
A Self-Tuning System based on Application
Profiling and Performance Analysis for Optimizing

Hadoop MapReduce Cluster Configuration

Dili Wu∗ and Aniruddha Gokhale∗
∗ ISIS, Dept of EECS, Vanderbilt University,
1025 16th Ave S, Nashville, TN 37212, USA
Email:{dili.wu,a.gokhale}@vanderbilt.edu

Abstract—One of the most widely used frameworks for
programming MapReduce-based applications is Apache Hadoop.
Despite its popularity, however, application developers face
numerous challenges in using the Hadoop framework, which
stem from them having to effectively manage the resources
of a MapReduce cluster, and configuring the framework in
a way that will optimize the performance and reliability of
MapReduce applications running on it. This paper addresses
these problems by presenting the Profiling and Performance
Analysis-based System (PPABS) framework, which automates
the tuning of Hadoop configuration settings based on deduced
application performance requirements. The PPABS framework
comprises two distinct phases called the Analyzer, which trains
PPABS to form a set of equivalence classes of MapReduce
applications for which the most appropriate Hadoop config-
uration parameters that maximally improve performance for
that class are determined, and the Recognizer, which classifies
an incoming unknown job to one of these equivalence classes
so that its Hadoop configuration parameters can be self-tuned.
The key research contributions in the Analyzer phase includes
modifications to the well-known k −means + + clustering and
Simulated Annealing algorithms, which were required to adapt
them to the MapReduce paradigm. The key contributions in the
Recognizer phase includes an approach to classify an unknown,
incoming job to one of the equivalence classes and a control
strategy to self-tune the Hadoop cluster configuration parameters
for that job. Experimental results comparing the performance
improvements for three different classes of applications running
on Hadoop clusters deployed on Amazon EC2 show promising
results.

Keywords—MapReduce; Hadoop; self-tuning; optimization.

I. INTRODUCTION

As the amount of data to be analyzed keeps growing and
the need to process it fast becomes important, classical parallel
data warehousing techniques, which traditionally have been
the best technologies to store, manage and analyze data, tend
now to be inefficient, inflexible and thus incredibly expensive
for both commercial and technical consideration [1]. Scientists
and engineers are therefore adopting new parallel programming
models which can not only meet the requirements of scalabil-
ity, but also automatically handle resource management, fault
tolerance, and other issues on distributed system [2]. One such
paradigm called MapReduce [3], is becoming quite popular for
high performance computing and Big Data analytics.

The basic concept behind MapReduce is breaking a com-
putation task into map and reduce phases [3], [4]. At the

beginning of the map phase, the input job is divided and then
assigned to several worker nodes by a master node. Then the
map function running on the worker nodes converts the original
data to a series of key-value pairs for future use. In the reduce
phase, the master node collects the output of the map function
from the worker nodes, and then assigns reduce tasks that do
aggregating, combining, filtering or transforming functions on
these key-value pairs using a user-supplied function to form
the final output [4], [5].

A widely used, open-source platform for building
MapReduce-based applications is Apache Hadoop [6]. Despite
the popularity of Hadoop MapReduce, application developers
face a number of challenges using Hadoop to obtain the
most effective performance for their applications. For example,
applications developers often must decide how best to make
use of the cluster resources, and thus optimize its performance
for both general jobs, such as sorting and searching, and other
specific applications [7].

Recently, researchers have shown that Hadoop cluster con-
figurations play a significant role on the performance delivered
to applications, i.e., even a tiny change to one configuration
parameter’s value makes a huge difference to performance
when running the same MapReduce job with the same size
of data input [8]. Moreover, because of its blackbox-like
feature, it is also incredibly difficult to find a straightforward
mathematical model relating the cluster configuration to a
specific job. In summary, it is unreasonable to use the same
configuration for all kinds of MapReduce jobs; however, it is
also hard for developers to find an optimal configuration for
their job.

To address this problem, we have developed the Profiling
and Performance Analysis Based Self-tuning (PPABS) frame-
work. The PPABS framework comprises two distinct phases
called the Analyzer, which trains PPABS to form a set of
equivalence classes of MapReduce applications for which the
optimal1 Hadoop configuration parameters are determined,
and the Recognizer, which classifies an incoming unknown
job to one of these equivalence classes so that its Hadoop
configuration parameters can be self-tuned.

This paper makes the following research contributions in
the context of the two phases of the PPABS framework:

1In this paper “optimal” refers to the desired solution that will maximize
performance improvements.

• The Analyzer combines profiling of MapReduce job
performance with data mining techniques to dynam-
ically classify MapReduce applications into a set of
well-defined partitions or equivalence classes. Specif-
ically, we provide a modified k−means++ clustering
algorithm. Additionally, it includes modifications to
the well-known Simulated Annealing algorithm to find
the desired solution and fine-tune the Hadoop cluster
configuration for the job classes identified in the first
step.

• The Recognizer classifies an unknown incoming job
to one of the equivalence classes by first executing
the job on a small portion of its inputs using default
Hadoop configurations and applying pattern recogni-
tion techniques to classify it. After classifying the job
to one of the equivalence classes, the configuration
settings are automatically applied to provide signifi-
cantly improved performance for the new incoming
job.

To evaluate PPABS, we deployed a Hadoop cluster in
Amazon EC2 and trained our PPABS system to create three
equivalence classes using applications drawn from the Hadoop
Examples set, Hadoop Benchmarks set, and HiBench. The
experimental results comparing the performance improvements
made possible by PPABS for three representative applications
one per equivalence class: Word Count, Tera Sort, and Grep
over default configurations supported by Hadoop show promis-
ing results.

The rest of this paper is organized as follows. Section II
discusses related work and compares them with our system;
Section III presents in detail the design and implementation
of PPABS; In Section IV we evaluate PPABS and analyze
the performance improvements seen in our three representation
application examples; and finally in Section V, we provide
concluding remarks and discuss future work in this field.

