
Infrastructure for Component-Based DDS Application
Development∗

William R. Otte, Aniruddha Gokhale and
Douglas C. Schmidt

Dept of EECS, Vanderbilt University
Nashville, TN 37235

{wotte,gokhale,schmidt}@dre.vanderbilt.edu

Johnny Willemsen
Remedy IT

Nijkerk, The Netherlands
jwillemsen@remedy.nl

ABSTRACT
Enterprise distributed real-time and embedded (DRE) sys-
tems are increasingly being developed with the use of component-
based software techniques. Unfortunately, commonly used
component middleware platforms provide limited support
for event-based publish/subscribe (pub/sub) mechanisms that
meet both quality-of-service (QoS) and configurability re-
quirements of DRE systems. On the other hand, although
pub/sub technologies, such as OMG Data Distribution Ser-
vice (DDS), support a wide range of QoS settings, the level
of abstraction they provide make it hard to configure them
due to the significant source-level configuration that must
be hard-coded at compile time or tailored at run-time using
proprietary, ad hoc configuration logic. Moreover, develop-
ers of applications using native pub/sub technologies must
write large amounts of boilerplate “glue” code to support
run-time configuration of QoS properties, which is tedious
and error-prone. This paper describes a novel, generative
approach that combines the strengths of QoS-enabled pub-
/sub middleware with component-based middleware tech-
nologies. In particular, this paper describes the design and
implementation of DDS4CIAO which addresses a number of
inherent and accidental complexities in the DDS4CCM stan-
dard. DDS4CIAO simplifies the development, deployment,
and configuration of component-based DRE systems that
leverage DDS’s powerful QoS capabilities by provisioning
DDS QoS policy settings and simplifying the development
of DDS applications.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—performance attributes; C.2.4 [Software Engi-

∗This work was supported in part by NSF CAREER
0845789 and CNS 0915976, and a contract from Northrop
Grumman and AFRL GUTS. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation, AFRL, or NGC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPCE ’11, 20–23 October, 2011, Portland, OR
Copyright 2011 ACM ...$10.00.

neering]: Distributed Systems—components, deployment ;
D.2.11 [Software Engineering]: Software Architectures—
domain-specific architectures

General Terms
Software, Components, Deployment, Optimizations

Keywords
component-based real-time systems, predictable deployment

1. INTRODUCTION
The trend towards realizing enterprise distributed real-

time and embedded (DRE) systems motivates the use of
component-based middleware, such as the OMG’s Lightweight
CORBA Component Model (LwCCM) [10]. Component-
based middleware offers DRE system developers significant
flexibility in modularizing their system functionalities into
reusable units, simplifies the deployment and configuration
of the systems, and supports dynamic adaptation of system
capabilities. Deployment and configuration standards, such
as the OMG’s Deployment and Configuration (D&C) speci-
fication [13], play a major role in realizing these capabilities.

Existing and planned enterprise DRE systems must in-
creasingly support large data spaces generated by thousands
of collaborating nodes, sensors, and actuators that must
exchange information to detect changes in the operational
environment, make sense of that information, and effect
changes. These capabilities require scalable publish/sub-
scribe (pub/sub) semantics [6] that support a range of QoS
properties, that control properties, such as liveliness, la-
tency, deadlines, timing, and reliability. Unfortunately, the
conventional component technologies used to develop enter-
prise DRE systems either do not provide first class support
for pub/sub semantics or do so in an ineffective manner that
is not scalable and does not support real-time QoS proper-
ties.

A standardized, QoS-enabled pub/sub technology called
the OMG Data Distribution Service (DDS) [11] has emerged
as a promising pub/sub technology to support the require-
ments of enterprise DRE systems. DDS includes standard
QoS policies and mechanisms to handle data (de)marshaling,
node discovery and connection, and configuration. Middle-
ware based on the DDS standard has been applied success-
fully in mission-critical domains, such as air traffic manage-
ment systems [5] and tactical information systems [7].

