetic algorithms. We validate
these approaches with certain types of subgraphs in large
deployments of thousands of drones or components.

In Section 2, we outline related work in approximating
these types of NP complete problems. Section 3 defines
some of our own solutions, including heuristics and ge-
netic algorithms. Section 4 presents experiments and results
of our techniques in approximating not only the motivat-
ing scenario but also other highly-interconnected types of
subgraphs. Section 5 discusses remaining challenges in our
open problem and status of the toolset. Finally, Section 6 dis-
cusses the contributions of the paper as well as future work.

2 Related Work
In this section, we investigate related work in subgraph
isomorphic solutions and techniques for approximating NP
complete problems.

2.1 Approximations for Subgraph Isomorphic
Problem

The LeRP algorithm (DePiero and Krout 2003) forms a
node-to-node mapping from a neighborhood of nodes and
can be computed with polynomial effort, producing a result
for a 50-100 node subgraph within half a second. It is not ap-
parent whether or not this approach can handle disruptions
in the local network that result in inexact subgraph matches
(e.g. or when drones are allowed to route traffic through oth-
ers close by, which we’ve found is relavant to our motivating
scenario. Still, we hope to look into this heuristic in future
analyses.

Another framework was recently presented (Zampelli,
Deville, and Dupont 2005) that allows for constraints
mapped onto a pattern intended for subgraph isomorphic
matching. The main problem with this approach is the time
that it takes. A target graph of 20-200 can take between 8 to
36 minutes and still has double digit percentages of unsolved
subgraphs. This is unacceptable for an online, mission crit-
ical application such as that defined in the motivating sce-
nario.



2.2 Constraint Satisfaction Problem Solving
Haldik et. al. (Hladik et al. 2008) presented a constraint pro-
gramming technique to solve static allocation problems in
real-time tasks. Cucu-Grosjean et. al. (Cucu-Grosjean and
Buffet 2009) proposed two approaches to addressing real-
time periodic scheduling on heterogeneous platforms (a CSP
problem). Despite being faster than traditional CSP solvers,
both techniques require dozens to hundreds of seconds to
solve even small number of constraints (and our motivating
scenario requires thousands).

White et. al. (White et al. 2008) recently scaled a CSP
solver to work with 5,000 features in a software product line.
The time required for doing this ranged from 50 seconds in
an incomplete bounded worst case to 170 seconds to find an
optimal configuration. Although this is a promising result, it
is still inadequate for continuous online systems.

2.3 Research in Genetic Algorithms for CSPs
Whereas CSP solving typically involves backtracking
through potential matches, genetic algorithms are a type
of local search that tries to approximate an optimal match
through mutations, fitness functions, and crossbreeding best
candidates according to the fitness criteria.

Heward et. al. (Heward et al. 2011) recently used genetic
algorithms to optimize configurations of monitors in a web
services application. Unfortunately, this method is unsuit-
able for our use cases as it requires roughly an hour to com-
pute an approximated good configuration.

Wieczorek et. al. (Wieczorek, Prodan, and Fahringer
2005) used a genetic algorithm to schedule scientific
workflows in Grid environments, but their mutation-based
scheme similarly required at least hundreds of seconds
(some of their tests showed requirements of tens of thou-
sands of seconds—several hours).

Other implementers have used combinations of genetic
algorithms and neural networks (Javadi, Farmani, and Tan
2005) and even knowledge and reasoning (Hu and Yang
2004) to converge to optimal solutions, but each of these
concentrate on offline or human-interactive solutions, and
are not suitable to real-time problem solving because they
require many minutes or hours to approximate a solution,
and our motivating scenario is an evolving, real-time prob-
lem.

2.4 Research in Heuristics for CSPs
Heuristics approximate good solutions and often serve
as guides for local search techniques like genetic algo-
rithms, simulated annealing, or backtracking and depth-first
searches. Some researchers use these heuristics to directly
approximate scheduling (Heward et al. 2011) in grids and
workflow solutions (Cucinotta and Anastasi 2011) for real-
time solutions. The latter is of special interest to us as the
heuristic approximates a constraint problem involving a set
of workflows within milliseconds. However, this solution
was demonstrated on only five hosts and not thousands, and
it is not readily apparent how to migrate our motivating sce-
nario to the heuristic defined in either of the related papers.

The heuristic-based anytime A* search (Hansen and Zhou
2007) is similar in some ways to our approach to genetic al-
gorithms for this motivating scenario in that both solutions
may be stopped at any time and a solution is presented to the
user (though it may not necessarily be optimal). The heuris-
tics offered in this paper may be used with an A* search, and
may be the subject of future work.