II. RELATED WORK

Research on performance analysis of MapReduce started
more than six years ago. Most of the earliest works studied
the scheduling and fault tolerance mechanisms of MapRe-
duce, such as the one presented in [9] that discussed the
mathematical model of MapReduce. In [10], the authors point
out that Hadoop’s scheduler can cause severe performance
degradation in heterogeneous environments and present a new
scheduler called Longest Approximate Time to End. Another
work focused on analyzing the variant effect of resource
consumption of different settings for the Map and Reduce slots,
which was described in [11]. Based on the experiments, the
authors showed that the difference in computation utilization
pattern depends on different kinds of MapReduce jobs.

In [12], the authors classified MapReduce applications into
three categories based on their CPU and I/O utilization. Even
though it was the first such effort illustrating an approach
to improving performance by categorizing jobs, the downside
of this approach is that it considered the average utilization
of CPU and I/O as the only criteria to classify MapReduce
jobs and thus overlooked the more important part, which is
the overall pattern of the performance characteristics of the
application.

There are not many existing approaches on solving the
performance problem that focus on tuning configuration pa-
rameters. A related work that characterized resources and job
utilization patterns from analyzing ten months of MapReduce
logs of Yahoo appears in [13]. This article pointed out that
two MapReduce applications can be considered to be of the
same kind if their performance pattern is similar; moreover,
it concluded that similar jobs would have similar optimal
solutions for the cluster configuration. In our work, we use
these guidelines.

In one of the recent studies that combines MapReduce with
Machine Learning algorithms, researchers in the University of
Sydney modeled the relation between applications’ configura-
tion parameters and their CPU usage history [14]. However,
instead of studying performance improvement with this model,
they used it only to predict the entire CPU usage in time clock
cycles for the unknown job.

AROMA [15] and Starfish [16] are two recent research
efforts that are related to our approach. The former system
can automatically allocate the cluster resources by adapting
the cluster to new jobs if their resource utilization signature
matches the previously executed jobs. Such an approach does
not guarantee the performance of jobs whose utilization pattern
is different with any previous ones. More importantly, this
paper did not present a clear way to find the optimal con-
figuration solution even for the executed jobs. The latter effort
is an attempt to find the optimal cluster settings by collecting
the profile information of previous jobs, simulating executing
time of new jobs, and then searching for the parameter space
for solutions. However, since Hadoop MapReduce is such
a complex framework with a number of parts for whom
well-defined mathematical models are not yet established, we
believe that the “What-If Engine Theory” introduced in this
related work has the potential to fail in its searching strategy
for optimal parameters.

Despite several attempts to improve the performance of
MapReduce cluster exist, we believe these related works do not
provide a comprehensive and reliable solution to optimize the
configuration settings of MapReduce cluster, which have been
shown to impact performance. Even though there are some
slight similarities, our research is different from all the works
above; we not only use data mining techniques to analyze a
job’s profile, but also optimize the performance of MapReduce
applications in a robust manner, no matter whether they are
already known to have executed or are totally new.

III. PPABS DESIGN AND IMPLEMENTATION

This section details our PPABS (Profiling and Performance
Analysis-Based Self-tuning) approach. Since we target the
automatic configuration management for applications deployed
in the the Hadoop cluster, we first provide an overview of
Hadoop and its configurability. Subsequently we describe the
PPABS details.

A. Overview of Hadoop

Apache Hadoop is an open-source software framework
implementing the MapReduce computing model that supports
reliable and scalable Big Data computing. This framework is

written in the Java language and it consists of four major mod-
ules: Hadoop Common module, Hadoop Distributed File Sys-
tem module, Hadoop YARN module and Hadoop MapReduce
module. These modules can be tuned through configuration
parameters, which together dictate the performance delivered
to the applications.

The Hadoop Common module contains the common util-
ities that support the other Hadoop modules. In this module,
scripts and Java Archive files are provided to support the basic
operations of Hadoop such as starting and stopping Hadoop,
formatting the NameNode and so on. In addition, it also
provides source code, documentation and other necessary files
of Hadoop for developers.

The Hadoop Distributed File System (HDFS) module is
a distributed file system that provides high throughput access
to data. Compared to other existing distributed file systems,
it is designed to work on low-cost, commodity hardware
and to provide high quality fault-tolerance at the same time.
The HDFS module has a master/slave architecture shown in
Figure 1 in which a NameNode is the master that manages the
file system name space, and several DataNodes serve as slaves
that manage only the node they are running on.

Fig. 1. Hadoop Architecture with HDFS Artifacts

The Hadoop Yarn module is a framework for job schedul-
ing and resource management. The fundamental idea behind
this module is to split the JobTracker, which is responsible for
supervising the running process of MapReduce applications,
into a Resource Manager and an Application Master. The
former arbitrates the resources of the entire Hadoop system,
while the latter is responsible to track and monitor the status of
Resource Containers from the Scheduler, which is an important
component of the Resource Manager.

The Hadoop MapReduce module is a Hadoop YARN-
based system for parallel data processing. Similar to the
HDFS module, it has a master/slave architecture. For each
MapReduce job, a JobTracker serves as a master which can
be regarded as an interaction point between the client and the
framework. However, when Hadoop is running a job, a number
of TaskTrackers, considered as servers, not only execute tasks
based on the instruction from the JobTracker, but also handle
data movement between the two phases of MapReduce.

B. Hadoop Configurability

There are more than 100 parameters available for users to
manipulate in the Hadoop MapReduce framework. Depending

on the way in which they make an impact on the perfor-
mance of MapReduce applications, these parameters are gen-
erally divided into three groups: core parameters, MapReduce-
relevant parameters and DFS-relevant parameters (DFS stands
for Distributed File System). The Hadoop framework uses
configuration files for setting the values of these parameters
in each group. Section III-D3a shows the parameters we
manipulated in this research.

• Core parameters: These are used for defining the most
important features of a MapReduce cluster. The parameters
in this group are associated only to the cluster itself such as
where the temporary data is stored, how large the buffer size
is, and what the threshold of shuffle group is, among others.

