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Abstract

Rapid advances in networking, hardware, and middle-
ware technologies are facilitating the development and de-
ployment of Grid applications, which are characterized
by their very high computing and resource requirements.
These applications and services have multiple, simultane-
ous end-to-end quality of service (QoS) requirements, such
as delay guarantees, jitter guarantees, security, scalabil-
ity, reliability and availability guarantees, and bandwidth
and throughput guarantees. Moreover, these applications
and services require secure, controlled, reliable, and guar-
anteed access to different types of resources, such as net-
work bandwidth, computing power, and storage capabili-
ties, available from multiple service providers.

To support next-generation Grid applications effectively,
there is a need to simplify grid programming by developing
a new Grid middleware that raises the level of abstraction,
and reduces the accidental complexities incurred by pro-
gramming at the Grid infrastructure middleware level of-
fered by existing Grid middleware such as Globus, ICENI,
and Legion. Moreover, the new Grid middleware must en-
sure multiple end-to-end QoS properties simultaneously.

The paper provides three contributions to the research on
next generation Grid middleware architecture that provides
the above-mentioned properties. First, we describe how we
are utilizing the standards-based CORBA distributed object
computing and integration technology to design the next
generation Grid middleware, called Grid TAO (GriT) that
complements and enhances existing low-level Grid middle-
ware, such as Globus. Second, we describe how we are us-
ing the real-time, fault-tolerant, and data parallel CORBA
features to implement GriT to provide the desired proper-
ties. Finally, we show how CORBA’s platform and language
independence features are used in GriT to resolve the porta-
bility and interoperability challenges faced by current grid
applications.

1 Introduction

1.1 Trends in Grid Computing

The emergence of next-generation distributed applica-
tions, such as internet collaboration tools for telemedicine
and scientific applications, and distributed mission train-
ing, stems from a number of advances in networking, hard-
ware, storage, middleware, and web technologies. For ex-
ample, technologies such as DiffServand Multi Protocol La-
bel Switching (MPLS)are enabling service providers to pro-
vision and deliver network-level quality of service (QoS) to
applications.

A special class of these distributed applications that have
very high computing and resource requirements are called
Grid Applications. Grid computing [7] is an emerging
paradigm that seeks to harness the power of the internet and
the sophisticated resources spread across it, such as super
computers, storage devices, and others to support grid ap-
plications.

The grid computing paradigm envisages a distributed
hardware infrastructure and a wide range of software infras-
tructure for services, programming models, tools, program-
ming languages and methodologies capable of providing the
massive computational requirements (Petaflops) and mas-
sive storage capacities (Petabytes) required by grid applica-
tions. Moreover, it is also expected to support high-fidelity,
real-time collaboration between geographically distributed
virtual organizations (VOs) [10], that comprise researchers,
scientists, other users, and organizations.

A sampling of important grid application domains in-
clude:

• computationally intensive large-scale analysis of data
such as seismic data, bioinformatics, satellite imagery
of astronomical objects or surveillance data pertaining
to enemy territory, and data resulting from experiments
in elementary particle physics.



• computationally intensive high-fidelity realistic mod-
eling and simulation of natural phenomena such as
global climate change and mathematical ecology, and
man-made systems such as groundwater transportation
and traffic distribution.

The expected grid users include but are not limited to:

• government – for macro-level defense and disaster
planning using the collective power of fastest comput-
ers

• astrophysicists – collaborating, collecting and process-
ing data on the fastest computers

• bioinformaticians – analyzing human genome data
• meteorologists – studying earth atmospheric and cli-

matic changes
• medical administrators and personnel – sharing spe-

cialized instruments like MRI machines and CAT scan-
ners in addition to medical data and images

• economists and market analysts – studying and analyz-
ing financial markets data

For grid applications to operate effectively, they simultane-
ously require:

• secure and controlled access to many different re-
sources available from multiple resource and service
providers, including networking resources (such as
bandwidth and buffers), operating system resources
(such as threads, CPU and kernel buffers), storage
resources (such as high performance databases and
RAIDs), computing resources (such as supercomput-
ers), display resources capable of 3-D rendering, and
many other specialized types of resources, such as sen-
sors, telescopes, oscilloscopes, and other electronic
equipment

• end-to-end multiple QoS properties, such as delay
guarantees, jitter guarantees, security, scalability,
high reliability and availability guarantees, and band-
width and throughput guarantees to grid applications.