We are unaware of any deployment frameworks, other
than ours, that approximate this kind of problem in real-time
situations.

Algorithm 1 CID Heuristic
1: for all i ∈ deployment do
2: if degree (i) > 0 then
3: solution[i]← best candidate (utilities[degree(i)])
4: end if
5: end for
6: for all i ∈ deployment do
7: if degree (i) > 0 then
8: for j ∈ connections(deployment, i) ∧ j /∈

solved(solution) do
9: solution[j]← best candidate (latencies[i])

10: end for
11: end if
12: end for
13: for all i ∈ deployment ∧ i /∈ solved(solution) do
14: solution[i]← best candidate (utilities[size])
15: end for

3 Solution Approach
In this section, we discuss the heuristics and genetic algo-
rithms that we are currently using to approximate the prob-
lem discussed in the motivating scenario.

3.1 Heuristics
The first solution approach we discuss in this paper is
the Comparison-based Iteration By Degree (CID) Heuristic,
which focuses on solving deployments by the connectivity
(which we refer to as the degree) of each node in the data
workflow. This particular heuristic (shown in Algorithm 1)
does extremely well with the motivating scenario because
the subgraphs are disjoint—each collection group is isolated
from each other. The graphs do not have dependencies be-
tween each other and this makes the degree information ex-
tremely useful and accurate for the motivating scenario.

The first phase of Algorithm 1 (lines 1-5), iterates through
a deployment with candidates sorted in descending order by
outgoing degree. The best candidates are placed in the de-
ployment, and the heuristic then solves for those candidates
that had edges to already placed entities in the deployment
(lines 6-12). The final phase of the heuristic solves for any
entity in the deployment that the user has defined as isolated
or unnecessary for optimization (lines 13-15).

The second heuristic discussed here is called the Blind
Comparison-based Iteration By Degree And Path Latency
(BCID) Heuristic and is shown in Algorithm 2. This heuris-
tic was developed after the initial CID heuristic to attempt



Algorithm 2 Blind CID
1: for all i ∈ deployment do
2: if degree (i) > 0 then
3: solution[i]← best candidate (utilities[degree])
4: end if
5: end for
6: for all i ∈ deployment do
7: if degree (i) > 0 then
8: for j ∈ connections(deployment, i) ∧ j /∈

solved(solution) do
9: solution[j]← best candidate (utilities[size])

10: end for
11: end if
12: end for
13: for all i ∈ deployment ∧ i /∈ solved(solution) do
14: solution[i]← best candidate (utilities[size])
15: end for

a looser approximation by only using the nodes with the
best overall utility. This heuristic has an additional bene-
fit of not requiring the individual latency tables for all pro-
cesses, which means memory requirements for this heuristic
are only O(E), where E is the size of the drones available
for deployment in the environment rather than O(E2) for Al-
gorithm 1. In terms of our motivating scenario, this is the
difference between requiring drones to maintain 40KB of
latencies versus 400MB of latencies for a 10,000 drone en-
vironment. Consequently, even if this heuristic is less precise
for many deployments, it has the important benefit of putting
a smaller memory constraint on our passive redeployment
logic.

Algorithm 3 Blind GA
1: mutations← min + rand() % (max - min)
2: new← solution
3: orig utility← utility(new)
4: while maxtime has not elapsed do
5: c1 ← rand() % size
6: c2 ← rand() % size
7: while c1 ≡ c2 do
8: c2 ← rand() % size
9: end while

10: swap(solution[c1], solution[c2])
11: end while
12: if utility(new) < orig utility then
13: return new
14: else
15: return solution
16: end if

To complement these heuristics, we developed a pair of
genetic algorithms to improve on the solutions and attempt
to reduce the overall latency in the set of subgraphs. These
genetic algorithms are shown in Algorithms 3 and 4. The
first algorithm blindly chooses chromosomes of the solution
to change with candidates from the cloud of drones or other
pieces of the subgraphs.

The second algorithm (Algorithm 4) targets chromosomes
of the solution with the largest degrees (the connectedness
of the node) in the subgraph. It swaps these with other larger
degrees more often than it does with random parts of the
subgraph, as the blind genetic algorithm does. This results
in more targeted evolution of the solution, which we’ve no-
ticed is better for approximating workflows with few depen-
dencies between subgraphs but may perform worse than Al-
gorithm 3 on highly interdependent subgraphs, which we’ll
see examples of in Section 4.