• MapReduce-relevant parameters: The parameters in
this group are relevant to the MapReduce procedure: some of
them have a direct effect only on the Map phase or Reduce
phase, while others may have an effect on both phases.

• DFS-relevant parameters: The parameters, such as the
one specifying how many replicas should be stored, belong to
DFS group.

C. PPABS Architecture and Solution Overview

Our overall approach to the automated configuration man-
agement of a Hadoop cluster is based on a machine learning
phase, which then is used for self-tuning. The machine learning
phase requires training. Based on the learned knowledge, the
system makes effective configuration decisions for a new,
incoming job and applies these configuration decisions to
automate the entire process thereby relieving the application
developers from these challenges. The overall design and
workflow of the PPABS systems shown in Figure 2 can be
viewed as comprising two major parts: the Analyzer and
the Recognizer. The Analyzer is based on history and is a
completely offline step; the Recognizer however runs each time
when a client submits a new job and hence is semi-online.

PPABS Workflow

1. Analyzer

Data Collection

Job Clustering

Optimum

Searching

2. Recognizer

Job Sampling

Job Classification

Configuration

Setting

Fig. 2. PPABS Architecture

D. PPABS Analyzer Phase

There are three steps in the Analyzer phase: Data Col-
lection (Section III-D1), Job Clustering (Section III-D2) and

Optimum Searching (Section III-D3). In the first step, we
collect data from previous jobs and model a job’s performance
pattern along several attributes and their values. Using these
attributes, in the second step we group previous jobs using
modifications we made to the well-known k-means ++ cluster-
ing algorithm [17]. Subsequently we search the configuration
parameters space to find the desired solution for each cluster
with our modified Simulated Annealing algorithm.

1) Collecting History Data of Job Performance: Based on
insights gained from related scientific works [11], [13], we
arrived at an important conclusion: MapReduce applications
can be classified into a finite set of categories or equivalence
classes, where each equivalence class illustrates similar CPU
and I/O utilization patterns among MapReduce applications
belonging to that class. Moreover, through our investigations
we have also found that different sizes of input data will affect
the performance pattern differently to some degree. Therefore,
it is necessary to develop a more accurate method, beyond
simply CPU and I/O utilization, to define the performance
characteristics. In our case, therefore, we have redefined the
performance model and developed a new solution, which can
not only eliminate this effect caused by different data sizes, but
also describe the jobs’ performance based on their features, for
example, whether they are CPU-bound or IO-bound.

In this new model, we considered the entire computer
system over a period of time, which is also our sampling time
interval and is attributed to three resources: CPU, memory and
disk. Each of these resources is responsible for a time interval
in this entire sampling period. For instance, if a sampling
period is 2 seconds, then it is of interest to us to know the
amount of time that the computer spends on CPU, memory
and disk in this period. Considering that the CPU subsystem
is either running in kernel mode or user mode all the time, we
also divide it into two parts: kernel and user.

Fig. 3. Snippet of Performance Analysis Data for Word Count Example

Figure 3 shows an example of the kinds of data we
collect during the training phase of PPABS. As shown, we
have gathered a five-dimensional statistical data from jobs
that have been executed for training purposes. However, since
our sampling technique is time-series based, it is obviously

impossible to get the same running time from different jobs;
for instance, it may take 5 minutes to complete job A while
it could take 10 minutes or even longer to complete another.
In fact, the length of data gathered always varies from job to
job. In our case, a reasonable solution to solve this issue of
data heterogeneity and ensuring that we get the same length of
time series data is to use sampling as suggested in [18]. Thus,
in this stage, the collected data of each job is converted into
normalized sets so that all the sets are ultimately of the same
length.

Using this information, the performance model for a spec-
ified time interval can be described by Equation 1.

P [x] = Kernel[x]+User[x]+Idle[x]+IO[x]+Steal[x] (1)

where, P is the performance model and x is used to
indicate the index of the sampling interval, e.g., P [3] means
the performance in the third interval. More details of each
variable can be found in Table I. Since Equation 1 represents
only one time interval, the entire running performance of a
Hadoop MapReduce job of which the running time can be
divided into N intervals, is captured in Equations 2 and 3.

TABLE I. DESCRIPTION OF VARIABLES IN THE PERFORMANCE

MODEL

Name Description

Kernel The amount of time CPU spends in the kernel
mode

User The amount of time CPU spends in the user
mode

Steal The amount of time CPU spends in involuntary
wait

IO The amount of time the system spends on IO
Idle The amount of time when the system is idle

P [k] = PM [k]
⋃

PW [k] (2)

P [Total] =
∑

P [k] (3)

Note that the master node is responsible for collecting data
and assigning tasks to the slave nodes, however, slave nodes
only execute their own tasks based on the instructions from
the master. Therefore, on one hand, the performance of master
node and the performance of slave nodes are significantly
different when running a MapReduce job, while on the other
hand, the difference among the slave nodes is very slight.
However, because the size of a Hadoop MapReduce cluster
is often large, it is not feasible to use all the utilization data
gathered from each slave node. To solve this problem by
processing the gathered data, we came up with Equation 2
for the kth interval in which PM is the performance of the
master node in a Hadoop MapReduce cluster, and PW is the
average performance of all worker nodes in this cluster. The
total performance over all the intervals is shown in Equation 3.

2) Job Clustering: Since our goal is to identify the opti-
mal configuration settings of a MapReduce cluster for each
MapReduce application, no matter whether the job is a totally

new one or the one used in the training phase, it is very
important to group all previously executed jobs used in the
training phase based on their performance pattern so that our
system can recognize and classify a new unknown job with
the group rules and make sure an optimal solution of this
group is loaded correctly. Therefore a clustering2 algorithm is
needed in this grouping situation. Several clustering algorithms
are frequently used in the field of Data Mining [19]. After
conducting a comparison on their cluster models and use
cases, we determined that k-means++ [17], which is a popular
Centroid-based Clustering algorithm, is an appropriate choice
for our research.

k-means++ belongs to the k-means class of algorithms for
which the goal is to improve the clustering performance of
the original k-means. In the original k-means, a D-dimensional
vector is considered as a point and the goal is to automatically
partition N input points into K clusters in which each point
belongs to a cluster with the shortest distance from the point
itself to the center of this cluster. In our case, since the
collected performance data of a MapReduce job is a multi-
dimensional vector (see Figure 3), it is also appropriate to be
regarded as a point. However, one major disadvantage is that
the clusters found by the k-means algorithm could be arbitrarily
bad compared to the desired solution.