Developing these grid applications from scratch is not
advisable and feasible due to the large number of inher-
ent and accidental complexities arising from their stringent
resource and end-to-end QoS requirements. The inherent
complexities include dealing with multiple QoS properties
of which some could cross-cut each other e.g., tradeoffs be-
tween real-time and fault-tolerance, programming environ-
ments and paradigms totally different from some commonly
used ones, sudden disruptions in service levels, e.g., due to
network partitioning or power outages. The accidental com-
plexities include memory management differences across
platforms, methodologies that are supported and efficient
on one platform but not supported on the other, and errors
that arise from improper handling of boundary conditions.

A solution to alleviate these inherent and accidental
complexities is to implement a grid infrastructure middle-
ware that can host grid applications and provide them with
the required resource and QoS guarantees. Middleware is
reusable software that resides between the applications and
the underlying operating systems, network protocol stacks,
and hardware [23]. Its primary role is to bridge the gap be-
tween application programs and the lower-level hardware
and software infrastructure to coordinate how parts of ap-
plications are connected and how they interoperate.

The infrastructure middleware that hosts grid applica-
tions is called a Computational Grid or simply a Grid [7].
Examples of infrastructure middleware include Globus [6],
Legion [13] and ICENI [11] among others. The Grid pro-
vides dependable, consistent, pervasive and inexpensive
access to high-end computational capabilities useful for
distributed super-computing, on-demand computing, high-
throughput computing, data-intensive computing and col-
laborative computing.

1.2 Middleware challenges supporting next-
generation grid applications

Though existing infrastructure grid middleware seems
suited to build next-generation grid applications, how-
ever, developing distributed grid applications using these
is fraught with the following challenges. Moreover, un-
less several enhancements are made, conventional com-
mercial off-the-shelf (COTS) distribution middleware,
such as Common Object Request Broker Architecture
(CORBA) [21] or J2EE [28], cannot host next-generation
grid applications, although they help raise the level of ab-
straction and simplify distributed programming by eliminat-
ing many accidental complexities.

Challenge 1: Proliferation of grid infrastructure mid-
dleware choices: The proliferation of multiple grid in-
frastructure middleware technology platforms, such as
Globus, Legion, or ICENI has raised the level of acciden-
tal complexity by increasing the amount of effort required
to interoperate and port applications between Grid middle-
ware technologies.

Moreover, service providers often have a considerable
investment in legacy provisioning systems that do not even
use today’s Grid technologies. In particular, large-scale
service provisioning systems often consist of components
based on multiple software technologies developed over
many years. Problems arise when these components must
interoperate or be integrated together into a single exe-
cutable since it is hard to assemble semantically compati-
ble and interoperable components based on multiple mid-
dleware platforms.

With an increasing trend towards availability of newer
middleware technologies, it is imperative for service



providers to interoperate seamlessly with emerging tech-
nologies without affecting existing grid applications.

Challenge 2: Satisfying multiple quality of service re-
quirements simultaneously: As noted earlier, grid appli-
cations demand varying degrees and forms of QoS support
from their middleware. For example, collaborative scien-
tific applications involving geographically dispersed scien-
tists, engineers, and physicists working on real-time experi-
ments and data require the infrastructure to be efficient, pre-
dictable, scalable, secure, and fault tolerant. Owing to the
complex nature of these QoS requirements, it is not feasi-
ble for a single vendor or product to develop an end-to-end
solution that addresses all these challenges. Instead, highly
configurable, flexible, and optimized COTS and non-COTS
components from several different middleware providers
based on standards-based middleware must be used to as-
semble and deploy these systems.

Challenge 3: Conventional COTS distribution middle-
ware is too restrictive: Conventional COTS distribution
middleware, such as CORBA or J2EE, is well-suited for
only certain types of distributed applications, such as desk-
top and enterprise applications. Moreover, COTS mid-
dleware, in its current form, provides policies to man-
age resources only within the organization where it is de-
ployed. Grid applications, however, manage and provi-
sion a diverse set of resources belonging to multiple service
providers. This requirement entails the need to cross-cut
service provider boundaries – a property lacked by conven-
tional COTS middleware.