While the DDS specification simplifies key implementa-
tion aspects of pub/sub application, these benefits come at

price of increased complexity of configuration glue code that
must be written and maintained. Moreover, this configura-
tion boilerplate code tightly couples the QoS configuration
of a DDS application at compile-time, unless application
developers create ad hoc methods of specifying the middle-
ware configuration at run-time. Analysis [1] has shown that
as 80% percent of DDS-related code in a typical applica-
tions is associated with configuring the middleware. Like-
wise, over half of the DDS API that developers must learn
is configuration-related.
Addressing these deployment and configuration require-

ments of modern DRE systems calls for component-based
middleware, such as LwCCM, to provide first-class support
for QoS-enabled, pub/sub technologies, such as DDS. This
need has been recognized and documented through the ef-
forts of industry and academic collaborators in the OMG
DDS for Lightweight CCM (DDS4CCM) [12] specification.
Implementing this specification is hard, however, due to in-
herent and accidental complexities in integrating LwCCM
and DDS. The inherent complexities stem from (1) differ-
ences in the language bindings and memory management
strategies of the two middleware technologies, (2) incompat-
ibilities between the various specifications, (3) deployment
and configuration challenges to recognize DDS abstractions
within LwCCM, and supporting variants of DDS in a single
LwCCM implementation. The accidental complexities stem
from (1) manual approaches to creating the deployment and
configuration metadata for DDS elements within LwCCM,
and (2) the need to minimize run-time overhead imposed by
both the deployment and configuration metadata, and the
additional abstraction atop native DDS.
This paper describes how we have integrated LwCCM and

DDS to address the inherent and accidental complexities
described above as follows:

1. We make systematic use of the extensible interface pat-
tern in the form of mixins to extend existing interfaces
as well as the deployment and configuration metadata
to bridge the incompatibilities between the two tech-
nologies.

2. We describe a template-driven code generation approach
that maximizes the potential for portability between
various DDS implementations and maximizes main-
tainability.

3. We provide options to customize the integration, which
ensures that the runtime footprint of the resulting sys-
tem does not pay unwanted memory footprint penal-
ties.

4. We support improvements to the D&C approach man-
dated by the DDS4CCM specification.

Our contributions enable the realization of a product-line
of DDS4CCM systems where it is possible to vary the im-
plementations of the DDS technology used as well as sup-
port a wide range of port types for the LwCCM component
technology. Empirical evaluations of our approach demon-
strate that our implementation of the DDS4CCM specifi-
cation, which we call DDS4CIAO, substantially eases the
development of DDS-based applications while providing per-
formance almost identical to native DDS applications.
The remainder of this paper is organized as follows. Sec-

tion 2 summarizes key challenges encountered when inte-

grating DDS within LwCCM; Section 3 describes the de-
sign of DDS4CIAO that resolves the challenges described
in Section 2.3; Section 4 examines the code generation of
DDS4CIAO and analyzes the results of experiments that
evaluate the performance of DDS4CIAO; Section 5 compares
DDS4CIAO with related work, and Section 6 presents con-
cluding remarks.

2. IMPEDIMENTS TO INTEGRATING LWCCM
AND DDS

In this section we present both the inherent and acci-
dental challenges in providing first class support for Data
Distribution Service (DDS) within the Lightweight CORBA
Component Model (LwCCM).1 To better appreciate these
challenges, we first provide an overview of LwCCM and
DDS, and the deployment and configuration standard. Sub-
sequently we elaborate on the challenges.

2.1 Overview of Relevant Middleware Tech-
nologies

This section provides an overview of OMG LwCCM and
OMG DDS.