Algorithm 4 Guided GA
1: mutations← min + rand() % (max - min)
2: new← solution
3: orig utility← utility(new)
4: while maxtime has not elapsed do
5: if rand() % 5 < 4 then
6: c1 ← random degreed node (deployment)
7: c2 ← location(solution[good candidate(utilities)])
8: while c1 ≡ c2 do
9: c2 ← loca-

tion(solution[good candidate(utilities)])
10: end while
11: else
12: c1 ← rand() % size
13: c2 ← rand() % size
14: while c1 ≡ c2 do
15: c2 ← rand() % size
16: end while
17: end if
18: end while
19: if utility(new) < orig utility then
20: return new
21: else
22: return solution
23: end if

Both of these genetic algorithms are allowed to make al-
terations for a certain amount of time. In our experiments,
we set this time to one second, but the framework is flex-
ible in allowing users to specify subsecond times or large
numbers of seconds.

4 Experiments
In this section, we analyze the performance of and util-
ity produced by the algorithms and heuristics detailed in
Section 3. All experiments were conducted on an Intel
Core2 Duo clocked at 2.53 GHz and 4 GB of RAM
running Windows 7 32-bit operating system. C++ Code
was compiled in Visual Studio 2008 under optimized Re-
lease. All experimental code and configuration informa-
tion can be found online on the MADARA project site at
madara.googlecode.com.

Each of the genetic algorithm-based approaches were al-
lowed to run for 5 seconds, resulting in thousands of chro-
mosome mutations. This amount of time may not be accept-
able for all systems, and the MADARA suite of tools do
allow for setting an arbitrary time as low as milliseconds to



attempt mutations. The CID and BCID heuristics each re-
quire less than 20 milliseconds of runtime to approximate a
10,000 drone deployment.

For all experiments, we generate one truly optimal solu-
tion within the network that has 500 us latency between the
important links. Every other possible connection has latency
in the 501us to 32ms range. If the heuristic or algorithm finds
the optimal deployment, the resulting system slowdown is 1.
Anything else will be greater than 1. System slowdown fac-
tor is calculated by dividing the total latency of each link in
the approximation by the optimal total latency.

4.1 Disjoint Subgraphs
The motivating scenario for this paper consisted of col-
lection drones that aggregated data from their local drone
groups and then communicated with human operators over a
constrained satellite or radio link. To mimic this scenario, we
generated a uniform distribution of latencies between 1,000
to 10,000 nodes in a drone deployment.

1.00 

501.00 

1,001.00 

1,501.00 

2,001.00 

2,501.00 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Figure 3: System Slowdown From Approximations Gener-
ated for Motivating Scenario

Figure 3 shows the system slowdown experienced in each
of the solutions produced by the heuristics and genetic algo-
rithms. The y-axis denotes the slowdown factor of the result-
ing system, and the x-axis indicates the size of the deploy-
ment. All algorithms that use the CID heuristic (CID, CID-
BGA, and CID-GGA in the figures) are able to produce the
optimal solution in each of the test cases for 1,000 to 10,000
nodes and do so within milliseconds. The CID heuristic is
so powerful in this scenario because degree information di-
rectly reflects the subgraphs that need to be solved, and
many scenarios involving optimization of backup servers,
brokering services, and data aggregation or broadcasting do
well with the CID heuristic.

4.2 Highly Interdependent Scenarios
Though the CID heuristic solves the motivating scenario in
a fraction of a second, we knew it would not solve all of the
possible subgraphs because the general problem is NP Com-
plete. In this section, we look at the results of our algorithms
and heuristics in approximating hierarchical, complete trees

consisting of 1,000 to 10,000 nodes. As with the motivating
scenario, we combined each of the heuristics and algorithms
and ran them 10 times each for indicated sizes.

15 

20 

25 

30 

35 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Figure 4: System Slowdown of a 3-depth Tree

32 

33 

34 

35 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 

CID BCID BGA GGA 

CID-BGA CID-GGA BCID-BGA BCID-GGA 

Figure 5: System Slowdown of a 3-way Tree

Figure 4 shows the system slowdown experienced when
approximating a 3 depth tree where drone 0 collects data
from drone 1-4, and drone 1-4 each collect data from a
fourth of the deployment. All approximations are more than
15 times worse than the optimal.

Figure 5 shows the system slowdown that results when ap-
proximating a 3-way tree, where a root drone collects data
from 3 other drones, which in turn collect data from 3 other
drones and send the important data to the root. The slow-
down factor when approximating these is even worse be-
cause every level of the tree has the same degree except for
the leaves, and the arbitrary ordering of the heuristics ac-
cording to degree results in ties, but the resolution order of
these should be important.

These latter hierarchical scenarios show the problem with
using these heuristics to approximate general cases of inter-
dependent deployments. A full communication originating
from all leaf nodes to the root node at drone 0 would be 15-



35 times worse than the optimal. The CID and BCID heuris-
tics do decently well in the 3-depth scenario, and the genetic
algorithms do improve the results, but we have a lot of room
for improvement here. From these experiments, we believe
that an excellent vector for future work will be a path-length-
and degree-based heuristic that is then used to seed a special-
ized genetic algorithm.