Challenge 4: Single sign-on secure access to resources
with existing grid middleware is hard: As noted ear-
lier, grid applications require simultaneous access to sev-
eral different types of resources available from multiple re-
source and service providers that own them. These ser-
vice providers include internet service providers (ISPs),
storage service providers (SSPs), content service providers
(CSPs), application service providers (ASPs), web host-
ing service providers (WHSPs) and others. For example, a
distributed virtual surgery application involving geographi-
cally dispersed doctors, radiologists, medical professionals,
and medical students will require high bandwidth for col-
laboration, large storage databases to hold patient records
and radiology images, expensive display devices for pre-
cise 3-D modeling and rendering of images, virtual reality
equipment for simulating surgeries, and telephony equip-
ment to maintain multi-leg call sessions.

Applications that require these resources must main-
tain service level agreements (SLAs) with each individ-
ual service provider that provides the resources and ser-
vices. Moreover, today’s applications must authenticate
themselves with each service provider everytime they ac-
cess resources owned by the provider. Conventional COTS

middleware is capable of provisioning only those resources
and services belonging to the service provider where that
middleware is deployed. It lacks the qualities to manage re-
sources that involves cross-cutting service provider bound-
aries, however, making it infeasible for applications to have
a single sign-on interface to access multiple resources and a
common SLA applicable to all service providers. Existing
grid infrastructure middleware does not address this prob-
lem either.
Addressing the challenges described above requires a new
set of Grid distribution middleware services and compo-
nents that complement and enhance existing grid infrastruc-
ture middleware while also raise the level of abstraction
and simplifying distributed grid application development.
Moreover, the new Grid distribution middleware must si-
multaneously be able to provide the following capabilities
to grid applications:

• delivery of multiple end-to-end QoS properties,
• controlled and secure sharing of resources belonging

to multiple service providers without the need for mul-
tiple SLAs and multiple authentications per session,

• portability across different low-level grid infrastruc-
ture middleware, and

• seamless interoperability between grid applications.

This paper describes a new Grid distribution middle-
ware we are implementing, called Grid TAO (GriT), that en-
hances standards-based CORBA middleware capabilities to
complement and enhance earlier grid infrastructure middle-
ware work, such as Globus [6] and Legion [13], to address
the challenges outlined above.

The rest of the paper is organized as follows: Section 2
provides detail explanation of the GriT middleware archi-
tecture and shows how it addresses the challenges raised
above; Section 3 describes related research; and finally Sec-
tion 4 provides concluding remarks.

2 The Grid TAO (GriT) Middleware Archi-
tecture

This section describes our next generation Grid compo-
nent middleware called Grid TAO (GriT). GriT enhances
the Component Integrated ACE ORB (CIAO) [29] middle-
ware, which is our CORBA Component Model (CCM) [19]
implementation of the The ACE ORB (TAO) [25]. TAO
is an open-source, high-performance, highly configurable
CORBA Object Request Broker (ORB) that implements key
patterns [26] to meet the demanding QoS requirements of
distributed systems.

The following sections describe the various components
of the GriT middleware architecture. We show how these
components help resolve the challenges described in Sec-
tion 1.2. We also illustrate the inherent technical challenges



faced in implementing GriT and provide our solutions to
these.

2.1 Components of the GriT Middleware Archi-
tecture

Figure 1 illustrates the components of the GriT middle-
ware architecture. As noted earlier, GriT is based on the
standards-based CORBA technology.
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Figure 1. Grid TAO (GriT) Middleware Archi-
tecture

Below we explain each component of the architecture in
detail.

2.1.1 Grid Service Provider (GSP)

The GriT middleware comprises the notion of a Grid Ser-
vice Provider (GSP) similar to other service providers such
as ISPs, SSPs, ASPs, WHSPs, CSPs and other providers
providing specialized services such as access to advanced
displays, virtual reality equipment, telescopes, oscillo-
scopes, etc. A fundamental difference between a GSP and
other service providers is that a GSP is an abstract notion
and does not actually own resources. The goal of the GSP
is to provide a standard, unified view of resources to grid
applications thereby eliminating the need for grid applica-
tions to require the knowledge and location of individual
resource service providers. Figure 2 illustrates the concept
of a GSP.