2.1.1 The Lightweight CORBA Component Model (LwCCM)
The OMG Lightweight CCM (LwCCM) [10] specification

standardizes the development, configuration, and deploy-
ment of component-based applications. LwCCM uses CORBA’s
distributed object computing model as its underlying archi-
tecture, so applications are not tied to any particular lan-
guage or platform for their implementations. Components in
LwCCM are the implementation entities that export a set of
interfaces usable by conventional middleware clients as well
as other components. Components can also express their in-
tent to collaborate with other components by defining ports,
including (1) facets, which define an interface that accepts
point-to-point method invocations from other components,
(2) receptacles, which indicate a dependency on point-to-
point method interface provided by another component, and
(3) event sources/sinks, which indicate a willingness to ex-
change typed messages with one or more components.

Homes are factories that shield clients from the details of
component creation strategies and subsequent queries to lo-
cate component instances. A container in LwCCM provides
an operating environment that can be configured and shared
by components requiring a common set of QoS policies and
functional support.

2.1.2 The OMG Deployment and Configuration
The OMG Deployment and Configuration (D&C) specifi-

cation [13] provides standard interchange formats for meta-
data used throughout the component application develop-
ment lifecycle, as well as runtime interfaces used for packag-
ing and planning. Figure 1 depicts an architectural overview
of the OMG D&C model.

The runtime interfaces defined by the OMG D&C spec-
ification for deployment and configuration consists of the
two-tier architecture comprising a set of global entities used
to coordinate deployment and a set of node-level entities

1The LwCCM is a subset of the OMG CORBA Component
Model. In the rest of this paper we refer to LwCCM because
of our focus on DRE systems but the issues apply equally
well to CCM.

Deployer

Deploy an

application
Domain

Application

Manager

Deploy components

to node B

Execution manager

Node

Application

Manager

Node

Application

Install

components

Create

containers

create
Node Manager

Deployment Target Host A

CCM

Component

POA

Container

create

ORBCIAO

CCM

Component

Node

Application

Manager

Node

Application

Install

components

Create

containers

create
Node Manager

Deployment Target Host B

CCM

Component

POA

Container

create

ORBCIAO

Deploy components

to node A

Set up

component

connections

Figure 1: An Overview of OMG Deployment and
Configuration Model

used to instantiate component instances and configure their
connections and QoS properties. In addition to the runtime
entities described above, the D&C specification also con-
tains an extensive data model that is used to describe com-
ponent applications throughout their deployment lifecycle.
The D&C metadata defined by the data model contains a
section where arbitrary configuration information may be in-
cluded in the form of a sequence of name/value pairs, where
the value may be an arbitrary data type. This configuration
information is used to describe everything from basic config-
uration information (such as shared library entrypoints and
component/container associations) to more complex config-
uration information (such as QoS properties or initialization
of component attributes with user-defined data types).

2.1.3 Overview of the OMG Data Distribution Ser-
vice (DDS)

The OMG DDS specification [11] defines a standard archi-
tecture for exchanging data in pub/sub systems. DDS pro-
vides a global data store in which publishers and subscribers
write and read data, respectively. DDS provides flexibil-
ity and modular structure by decoupling: (1) location, via
anonymous publish/subscribe, (2) redundancy, by allowing
any numbers of readers and writers, (3) time, by providing
asynchronous, time-independent data distribution, and (4)
platform, by supporting a platform-independent model that
can be mapped to different platform-specific models, such
as C++ running on VxWorks or Java running on Real-time
Linux.
DDS entities include topics, which describe the type of

data to be written or read, data readers, which subscribe to
the values or instances of particular topics, and data writ-
ers, which publish values or instances for particular topics.
Moreover, publishers manage groups of data writers and sub-
scribers manage groups of data readers.
Properties of these entities can be configured using com-

binations of DDS-supported QoS policies. Each QoS policy
has ∼2 parameters, with the bulk of the parameters hav-
ing a large number of possible values, e.g., a parameter of
type long or character string. DDS provides a wide range of
QoS capabilities that can be configured to meet the needs
of topic-based distributed systems with diverse QoS require-
ments. DDS’ flexible configurability, however, requires care-
ful management of interactions between various QoS policies
so that the system behaves as expected. It is incumbent

upon the developer to use the QoS policies appropriately
and judiciously.