Compared to the original algorithm, the k-means++ algo-
rithm specifies the cluster initialization stage before proceeding
with the standard k-means clustering algorithm. This improve-
ment not only addresses the obstacle we mentioned above but
also guarantees finding a solution that is O(log k) competitive
to the optimal one.

However, one drawback of the k-means++ algorithm for
our context is that the cluster centers obtained from it are very
likely to be points which cannot be mapped to realistic and
feasible MapReduce application configurations. Thus, applying
the k-means ++ algorithm as is makes no sense for this step
of our PPABS system. We have therefore modified it with a
selection stage to ensure that the centers we finally find are
real, feasible points. The details of the modified algorithm are
described in Figure 4.

In the modified k-means++ algorithm, first we initialize the
clusters by randomly selecting their centers (see Initialization
phase). Then we iteratively update these clusters by reassigning
points to them. Finally we select the real cluster centers by
approximating them to the nearest point of the virtual center
for each cluster (see Line 2 in Selecting Real Clusters). Each
real cluster center we find from this Job Clustering step is
eligible to represent the cluster itself, which also represents an
equivalence class of MapReduce applications that have similar
performance patterns that get assigned to the same cluster.

3) Searching for the Optimum Configuration: In the pre-
vious step we find several “center” MapReduce applications,
which are essentially the centers of the clusters found using
the clustering technique shown in Section III-D2. Each such
center is representative of all the applications that belong to
that equivalence class and hence the optimum configuration for
that center application applies to all applications belonging to

2Not to be confused with the term Hadoop cluster. Here the term clustering
is taken from the data mining literature.

Initialization

C������1 p P1, P2, P3 � �N

i

for p

D �p�, D �p�

end for

while i K K do

for each p

P�	
�
i�i�� �p� D �p�

end for

i

C������ x

for each p p ��� ��� �� � ��

� (��� � (�� �

� ���

end for

end while

The Original K-Means algorithm

for j

for each �

� (��� � (�� �

� ���

end for

for each �� ��� ��� �����

���� �� ���� ��

end for

end for

Selecting the real centers

for each

end for

Return

Fig. 4. Modified K-Means++ Clustering Algorithm

that class. Our job now is to find an optimum Hadoop con-
figuration per equivalence class. The details of the searching
algorithm are presented, which comprises two parts: selecting
the parameters and conducting a search.

a) Parameter Selection: Recall that each configuration
parameter may have some impact on the global performance
of a MapReduce application executing in the cluster. Even
though some parameters have Boolean values, the types of
most parameters are still Integer or Double. Therefore, as-
suming there are 100 parameters and the average number of
their possible values is 1,000, the size of the search space
becomes 100,000. In this situation, the searching time in
total is 20,000,000 seconds if the average running time for
a MapReduce application is 200 seconds (in most cases, the
running time could be longer than 1,000 seconds).

It is unrealistic and expensive for us to use all parameters
in this research. Thus, our strategy to decrease the size of the
parameter space consists of three steps: (1) For parameters
that have binary values, we just simply either set their values
to the default or the values recommended by Apache Hadoop
group [20], (2) For others, following the suggestions from
related research on Hadoop parameters [11], [21], [22], we
compared the parameters with each other based on their impact
on the performance of a MapReduce cluster and only select the
most important ones, and (3) For the parameters we selected
from Step (2), instead of selecting all possible values from
the original range, we use the optimal range of their values
described in [23]. Subsequently, the list of parameters being

selected to build the search space is as shown in Table II.

TABLE II. DESCRIPTION OF SELECTED PARAMETERS

Name Default Optimal Description

Value Range

io.sort.mb 100 100 ∼
300

The size of buffer when
sorting files

io.sort.factor 10 50 ∼
100

The number of streams while
sorting

io.sort.spill.percent 0.8 0.5 ∼
0.8

The soft threshold to decide
whether spill contents to disk

mapred.tasktra-
cker.map.-
tasks.maximum

2 1 ∼ 4 The maximum number of
Map tasks running on a node

mapred.tasktra-
cker.reduce.-
tasks.maximum

2 1 ∼ 4 The maximum number of
Reduce tasks running on a
node

mapred.child.-
java.opts

200m 200 ∼
1,000m

Java opts for the children
processes

mapred.reduce.-
parallel.copies

5 6 ∼ 12 The number of parallel
transfers running in Reduce
phase

dfs.block.size 64m 128 ∼
640m

The size of block in file
system

b) Searching Algorithm: The analysis above shows that
the size of the entire search space has shrunk significantly.
Now our parameter space can be modeled mathematically as
a two-dimensional vector S in which every parameter is a
one-dimensional vector

−−→
S[i], i = 1, 2, 3 · · ·N . In addition, the

length of
−−→
S[i] depends on how many possible values could be

set for the ith parameter. For example, the length of
−−→
S[6], for

the parameter mapred.reduce.parallel.copies is 6
while the length of

−−→
S[7] for the parameter dfs.block.size

is 9 if we decide to change it in 64 unit increments.

Thus, our goal of finding the optimal configuration settings
has been converted to searching for the optimal combination of
these vectors so that the output, which is the execution time for
a MapReduce job, of this combination is as small as possible.
This problem now becomes a Combinatorial Optimization
problem [24], a subject that is aimed at searching an optimal
solution from a finite set of objects. To address the challenges
stemming from having to conduct an exhaustive search, an
alternative metaheuristic method is Local Search.