5 Challenges
In this section, we describe remaining challenges for ad-
dressing continuous redeployment of distributed, real-time
and embedded (DRE) systems. We can divide these chal-
lenges into three main categories: better approximation, cus-
tom constraints, and semantics in continuous redeployment.

5.1 Better Approximation
From the results shown in Section 4, we know that Algo-
rithms 1 and 2 work well for approximating user-defined
data workflows that do not have a lot of interdependencies
between subgraphs. However, these heuristics and the ge-
netic algorithms we have paired them with are unable to find
the optimal deployment of elaborate workflows like m-way
trees.

We believe that degree information may still be the key to
unlocking the optimal solutions in such high interdependent
graphs, and we plan on trying other heuristics and genetic
algorithms that use degree and path information to converge
more quickly to optimum redeployment solutions.

5.2 Custom Constraints
We have ongoing work with overlaying custom constraints
onto edges and nodes in the data workflow to provide better
solutions for DRE system developers. Example constraints
include CPU and memory requirements for each node, la-
tency requirements along path lengths and other such met-
rics. Some of these constraints may force additional com-
plexity onto the solution approaches, but they may also relax
the optimization requirements (.e.g., a requirement that the
latency along a link is less than 500 us is easier to solve than
requiring that such a link is optimal).

5.3 Continuous Semantics of Redeployments
When redeploying a running distributed application like the
one in the motivating scenario, we shouldn’t have to trans-
fer databases or other state information to the new entity
that assumes the role. However, many DRE systems have
databases, files, logic, or other such side effects that must be
redeployed. We are working on tools to address these needs.

6 Conclusions
In this paper, we have presented a subset of the MADARA
tool suite that approximates optimal deployments of dis-
tributed, real-time and embedded (DRE) applications and
provides continuous redeployment infrastructure for high-
impact, mission-critical scenarios. We have motivated our
problem with an example mission-critical application and
presented experiments that validated our heuristics and al-
gorithms within this scenario. We also outlined experimental

results that show blind spots in the heuristics and genetic al-
gorithms when applied to hierarchical deployments and dis-
cussed our plans to develop more robust heuristics-based ap-
proaches that better approximate the general NP-complete
subgraph isomorphic problem as it correlates to real-time
deployments.

References
Cucinotta, T., and Anastasi, G. 2011. A heuristic for opti-
mum allocation of real-time service workflows. In Service
Oriented Computing and Applications, 2011. SOCA ’11. In-
ternational Conference on, 169–172.
Cucu-Grosjean, L., and Buffet, O. 2009. Global multipro-
cessor real-time scheduling as a constraint satisfaction prob-
lem. In Parallel Processing Workshops, 2009. ICPPW ’09.
International Conference on, 42–49.
DePiero, F., and Krout, D. 2003. An algorithm using length-
r paths to approximate subgraph isomorphism. PATTERN
24:33–46.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research (JAIR 28:267–
297.
Heward, G.; Han, J.; Schneider, J.-G.; and Versteeg, S.
2011. Run-time management and optimization of web ser-
vice monitoring systems. In Service Oriented Computing
and Applications, 2011. SOCA ’11. International Confer-
ence on, 294–299.
Hladik, P.-E.; Cambazard, H.; Daplanche, A.-M.; and
Jussien, N. 2008. Solving a real-time allocation problem
with constraint programming. Journal of Systems and Soft-
ware 81(1):132–149.
Hu, Y., and Yang, S. 2004. A knowledge based genetic
algorithm for path planning of a mobile robot. In Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, volume 5, 4350 – 4355 Vol.5.
Javadi, A.; Farmani, R.; and Tan, T. 2005. A hybrid intelli-
gent genetic algorithm. Advanced Engineering Informatics
19(4):255 – 262.
White, J.; Schmidt, D.; Benavides, D.; Trinidad, P.; and
Ruiz-Cortes, A. 2008. Automated diagnosis of product-line
configuration errors in feature models. In Software Product
Line Conference, 2008. SPLC ’08. 12th International, 225–
234.
Wieczorek, M.; Prodan, R.; and Fahringer, T. 2005.
Scheduling of scientific workflows in the askalon grid en-
vironment. SIGMOD Rec. 34:56–62.
Zampelli, S.; Deville, Y.; and Dupont, P. 2005. Approxi-
mate constrained subgraph matching. In van Beek, P., ed.,
Principles and Practice of Constraint Programming - CP
2005, volume 3709 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg. 832–836.