The GSP provides a single sign-on capability for grid ap-
plications, which eliminates the need for multiple SLAs and
authentication mechanisms with multiple service providers.
Applications use the GSP to delegate the responsibility of
authenticating themselves with the individual specialized
service providers. Moreover, the GSP offers its user in-
terface as a standard web service, thereby enabling grid
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Figure 2. Overview of Grid Service Provider
(GSP)

clients to use techniques such as session initiation protocol
(SIP) [2] to create, join, or leave collaborative grid applica-
tions.

2.1.2 Meta Resource Broker (MRB)

At the heart of the GSP is a Meta Resource Broker (MRB),
which is an enhanced CORBA ORB, that encapsulates re-
sources from multiple providers as CORBA objects. The
MRB exemplifies the actual GriT middleware. The MRB
provides applications with standards-based, uniform inter-
faces and mechanisms to access and manage the underlying
resources, and to create or join new or existing collaborative
sessions, respectively. Figure 3 illustrates the MRB con-
cept.

The MRB mediates requests for different services and
resources on behalf of grid applications and delivers them
with the resources and guaranteed QoS. This is accom-
plished by the MRB delegating the task of looking up
individual resources required by the grid applications to
MRB part objects. Figure 3 illustrates the concept of a
primary MRB parallel object and its part objects. These
reusable patterns are defined in the Data Parallel CORBA
(DP-CORBA) [20] specification.

The MRB, by way of delegating responsibility to its
part objects, reserves and manages different types of virtual
resources, which are high-level abstractions of resources,
such as network bandwidth, databases, or supercomputers,
belonging to different service providers. The resources are
virtual since the GSP does not actually own any resources,
but maintains only abstractions of them.

When a grid application makes a reservation request to
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Figure 3. Meta-Resource Broker Architecture

the GSP for all the different resources it needs and the QoS
guarantees, this request is handed down by the GSP to its
underlying MRB parallel object. The MRB parallel object
will in turn partition the request using the techniques de-
scribed in the DP-CORBA specification and the Data Re-
organization Effort (www.data-re.org), such as block
distribution or cyclic distribution. The partitioned request is
then handed over to the MRB part objects. Each MRB part
object is responsible to discover the appropriate resources
that can meet the application’s QoS requirements. This dis-
covery process is performed in parallel thereby providing
a highly scalable and predictable solution to determine the
feasibility of resource and service provisioning.

The mechanism of resource discovery outlined above is
akin to a nested transaction. If any one of the child trans-
action i.e., resource discovery undertaken by a part object,
is unsuccessful, then the parent transaction i.e., the request
initiated by the MRB parallel object, is rolled back.

If the request for resources is feasible, then the result
of the MRB part object resource discovery operation is a
collection of resources required by the application that pro-
vides it with the QoS guarantees. This collection of virtual
resources is subsequently managed by the MRB as another
parallel object. It is then upto the grid application to effi-
ciently utilize these resources.

Each MRB part object is implemented using the CORBA
Component Model (CCM), where components encapsulate
the logic and policies to manage the virtual resources. Since
these components manage virtual resources, they serve as
a resource proxy of the actual resources thereby providing
a uniform view to client applications. Figure 4 illustrates
the architecture of a MRB part object illustrating the use
of CORBA components and an ORB enabled for parallel
computing and other QoS requirements, such as real-time
and fault tolerance. As noted earlier, the ORB and the com-

ponent/containers functionality in the MRB is provided by
CIAO, which is our CCM implementation of the TAO ORB.
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2.2 Resolving Grid Application Challenges with
GriT

As described in Section 1.2, developing grid applications
using today’s Grid middleware technologies requires grid
application developers to address the following challenges:

• dealing with proliferation of low level grid infrastruc-
ture middleware technologies

• satisfying multiple quality of service requirements si-
multaneously

• restrictions using conventional COTS middleware
• complexity in provisioning single sign-on secure ac-

cess to resources with existing COTS middleware

Below we explain how GriT addresses the challenges out-
lined above.

2.2.1 Challenge 1: Proliferation of low-level Grid mid-
dleware choices

Context The proliferation of multiple low-level Grid mid-
dleware technology platforms, such as Globus, Legion, or
ICENI has raised the level of accidental complexity by in-
creasing the amount of effort required to interoperate and
port applications between Grid middleware technologies.