There are several well-defined methods within Local
Search, such as Hill Climbing, Tabu Search and Simulated
Annealing. The drawback with Hill Climbing is called pre-
mature convergence, which means that this greedy algorithm
is very likely to find the nearest local optimum with low
quality [25]. On the other hand, even though Tabu Search can
prevent this disadvantage by maintaining a Tabu list to record
the previous tries, it is not a reasonable method because it is too
time consuming. In Tabu Search, every neighboring candidate
should be tried so that this algorithm can choose the best one
to navigate. Whereas in our case, using Tabu Search means
to run a MapReduce job several times with every possible
configuration settings in each step; it is definitely unrealistic
and inefficient even with the reduced set of parameters we have
chosen.

Compared to these two algorithms described above, Sim-
ulated Annealing is more appealing for our case to search
the optimal solution for MapReduce cluster configuration. The
main reason is that Simulated Annealing prevents low quality
local optimum by occasionally accepting a solution even if

it may be worse than the current one with a probability-
based mechanism [26], [27]. However the shortcoming of the
standard Simulated Annealing method is that it is memoryless,
i.e., it could simply repeat the previous track without “remem-
bering” that it has done the same step before. For the purpose
of preventing our system from entering this situation, we have
modified the original algorithm by combining it with a concept
from Tabu Search. That is to say, we add a memory structure
to the standard Simulated Annealing to record the latest status
in our approach.

Before introducing the details of the modified Simulated
Annealing algorithm, it is necessary to describe its terminology
and how we combine it with our research. The following
additional concepts are part of our modified algorithm:

• Energy: It is the criterion to decide whether a candidate
solution is good, which is based on the running time of a
MapReduce application with a configuration setting.

• Neighbors: They represent the states that this algorithm
could “jump” to from the current state. In our system, these
are the nearest configuration settings we could change from
the current one. For instance, if the current solution vector is
[S[0][x], S[1][y], S[2][z] · · ·S[M][α]], then its neighbors can
be [S[0][x± 1], S[1][y], S[2][z] · · ·S[M][α]], [S[0][x], S[1][y±
1], S[2][z] · · ·S[M][α]] · · · [S[0][x], S[1][y], S[2][z] · · ·S[M][α±
1]].

• Probability and Temperature: This criterion decides
whether an attempt will actually be selected.

Input

Solutioncurrent

Energycurrent

Energybest Energycurrent

Solutionbest = Solution1

count

T

Memory

while count COUNT_MAX Energycurrent ENERGY_BOTTOM do

T = T /

Neighbors Solutioncurrent

SolutionAttempt Neighbors

EnergyAttempt SolutionAttemp

Probability =

Threshold

if Probability Threshold then

 if Memory then

continue

end if

 Solutioncurrent SolutionAttempt Energycurrent EnergyAttempt

 Memory

if Energycurrent Energybest then

Energybest Energycurrent Solutionbest Solutioncurrent

end if

end if

end while

Conffinal Solutionbest

Output Conffinal

Fig. 5. Modified Simulated Annealing Algorithm

The PPABS system implemented the modified Simulated
Annealing algorithm, shown in Figure 5, to find the optimal
parameter settings for each “center” MapReduce application.
This algorithm initializes variables such as Temperature, Cur-
rent Energy and Memory first, and then it iteratively searches

the parameter space to find candidate solutions. In this case,
whether a candidate solution is good or bad depends on its per-
formance, which is the execution time of running a MapReduce
application with the candidate configuration settings. When the
iteration ends, this algorithm returns the best solutions for each
“center” MapReduce application. The PPABS system then
generates the configuration files based on the best solutions
and saves these configuration files into a configuration library
for future use by the Recognizer phase.

E. PPABS Recognizer Phase

The Recognizer phase also consists of three steps: Job
Sampling (Section III-E1), Job Classification (Section III-E2)
and Configuration Setting (Section III-E3). When a new job is
submitted by the client, the PPABS system samples this job by
running it with only part of its input data at first. Based on the
job profile gathered from the first step, in the Job Classification
step the system determines the equivalence class to which this
unknown job belongs to. After completing these steps above,
the Recognizer then loads the configuration files corresponding
to the identified equivalence class and runs the submitted job
with its entire input data set. Section III-E4 discusses the cost
model for the Recognizer phase.

1) Job Sampling: One major advantage of any distributed
file system is that it uses objects to associate logical paths with
physical addresses so that it becomes possible for us to break
data with very large size into smaller parts, and then store them
in distributed manner while maintaining a unified logical path
for this data. Similarly, HDFS, the Hadoop Distributed File
System, is an implementation of the Scalable DFS for Hadoop
MapReduce framework. Since the entire file system is broken
into blocks, any very large data set submitted is also stored in
distributed blocks. This feature of HDFS can be exploited to
sample a job by using data only from a few blocks instead of
the entire data set.

Moreover, typically a MapReduce job consists of two parts:
the job itself and data. After comparing these two parts we have
found that the size of the job (i.e., size of the executable) is
much smaller than the size of data for most MapReduce jobs.
Take WordCount as an example; the size of this job’s codes
is only a few kilobytes, whereas the size of the input data
set can become as large as hundreds of terabytes. Moreover,
since the performance pattern of a MapReduce job is closely
related to the job itself instead of the size of data set [8], we
believe that sampling the job, which means to run a newly
submitted job with only a small part of input data and using
the default configurations, is reasonable for us to understand
the performance pattern of this job and classify it into one of
the previously identified equivalence classes, and thereby tune
its parameters. This is precisely the approach we use in PPABS
when a new job is submitted to our system.

2) Job Classification: While we are running a new job with
part of its input data, we also collect the performance data
from the Job Sampling step as above. Similar to the training
process described in Section III-D1, the data gathered from
the sampling step is a multidimensional time series. Since
we used “center” to describe the performance patterns of a
group of MapReduce jobs in Section III-D2, the procedure of
Pattern Recognition is converted to a problem of finding the

nearest center of a point if we model this new job that must
be classified as a point which is newly added to the clustering
space. Therefore, the algorithm we use is very simple as shown
in Figure 6.