2.2 Addressing Limitations in the LwCCM Port
System via DDS4CCM

The OMG’s DDS4CCM [12] specification was developed
to overcome the following limitations in LwCCM and DDS
while still preserving the inherent advantages of each tech-
nology.

Limitation 1: Support for event-based pub/sub
communication in LwCCM is extremely limited. LwCCM
does not specify a particular distribution middleware that
must be used inside the container for communicating events.
While this approach allows a substantial amount of flexibil-
ity on the part of implementation authors, allowing them
to choose to implement this support using, for example, the
CORBA Event Service or CORBA Notification Service, has
two important drawbacks. First, the integration of new pub-
/sub middleware requires modification of not only the core
container implementation, but potentially also the deploy-
ment and configuration infrastructure in order to properly
operate. As a result, this is an extremely complex task, of-
ten requiring that the integrator be an expert in both the
LwCCM implementation and the desired distribution mid-
dleware.

Second, in order to remain completely generic, the in-
terface available to component developers for event-based
communication consists of only two operations: 1) a single
method per port that allows for a single event to be pub-
lished at a time, and 2) a single callback operation that pro-
vides an event to the component as it arrives. This prevents
the component from taking advantage of many features of
pub/sub messaging middleware that provide for status no-
tifications and per-message QoS adjustment.

Limitation 2: Grouping of related services must
be done in an ad-hoc manner. In many cases, services
offered by a component require more than one interface in
order to provide correct operation. As a simple example,
consider a scenario in which one component provides an in-
terface“A”and requires an interface“B”, while another com-
ponent provides complementary ports (i.e., provides“B”but
requires “A”). In order for semantically correct operation,
the connections for both “A” and “B” must go to the same
component, but there exists no way in LwCCM to indicate
this constraint on an interface level. To accomplish this goal,
developers must rely on ad-hoc naming conventions and doc-
umentation. This approach has the unfortunate side effect
of complicating the planning process and potentially caus-
ing subtle and pernicious run-time errors if connections are
mis-configured.

The DDS4CCM specification addresses these limitations
by enabling LwCCM to leverage the powerful pub/sub mech-
anisms of DDS. First, it provides a substantially simplified
API to the application developer that completely removes
the configuration of the DDS middleware from the scope
of the application developer. Second, it provides a set of
ready-to-use ports that hide the complexity and groups data
writing/access API with the appropriate callback and status
interfaces. Third, by providing integration with the LwCCM
container, DDS applications are now able to take advantage
of robust and mature deployment and configuration tech-
nologies that obviates the need to write boilerplate appli-
cation startup code, run-time configuration of QoS policies,

and coordinated startup and teardown of applications across
multiple nodes.
In particular, DDS4CCM proposes two new constructs —

extended ports, which allow for the grouping of related ser-
vices, and connectors, which allow for flexible integration
of new distribution middleware. These new entities are de-
fined using an extension of the IDL language for components
(IDL3) called IDL3+. It is possible to map each of these new
IDL3+ language constructs back to basic IDL3 using sim-
ple mapping rules to enable inseparability with older CCM
implementations. Next, we provide a brief overview of these
enhancements.
Extended Ports: Extended ports provide a mechanism

whereby component designers can group semantically re-
lated ports to create coherent services offered by a compo-
nent. These extended ports, defined using a new IDL key-
word porttype, are defined outside the scope of components.
Extended ports are allowed to contain any number of stan-
dard LwCCM ports in either direction. While these ports
are allowed in terms of the specification to contain standard
LwCCM event ports, in practice this is highly unlikely due
to the limitations outlined earlier. Moreover, in combination
with connectors (described next), these extended port defi-
nitions could be used to recreate the behavior of the existing
standard CCM event infrastructure.
Listing 1 shows IDL for an example extended port. In this