Solution As mentioned before, GriT uses standards-
based, platform and language independent CORBA inte-
gration and distribution technology. This raises the level



of abstraction and simplifies distributed grid programming.
Moreover, GriT’s GSP offers a standards-based web service
interface to grid applications. This enables grid applica-
tions to seamlessly interoperate between different underly-
ing low-level grid middleware technologies. Furthermore,
standards-based interfaces ensures application portability.

2.2.2 Challenge 2: Satisfying multiple quality of ser-
vice requirements simultaneously

Context Grid applications are characterized by their de-
mand for varying degrees and forms of QoS support from
their middleware.

Solution As noted earlier, GriT is being built using
the high-performance, real-time CORBA-compliant ORB
called TAO [15], which is a open-source middleware de-
veloped as part of our previous and ongoing research ac-
tivites. The MRB delegates resource lookup and applica-
tion authentication to the part objects. The part objects in
turn return the resources that best meet the needs of the ap-
plications. Moreover, the real-time and fault-tolerance fea-
tures of the TAO ORB ensure guaranteed end-to-end grid
application request priorities and reliability, respectively.
COTS middleware, such as CORBA, have advanced to a
level of enabling applications to deliver real-time QoS re-
quirements [16, 24].

2.2.3 Challenge 3: Conventional COTS middleware is
too restrictive

Context Grid middleware must manage and provision
a diverse set of resources belonging to multiple service
providers. This requirement entails the need to cross-cut
service provider boundaries – a property lacked by conven-
tional COTS middleware.

Solution As explained before, the MRB is implemented
as a parallel CORBA object. The MRB’s part objects are
deployed on individual service provider infrastrutures after
maintaining the proper SLAs with each of them. However,
these SLAs are transparent to the grid applications who
are required to only maintain a single SLA with the GSP.
This arrangement allows GriT to cross-cut service provider
boundaries.

2.2.4 Challenge 4: Single sign-on secure access to re-
sources with existing COTS middleware is hard

Context Grid applications require simultaneous access to
several different types of resources available from multiple
resource and service providers that own them. This im-
plies having to maintain SLAs and authenticating with each
individual service provider that provide the resources and
services. Conventional COTS middleware lacks the quali-
ties to manage resources that involves cross-cutting service
provider boundaries, however, making it infeasible for ap-
plications to have a single sign-on interface to access mul-

tiple resources and a common SLA applicable to all service
providers.

Solution As noted in the solution to challenge 3 above,
GriT is able to cross-cut service provider boundaries by
maintaining individual SLAs with them thereby enabling
GriT to access the resources via the individually deployed
MRB part objects. The grid applications, on the other hand,
are shielded from the underlying service providers by the
GSP. Applications need to maintain only a single SLA with
the GSP. Any request for resources is handled by the GSP
on behalf of the application.

2.3 Addressing Technical Challenges Implement-
ing GriT

This section describes the technical challenges that must
be addressed by Grid middleware like GriT.

2.3.1 Avoiding Starvation of Transient Collaborative
Applications

Context. Applications collaborating in an ad hoc peer-to-
peer manner will require resources to be reserved and pro-
visioned for only the duration of the collaboration. For ex-
ample, a group of scientists might decide to setup a collab-
orative conference to discuss certain aspects of a project.
Resources will therefore need to be provisioned for the du-
ration of the conference only after which the resources are
available for use in another Grid application.

On the other hand, long running collaborative scientific
experiments might need to be stopped from time-to-time
to analyze intermediate results and resumed from the point
where the application was previously stopped. This would
require that resources be provisioned for the entire duration
of the experiment irrespective of the temporary inactivity.

Problem. Existing Grid resource management techniques
allow resource reservation from multiple providers with-
out making any distinction between transient and persistent
collaborations. Moreover, they do not optimize resource
usage whenever persistent collaborative applications have
temporarily stopped utilizing the resources. If several per-
sistent applications reserve resources for long durations of
time, it might starve other transient applications.

Solution. GriT enhances the CORBA Portable Object
Adapter (POA) lifespan policies to incorporate the tran-
sient and persistent nature of collaborative applications. In
particular, for the persistent collaborative applications, the
MRB’s POA marks the resource as being persistent. This
way, the next time the application decides to resume the
session, the MRB will figure out the QoS and resource re-
quirements of the application and provision the same set of
resources. Moreover, when the application has temporarily
stopped using the resource, the MRB will mark the resource



as temporarily available thereby allowing it to be used for
a short duration transient collaborative application. This
optimization ensures that resource utilization is optimized
and transient collaborative applications do not starve for re-
sources.