1: Input: Point Punknown
2: double Dcurrent = the distance between Punknown and C1
3: Cluster Cshort = C1; double Dmin = Dcurrent

4: for each Cluster Ci in , C1, C2, C3…CK
5: Dcurrent = compute the distance between Punknown and Ci
6: if Dcurrent< Dmin then

7: update Dmin and Cshort
8: end if

9: end for

10: Output: Cshort

Fig. 6. Classifying an Incoming Unknown Job

3) Configuration Setting: After sampling and classifying
an unknown incoming job, our system automatically loads
the tuned configuration files from the configuration library
and runs this job again with its entire data set. One issue
with this solution is that if the number of executed jobs
increases with the increasing number of submitted jobs, then
it is necessary to re-cluster the jobs so that we can keep the
centers updated. Nevertheless, if the clusters are recomputed,
retuning our existing MapReduce configuration settings is also
needed. This process, unfortunately, takes considerable time.
Therefore, it becomes significantly crucial for us to maintain
a balance between updating clusters and making the system
stay at its current status. In this case, our approach is to set
a counter which is added by one each time when a job is
completed. With this mechanism, our PPABS system restarts
if the counter reaches the threshold we initially set, otherwise
this system just stays and uses the results it previously found.

4) Cost Model of the Recognizer and Impact on Applica-
tion Performance: Understanding the cost of this semi-online
Recognizer step is important. The three major steps in the
Recognizer are Job Sampling, Job Classification and Configu-
ration Setting. Different from the Analyzer, the Recognizer is
a semi-online part of our PPABS system. Thus, the time spent
on these three steps must be included in the total running time
for a new job as shown in Equation 4.

TTotal = TSampling + TClassification + TSetting + TOptTotal

(4)

If we assume the cost model of a MapReduce job as
linear related to the size of data set, and the time spent
on a MapReduce job running with its entire data set using
the default configuration settings is TDefault, we can get
Equation 5. In Equation 5, M is the total number of blocks
used to store the total data set, while S is the number of blocks
used to store the sampling part.

TSampling = TDefault ∗ (S/M) (5)

From our analysis we found that the time spent on the
Job Classification step and Configuration Setting is so small
compared to the time spent on other steps, that our cost model
can be approximated as shown in Equation 6, where TOptTotal

is the total running time of the new job with the optimum
configuration settings using its entire data set.

TTotal = TDefault ∗ (S/M) + TOptTotal (6)

The performance improvement stemming from our PPABS
system can be determined from how much TTotal is an
improvement over TDefault. Theoretically, the percentage im-
provement can be modeled as shown in Equation 7, which can
be derived as shown in the Proof below.

△I =
M−S
M

∗ TDefault − TOptTotal

TDefault

∗ 100% (7)

Proof:

△T = Tdefault − TTotal

= Tdefault − (Tdefault ∗ (S/M) + TOptTotal)

= Tdefault ∗ (1− (S/M))− TOptTotal

=
M − S

M
∗ Tdefault − TOptTotal

Since perf improvement is given by,

△I =
△T

Tdefault

∗ 100%

Substituting for △T gives Equation 7.

IV. EVALUATING PPABS-GENERATED HADOOP
CONFIGURATIONS

This section describes results of experiments comparing the
performance of MapReduce applications using Hadoop cluster
configurations defined by PPABS versus the default ones.

A. Experimental Settings

We implemented and evaluated the PPABS system on a
Hadoop MapReduce cluster that was deployed on the Amazon
EC2 Web Service. This Hadoop cluster consists of five DataN-
odes, considered in the slave roles only, and one NameNode
which serves is both the slave role and master role in our
system. The details of these nodes are listed in Table III. The
version of Hadoop we used is 1.0.4 and we have set the number
of replicas to be 6 since there are 6 nodes in total in this cluster.

TABLE III. DESCRIPTION OF CLUSTER CONFIGURATION

Node Instance CPU Memory Storage Num

Type

Name
Node

M1
Medium

2 EC2 Compute
Units

3.75
GB

300GB 1

Data Node M1 Small 1 EC2 Compute
Unit

1.7 GB 200GB 5

Since the Data Mining technique we used to profile
and analyze the performance of MapReduce applications is

k − means + +, this clustering analysis algorithm needs
to be trained first. Thus, it is necessary for us to decide
which applications should be included in the training set of
our PPABS system. In this experiment, the training set of
MapReduce applications consists of three well-known sets that
have predominantly being used in research: Hadoop Examples
set, Hadoop Benchmarks set and HiBench, which is another
benchmark set implemented by Intel. In total there are 48
applications in these three sets, however, we decided to select
three most popular applications — WordCount, TeraSort and
Grep — as the “unknown” and “incoming” applications to test
the performance of our system. Therefore, the size of training
set is 45.

Note that the training set may not be as large as some
experiments in the field of Data Mining, however, in the field of
MapReduce, we have plenty of reasons to believe that this set
in our research is solid and large enough, especially compared
to the related works, of which the number of applications used
is usually less than 5. Moreover, in the step of Data Collection
and Performance Analysis, or in the tuning step, we set the size
of input data to be 1GB for each application.

B. Experimental Results

First, we present in Table IV the intermediate results
generated by the Analyzer, which is the offline part of our
PPABS system. We have tested the clustering algorithm in
situations when we set K = 3, 4, 5 and then the size of each
cluster and the average distance (normalized by percentage)
between each point and the cluster center this point belongs
to are also listed in the table. It can be seen from this table
that the accuracy of the modified k −means + + algorithm
we used to cluster MapReduce jobs increases as K increases,
which describes the number of clusters. The reason why we
did not set K > 5 in this experiment is because a large K
will make the tuning step more complicated. Based on the
observation, we decided to set K = 4 for the next step in this
evaluation.