example, we create a service whereby one component may
notify another of data that is ready to be sent, and the des-
tination component may optionally choose to pull that data
from the source component. Since each of the interfaces
Data_Source and Notifier are semantically linked, i.e., op-
eration of the component application would be fundamen-
tally broken if these ports are not pairwise connected, they
are grouped into a single porttype. This is an indication to
both high level modeling tools and the component run-time
that these ports must be connected as a pair. Extended
ports are assigned to components using two new IDL3+
keywords. The port keyword indicates that the component
supports the extended port as described. The mirrorport

keyword indicates that the component inverts the direction
of the extended port, i.e., facets become receptacles.

Listing 1: Extended Port IDL

i n t e r f a c e Data Source {
Data pu l l (in long uuid) ;

} ;
i n t e r f a c e No t i f i e r {

void data ready (in long uuid) ;
} ;
porttype Not i f i edData {

prov ide s Data Source data source ;
uses No t i f i e r data ready ;

} ;
component Sender {

port Not i f i edData data out ;
} ;
component Rece iver {

mirrorport Not i f i edData data in ;
} ;

Some extended ports may vary only in the data type used
as parameters. In order to avoid the necessity of re-defining

an extended port for each new data type, IDL3+ offers a
new template syntax that may be used to define services
that are generic with respect to data type.

Connectors: While the extended port feature described
above is quite useful, their power is most suited to provid-
ing novel communications mechanisms to components that
provide/use those interfaces. In order for the extended ports
to provide a coherent interface to a new distribution mid-
dleware, such as DDS or the CORBA Event Service, the
business logic that supports that abstraction must be con-
tained in some entity. This unit of business logic is called a
connector. Connectors combine one or more extended ports
to provide well-defined interfaces to new distribution mid-
dleware or communication techniques between components.
In many cases, a single connector will support at least two
extended ports, one intended for each “side” of the com-
munications channel. By separating the core communica-
tions business logic, these connectors can then be used as
COTS components across several applications without re-
quiring modification of the core container code.

Connectors are defined similar to a component, using the
new IDL3+ keyword connector. Connectors may contain,
of course, one or more extended ports. In addition, they
may also support attributes which are intended to be used to
assist in runtime configuration, i.e. topic names, port num-
bers, QoS parameters, etc.. Finally, connectors also support
inheritance which can be used to extend existing connectors
with new capabilities. At runtime, instead of creating a new
IDL type structure for the connector infrastructure, they
are defined as components, deriving their interface from the
same CCMObject used by regular components. Indeed, in the
IDL3+ to IDL3 mapping, the connector keyword becomes
component. This approach is much desirable in that no ad-
ditional work is necessary in the D&C toolchain to support
the deployment and configuration of connectors. Moreover,
connector implementations can take advantage of the same
Component Implementation Framework that is available to
standard LwCCM components and thus can take advantage
of advances in services offered by the container.

2.3 Challenges in Integrating LwCCM and DDS
Although the DDS4CCM specification attempts to ad-

dress the limitations of individual technologies, realizing an
implementation of the DDS4CCM specification is fraught
with multiple inherent and accidental complexities explained
below:

Challenge 1: Indicating that a connector imple-
mentation has been fully configured, and should be
made ready for execution. After a connector implemen-
tation has received all necessary configuration information,
it must proceed to create the underlying low-level DDS enti-
ties (e.g., DomainParticipant, DataWriter and/or DataReader)
that are necessary for correct operation. To accomplish this
task, the specification mandates the use of an operation
called configuration_complete on the external connector
interface. This operation, however, is not delegated to the
connector business logic and thus is insufficient to fully in-
form the connector implementation of completed configu-
ration. Section 3.1 discusses our approach to resolve this
challenge.