2.3.2 Dispatching Requests to Concrete Resources
Transparently

Context. An incoming client request is demultiplexed and
dispatched by the ORB and the POA to servants within the
same address space as the POA. In MRB, however, an in-
coming request for a resource gets demultiplexed and dis-
patched to a servant that represents a virtual resource.

Problem. In MRB, the servant that handles incoming re-
quests for resources must transparently forward the request
to the concrete resource corresponding to the virtual re-
source.

Solution. The MRB POA’s active object map, which
keeps an association between an object reference and its
associated servant, is modified to also maintain a mapping
between the virtual resource and the actual resource it rep-
resents. This enables any incoming client request to be for-
warded transparently to the concrete resource over the ap-
propriate communication link.

2.3.3 Alleviating Resource Redundancy
Context. Dependability is a key QoS requirement for Grid
applications. This includes reliability and high availability
of resources. This becomes particularly important for appli-
cations such as virtual surgery or mission training.

Problem. To guarantee reliability and high availability,
the MRB must provision multiple number of redundant re-
sources. This implies that a single virtual resource must
now represent a collection of redundant resources. This
impacts the mapping of a virtual resource into the actual
resource since now we need a policy for choosing one of
the concrete redundant resources. Furthermore, we need an
addressing mechanism to address a group of redundant re-
sources.

Solution. To provide high degree of reliability and avail-
ability to Grid applications, the component representing the
virtual resource maintained by the MRB actually represents
a set of redundant resources that the MRB has brokered as
part of the application’s QoS specifications and SLA. The
choice of which resource is selected from among the group
of redundant resources is configurable into the MRB dy-
namically. For example, one policy might use the resources
in a round-robin manner, while another policy might re-
quire sophisticated load-balancing algorithms to determine
the choice of the resource selected. For this, we are using

the Abstract Factory, Strategy [12], and Component Con-
figurator [26] patterns in the MRB’s POA to configure the
concrete resource selection policy.

An additional challenge is in addressing the group of re-
dundant resources. We are using a multiple profile inter-
operable component reference (ICR) to address the group,
where each profile addresses an individual resource in the
group. To support ICR, modifications to the TAO ORB core
have been made.

2.3.4 Interacting with existing Grid Protocols
Context. The Grid protocol hierarchy comprises four lay-
ers [10] illustrated in Figure 5. These four layers include:
(1) a Fabric layer – which provides the resources and the
protocols to access the resources, (2) a Connectivity layer
– which provides the core communication and authentica-
tion protocols for exchanging Fabric layer data, (3) the Re-
source layer – which provides the protocols to securely ac-
cess, monitor, control, and meter the usage of individual re-
sources, and (4) the Collective layer – which comprises pro-
tocols to capture interactions amongst resources at a global
level.

Problem. The Grid computing model [10] imposes the
four-layer protocol stack for Grid applications to use. How-
ever, there is not yet a standardization of the protocols at all
the four layers. Different Grid middleware frameworks will
therefore have their own set of protocols at the four layers.
Thus, there is a need for inter-Grid protocols to achieve in-
teroperability. Moreover, many Grid developers today use
lower-level Grid protocol APIs to program their applica-
tions, which is tedious and error-prone due to the lack of
a higher-level type system that can be checked by compil-
ers.

Solution. As mentioned earlier, GriT complements and
enhances existing Grid infrastructure middleware protocols.
Moreover, GriT shields grid applications from the differ-
ences in the protocols provided by different Grid frame-
works by providing a standards-based CORBA and web
services API. Figure 5 illustrates the interactions of the
MRB part object, which is deployed at the actual service
provider’s premises after proper authorization, with differ-
ent protocols of the Grid protocol stack. To achieve inter-
Grid interoperability or processing Grid-specific applica-
tion requests, GriT uses the Pluggable Protocol [22] frame-
work that adapts higher-level CORBA requests to the un-
derlying Grid protocol messages.