TABLE IV. RESULTS OF JOB CLUSTERING

Num of Average Size of
Clusters Distance Cluster

K=3 21.3/100 [19, 12, 14]
K=4 15.7/100 [11, 15, 11, 8]
K=5 13.5/100 [12, 7, 9, 8, 9]

Next, to evaluate the performance of the Recognizer, we
provide a comparison between the tuned configuration settings
and the default cluster configuration settings for WordCount,
TeraSort and Grep in Table V after they are submitted to our
system. We can find that there is significant difference among
the tuned configurations and the default one, for instance, the
value of parameter io.sort.mb in each of the tuned configu-
ration is twice as large as the default value. Moreover, from the
output of the Recognizer, we also notice that the configuration
files loaded for these three MapReduce applications we have
submitted are also different in some way. Take for example the
parameter io.sort.factor whose optimal value found by
PPABS for TeraSort is larger than the one for WordCount,
while the value of this parameter for Grep is only 30, which
is smaller than the others.

TABLE V. COMPARISON OF MAPREDUCE CONFIGURATION SETTINGS
FOR THE 3 APPLICATIONS

Name Default Word Count Tera Sort Grep

io.sort.mb 100 240 220 280
io.sort.factor 10 50 80 30
io.sort.spill.percent 0.8 0.67 0.6 0.8
mapred.tasktracker.map.-
tasks.maximum

2 4 4 3

mapred.tasktracker.reduce.-
tasks.maximum

2 2 3 2

mapred.child.java.opts 200m 500m 800m 800m
mapred.reduce.parallel.copies 5 8 10 8
dfs.block.size 64m 256m 256m 374m
mapred.map.output.compress FALSE TRUE TRUE TRUE

Finally, the performance of PPABS is evaluated as follows.
We compared the execution time of WordCount with tuned
configuration to the execution time with the default settings in
Figure 7. Next, we compared the execution time of the other
two applications with the tuned configuration to execution time
with the default one in Figures 8 and 9. Moreover, in order to
evaluate whether our system indeed improves the performance
of MapReduce jobs when the input data is very large, the size
of input data is set to 1GB, 5GB, and 10GB. We repeated this
evaluation several times to discard outliers and consider the
average behavior.

0

2

4

6

8

10

12

1�� 5�� 10��

E
�
�
��
��
�
	
T
�

�
�	
M
�	
�
��
�

D�����

PP���

Fig. 7. Performance Comparison for Word Count

�

�

��

��

��

��

��� ��� ����

�
�
�
��
�
!
"
#
 $
�
 "
%
 "
�
��
&

'()*+,-

../�3

Fig. 8. Performance Comparison for Tera Sort

These figures demonstrate that the PPABS system improves
the performance of MapReduce cluster. Besides, when the size
of input data set is relatively small such as only 1GB, this
improvement is not very obvious. While when the size of
input data becomes larger, for example, more than 5GB, the
performance of all three Hadoop applications is significantly

7

9

:

;

<

=7

=9

=:

=>? @>? =7>?

A
B
C
FG
HI
J
K
L
NO
Q
Ni
R
Ni
S
UQ
V

WXYZ[\]

^^_`a

Fig. 9. Performance Comparison for Grep

improved by our system. How much improvement in the
performance also varies by the characteristics of different jobs:
when the size of input data set is 10 GB, the average execution
time for TeraSort decreases by 38.4%, however, in the same
situation, the average execution time for WordCount decreases
by only 18.7%. The reason for this difference is because our
PPABS recognizes the incoming unknown jobs by classifying
and assigning each of them to a cluster, but the distance
between each job, which can be modeled as a point, and its
cluster center varies by the job itself. Therefore, if a job is far
from its cluster center, it is possible that its performance is not
optimized as well as the performance of another job which is
very close to its cluster center.

V. CONCLUSIONS

This paper presented PPABS, which is a profiling and
performance analysis based self-tuning system that is aimed
at optimizing the configuration of the Hadoop MapReduce
cluster. This system consists of two major parts: the Ana-
lyzer and the Recognizer. The former is called by PPABS
before a new job is submitted. It analyzes and processes data
gathered from the executed jobs and then uses a modified
k − means + + clustering algorithm to group these jobs
based on their performance pattern into one of a predefined
set of equivalence classes. A modified Simulated Annealing
algorithm is presented to search for the optimal solutions for
each “center” found from the Job Clustering step. The latter is
called when a new job enters the system. It samples the new
job by running it only with a small part of its entire data set
at first. Then the Recognizer compares the new job’s profile
with profiles of the “centers” and classifies this new-incoming
job into one group we previously found. The last step for the
Recognizer is selecting the tuned configuration files to load
and run the new job with updated configuration settings.

We implemented and evaluated the benefits of PPABS by
running real MapReduce applications on Amazon EC2. The
experimental results showed the effectiveness of our approach
in improving the performance of MapReduce applications
using our self-tuned configurations compared to the execution
time of the same jobs running with the default configuration.
We observed that the improvement by our PPABS system is
significant when the size of input data set is large.

The following limitations exist in our work requiring
additional research, however, we believe the presented work
is a step in the right direction. First, we have used the term

“optimal” in a somewhat loose sense in that we have not
determined the structure of the objective function nor do we
have a closed form formula for the optimization function.
Moreover, we have not investigated if the objective function
contains any discontinuities in which case local searches may
be useless. Second, we have not conducted any sensitivity
analysis to determine the impact of individual parameters so
that the less interesting parameters can be eliminated from
the optimization problem thereby reducing the number of
dimensions. We will leverage our prior experience [28] in
understanding these effects. Third, so far we focused only on
CPU and I/O activities; other systemic effects also need to
be considered. Fourth, the size of our experiments is small;
in reality MapReduce applications require a large number of
compute resources.

Our future work in this area centers around two enhance-
ments. We plan to add more MapReduce applications into our
training set so that we can let our system “remember” more
executed jobs as history data. We plan to optimize the Job
Sampling step with appropriate tradeoffs: on one hand, the
time of sampling should be as short as possible; on the other
hand, we have to make sure the sampled performance pattern
can describe the features of each job as well. The Amazon EC2
testbed we used comprised DataNodes that were homogeneous
but the NameNode was different in configuration. Our future
work will experiment with additional heterogeneity and scale
in the system.