In the following, we describe how the MRB interacts
with the Grid protocols offered by the Globus [6] toolkit,
which is an instance of a grid infrastructure middleware.
We also describe any enhancements we make to existing
grid protocols.
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Fabric layer GriT reuses the functionality provided by
the Globus’s General-purpose Architecture for Reservation
and Allocation (GARA) [8] to actually perform the re-
source reservations. The MRB transforms incoming client
CORBA IIOP or HTTP requests for resource reservations
into GARA requests. This is done transparently to the
client applications. A challenge here is to map CORBA IDL
or Web Services Description Language (WSDL)operations
invoked by Grid applications into appropriate GARA re-
quests.

Connectivity layer As noted earlier, the primary goal of
the GSP is to provide a single sign-on capability for client
applications. These client sign-on requests serve to dele-
gate the responsibility of authentication onto the GSP. In
the delegation phase, the MRB uses the Grid Security In-
frastructure (GSI) [14] protocol requests that will take care
of authenticating the GSP, and hence the client. Since the
GSP acts on behalf of the application, the GSP itself main-
tains multiple SLAs with different service providers. The
challenge here is for the MRB to predictably and scalably
map incoming application authentication requests into GSI
requests to those providers with whom the GSP’s SLA of-
fers the desired service.

Resource layer For resource management and account-
ing purposes, the MRB’s resource management and ac-
counting system reuses the functionality offered by the
Grid Resource Allocation Manager (GRAM) [3], and other
LDAP-based protocols implemented in Globus.

Collective layer For resource discovery, the MRB uti-
lizes Globus’s Meta Directory Service (MDS) [4] protocol.
We are exploring ways to combine the CORBA Trading

service and Uniform Description, Discovery, and Integra-
tion (UDDI) with MDS. For fault-tolerance, we have ex-
tended the fault-tolerant CORBA standard’s infrastructure-
controlled membership policy to use Globus’s dataset and
resource replication strategies. Moreover, the Heartbeat
Monitor (HBM) fault detection protocols in Globus are used
to detect resource failures. To ensure scalability, we are us-
ing the fault-tolerant CORBA’s concept of domain and ar-
ranging the HBMs in a hierarchical structure.

2.3.5 Simplifying the programmming interface to Grid
Service Provider

Context. Both wireless and wireline client applications
must be able to participate in collaborative Grid applica-
tions. This requires thin client applications that can use the
GSP’s interface to share resources.

Problem. Programming directly at the Grid framework-
specific protocols is too low-level and hence tedious and
error-prone. Moreover, for small footprint wireless clients
and other embedded devices to use the Grid framework,
standards-based protocols and interfaces must be used.

Solution. The services offered by the GSP are hosted as a
web service as shown in Figure 2. This approach is similar
to the ideas proposed in the Open Grid Services Architec-
ture (OGSA) [9], where the GSP’s services are described
in the Web Service Description Language (WSDL). Client
applications access the GSP services via the web by con-
tacting the UDDI registry.

This feature provides Grid application developers
tremendous benefits when establishing SIP sessions.
SIP [2] is designed to enable two or more participants to
establish a session consisting of multiple media streams in-
cluding audio, video, and other internet-based communica-
tion mechanisms such as distributed gaming, shared appli-
cations, whiteboards, etc. Participants in a collaborative ap-
plication use the GSP’s interfaces and services to set up SIP-
enabled collaborative sessions. As mentioned earlier, these
sessions could be set up in an ad hoc manner or they can be
persistent sessions.

3 Related Work

3.1 Related work on middleware

Popular COTS component middleware platforms being
used for various distributed applications today include the
CORBA Component Model (CCM) [19], J2EE [28], and
COM [1]. CCM is modeled closely on the Enterprise Java
Beans (EJB) specification. Unlike EJB, however, CCM uses
the CORBA object model as its underlying object interoper-
ability architecture and is therefore not bound to a particular
programming language. CCM and CORBA are also related



to the Microsoft COM family of middleware technologies.
Unlike CORBA, however, Microsoft’s COM was designed
to support a collocated component programming model ini-
tially and later DCOM added the ability to distribute COM
objects.

We base our work on the CCM since CORBA is the only
standards-based COTS middleware that has made a sub-
stantial progress in satisfying the QoS requirements of dis-
tributed systems. For instance, the real-time, fault-tolerant,
and data parallel CORBA specifications have been adopted
in recent years.

The GriT middleware described in this paper uses our
CCM implementation called CIAO [29]. CIAO enhances
our earlier TAO ORB to simplify the development of QoS-
enabled distributed applications by enabling developers to
statically provision QoS policies end-to-end declaratively
when assembling a system.

3.2 Related work on Grid Computing

Grid computing is an emerging powerful paradigm to
build large-scale, distributed, collaborative applications that
require secure, controlled access to different resources from
multiple providers.

The National Science Foundation (NSF)’s Next-
generation Middleware Initiative (NMI) program has led
to the formation of a GRIDS center (http://www.
grids-center.org/), where several innovative ideas
in Grid Computing [10] are being deployed to mature the
Grid.

The Globus toolkit [6] (http://www.globus.org)
is well established Grid middleware that serves as a net-
worked virtual supercomputer or a metacomputer and uses
high-speed networks to connect supercomputers, databases,
scientific instruments, and advanced display devices, possi-
bly geographically dispersed.

The Globus toolkit, considered the reference Grid imple-
mentation, is an open source, open architecture framework
that provides a suite of tools to enable Grid application de-
velopers to build computational grids and grid-based appli-
cations.

Legion [13] is an object-based metasystems Grid mid-
dleware designed for a system of millions of hosts and tril-
lions of objects tied together with high-speed links. Users
of Legion get the illusion of a single computer with access
to all kinds of data and physical resources.

ICENI [11] is a component-based Grid middleware im-
plemented in Java. It uses the Jini technology to lookup re-
sources. ICENI supports management of collection of com-
putational resources and provides scalable secure access to
authorized users.

The GriT middleware described in this paper is a dis-
tribution middleware that complements and enhances the

low-level grid infrastructure middleware such as Globus,
Legion, and ICENI.

The GSI [14, 5] protocol used in Globus enables secure
authentication and communication over an open network.
The primary advantage of GSI is its ability to support mu-
tual authentication and single sign-on. In our work on the
MRB, we extend the GSI capabilities to provide authoriza-
tion and encryption by integrating it with the CORBA secu-
rity service [18]. For example, certain collaborative appli-
cations involving classified projects might require that par-
ticipants be authorized to use the application. Moreover, all
authorized collaboration might need to be encrypted.

The Globus MDS [4] provides the tools to build an
LDAP-based information infrastructure for computational
grids. By using standards-based protocols, such as LDAP,
MDS provides a uniform means of querying system infor-
mation from a rich variety of system components. Since
GriT uses CORBA and provides a web service user inter-
face, we have integrated MDS with the CORBA Trader Ser-
vice and web service UDDI. This integration enables a large
number of applications to use standard interfaces for discov-
ering resources. Moreover, the Trader Service offers a very
rich lookup capability that can be used to select resources
that fit best for a Grid application.

The Globus resource management architecture is a lay-
ered system in which high-level global resource manage-
ment services are layered on top of local resource allocation
services. The GRAM [3] serves as a broker for requesting
and acquiring resources. Since GRAM is a Resource layer
protocol, the Grid architecture [10] recommends having a
very small subset of protocols at this layer. As a result, we
are reusing the capabilities of GRAM. The MRB uses the
pluggable protocol framework [22] in the TAO [15] ORB to
reuse the GRAM protocol.

The fault detection service in Globus is the Heartbeat
Monitor [27], which enables a process to be monitored and
periodic heartbeats to be sent to one or more monitors. We
have extended the HBM functionality by a much richer,
high performance, fault tolerant CORBA [17] we devel-
oped that provides fault tolerance at the object level. The
finer granularity is required since resources within the MRB
are represented as CORBA objects. Moreover, high perfor-
mance is essential since failure recovery times must be pre-
dictable to support end-to-end QoS.

4 Conclusions

This paper describes a next generation Grid middleware
called GriT. GriT is designed to complement and enhance
existing low-level Grid middlware such as Globus.

The key ideas in GriT include the Grid Service Provider
(GSP) and the Meta-Resource Broker (MRB). The GSP of-
fers a web service interface to grid applications thereby sim-



plifying grid programming. Moreover, the GSP eliminates
the need for grid users to maintain multiple service level
agreements (SLAs) with individual service providers. The
meta resource broker (MRB) manages virtual resources that
are abstractions of concrete resources belonging to multiple
service providers.
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