ACKNOWLEDGMENTS

This work was supported in part by NSF CAREER Award
CNS 0845789. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation. We thank the anonymous reviewers
for their excellent feedback that helped strengthen the paper.

REFERENCES

[1] C. Ordonez, I.-Y. Song, and C. Garcia-Alvarado, “Relational
versus Non-relational Database Systems for Data Warehousing,”
in Proceedings of the ACM 13th international workshop on
Data warehousing and OLAP, ser. DOLAP ’10. New York,
NY, USA: ACM, 2010, pp. 67–68. [Online]. Available: http:
//doi.acm.org/10.1145/1871940.1871955

[2] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for Multi-core and Multiprocessor Systems,”
in High Performance Computer Architecture, 2007. HPCA 2007. IEEE
13th International Symposium on, 2007, pp. 13–24.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan.
2008. [Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[4] ——, “MapReduce: A Flexible Data Processing Tool,” Commun.
ACM, vol. 53, no. 1, pp. 72–77, Jan. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1629175.1629198

[5] J. Dean, “Experiences with MapReduce, An Abstraction for Large-
scale Computation,” in PACT: Proceedings of the 15th International
Conference on Parallel Architectures and Compilation Techniques,
vol. 16, no. 20, 2006, pp. 1–1.

[6] A. Bialecki, M. Cafarella, D. Cutting, and O. OŠMalley, “Hadoop:
A Framework for Running Applications on Large Clusters Built of
Commodity Hardware,” Wiki at http://lucene. apache. org/hadoop,
2005.

[7] K. Wang, X. Lin, and W. Tang, “Predator — An Experience Guided
Configuration Optimizer for Hadoop MapReduce,” in Cloud Computing
Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on, 2012, pp. 419–426.

[8] S. Babu, “Towards Automatic Optimization of MapReduce Programs,”
in Proceedings of the 1st ACM symposium on Cloud computing, ser.
SoCC ’10. New York, NY, USA: ACM, 2010, pp. 137–142. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807150

[9] G.-z. SUN, F. XIAO, and X. XIONG, “Study on Scheduling and Fault
Tolerance Strategy of MapReduce [J],” Microelectronics & Computer,
vol. 9, p. 053, 2007.

[10] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce Performance in Heterogeneous Environments,”
in Proceedings of the 8th USENIX conference on Operating systems
design and implementation, 2008, pp. 29–42.

[11] K. Kambatla, A. Pathak, and H. Pucha, “Towards Optimizing Hadoop
Provisioning in the Cloud,” in Proc. of the First Workshop on Hot Topics
in Cloud Computing, 2009, p. 118.

[12] C. Tian, H. Zhou, Y. He, and L. Zha, “A Dynamic MapReduce
Scheduler for Heterogeneous Workloads,” in Grid and Cooperative
Computing, 2009. GCC ’09. Eighth International Conference on, 2009,
pp. 218–224.

[13] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An Analysis
of Traces from a Production MapReduce Cluster,” in Cluster, Cloud
and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on, 2010, pp. 94–103.

[14] N. B. Rizvandi, J. Taheri, R. Moraveji, and A. Y. Zomaya, “On
Modelling and Prediction of Total CPU usage for Applications in
MapReduce Environments,” in Proceedings of the 12th international
conference on Algorithms and Architectures for Parallel Processing -
Volume Part I, ser. ICA3PP’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 414–427. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-33078-0_30

[15] P. Lama and X. Zhou, “AROMA: Automated Resource Allocation
and Configuration of MapReduce Environment in the Cloud,” in
Proceedings of the 9th international conference on Autonomic
computing, ser. ICAC ’12. New York, NY, USA: ACM, 2012, pp. 63–
72. [Online]. Available: http://doi.acm.org/10.1145/2371536.2371547

[16] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin,
and S. Babu, “Starfish: A Self-tuning System for Big Data Analytics,”
in Fifth Biennial Conference on Innovative Data Systems Research
(CIDR), Alisomar, CA, USA, Jan. 2011, pp. 261–272.

[17] D. Arthur and S. Vassilvitskii, “k-means++: tThe Advantages of
Careful Seeding,” in Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, ser. SODA ’07. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2007,
pp. 1027–1035. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1283383.1283494

[18] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast
Subsequence Matching in Time-series Databases,” in Proceedings
of the 1994 ACM SIGMOD international conference on Management
of data, ser. SIGMOD ’94. New York, NY, USA: ACM, 1994, pp. 419–
429. [Online]. Available: http://doi.acm.org/10.1145/191839.191925

[19] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999. [Online].
Available: http://doi.acm.org/10.1145/331499.331504

[20] “Hadoop Common Core,” hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-common/core-default.xml.

[21] H. Herodotou, “Hadoop Performance Models,” arXiv preprint
arXiv:1106.0940, 2011.

[22] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.
[23] S. Joshi, “Hadoop Tuning Guide,” Advanced Micro Devices, Tech. Rep.,

Oct. 2012.
[24] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1982.

[25] J. M. Hinson and J. E. R. Staddon, “Matching, maximizing, and hill-
climbing,” Journal of the Experimental Analysis of Behavior (JEAB),
vol. 40, no. 3, pp. 321–331, Nov. 1983.

[26] P. J. Van Laarhoven and E. H. Aarts, Simulated Annealing. Springer,
1987.

[27] E. Aarts, J. Korst, and W. Michiels, “Simulated Annealing,” in
Search Methodologies, E. Burke and G. Kendall, Eds. Springer
US, 2005, pp. 187–210. [Online]. Available: http://dx.doi.org/10.1007/
0-387-28356-0_7

[28] C. Yilmaz, A. Porter, A. S. Krishna, A. Memon, D. C. Schmidt, and
A. Gokhale, “Reliable Effects Screening: A Distributed Continuous
Quality Assurance Process for Monitoring Performance Degradation
in Evolving Software Systems,” IEEE Transactions on Software Engi-
neering, vol. 33, no. 2, pp. 124–141, Feb. 2007.