Challenge 2: Reducing D&C-related runtime mem-
ory footprint. The DDS4CCM specification mandates the
use of LwCCM Homes (which nominally act as factories

for component instances) as the primary vehicle for passing
configuration information from the deployment plan to indi-
vidual connector implementation during deployment. While
this approach is certainly functional and sound (and in keep-
ing with the spirit of the LwCCM specification), our expe-
rience developing component applications with LwCCM re-
veals that the home entity often adds very little value to
the configuration of individual component, or in this case
connector, instances. In most cases, the home implemen-
tation is little more than a simple factory that directly in-
stantiates the component and nothing else. Meanwhile, the
home instance carries a non-negligible amount of runtime
footprint due to the CORBA interface and accompanying
home-specific generated container code that is necessary.
Section 3.2 discusses our approach to resolve this challenge.
Challenge 3: Reducing Connector-related runtime

memory footprint. The decision to treat connectors for
all intents and purposes as full LwCCM components greatly
simplifies the implementation of by substantially reducing
the number of changes in the core container necessary to
support the specification. A consequence of this decision,
however, is that the runtime footprint of a LwCCM appli-
cation using connectors could substantially increase. For
example, assuming a deployment where each component in-
stance has an associated connector instance, the number
of actual “components” in the deployment is doubled. In
memory-constrained DRE systems, this can be a significant
impediment. Section 3.3 discusses our approach to resolve
this challenge.
Challenge 4: Supporting Local Interfaces as Facets

All of the extended ports contained in the DDS4CCM spec-
ification are defined as “local interfaces”. Local interfaces
are significantly different from standard CORBA interfaces
due to the fact that they are not generated with any of the
infrastructure necessary to support remote invocation. As
a result, any invocation on these interfaces does not travel
through the CORBA internal infrastructure and as such only
incurs overhead nominally involved in a virtual method in-
vocation. The problem this strategy causes with the de-
ployment and configuration aspect of LwCCM is very sub-
tle: since these local interfaces lack the necessary remoting
code, it is impossible to pass references to these local ob-
jects through a standard CORBA interface. Indeed, this
behavior is undefined; any attempt to do so will fail and
cause an exception to be propagated to the caller. Unfor-
tunately, all of the standard-defined connection methods,
including the Component Navigation interfaces used by the
D&C tooling to make connections between components rely
on being able to retrieve object references to Facets over a
standard CORBA interface and pass these references to the
receptacle component over a similar interface. Not having
an object reference for the extended port implies that the
existing D&C tooling cannot be leveraged in a straightfor-
ward manner. Section 3.4 discusses our approach to resolve
this challenge.
Challenge 5: Supporting Multiple DDS Implemen-

tations One significant benefit of writing DDS applications
using the DDS4CCM API is that it potentially makes it sub-
stantially easier to switch between various DDS implemen-
tations. Prior work [15] has shown that differences in the
architecture between these different implementations cause
them to have different strengths depending on the architec-
ture of the application and hardware environment. More-

over, due to the proprietary nature of most DDS implemen-
tations and the different licensing requirements of each im-
plementation, the ability to quickly and easily switch the
targeted implementation would greatly facilitate the devel-
opment of COTS DDS components. While it is currently
possible to target multiple DDS implementations at compile
time due to the presence of a standard API, subtle differ-
ences in the implementations of these APIs can make this
difficult to accomplish. Ideally, any implementation of the
DDS4CCM specification would be architected in such a way
that the core business logic of the connector is shielded from
the differences between DDS implementations. In addition,
the connector architecture could make it possible to delay
the choice of DDS implementation from compile time to de-
ployment time. Section 3.5 discusses our approach to resolve
this challenge.

Challenge 6: Making it easy for users to define
their own connectors The DDS4CCM specification pro-
vides for two connector types that correspond to common
DDS usage patterns. The first provides for a state transfer
pattern, and is intended to connect “Observable” compo-
nents that publish state to other “Observer” components
that consume that state. The second provides for event
transfer connecting supplier components to consumer com-
ponents. These two connectors, however, are not intended
to be the only ones that are supported in the context of
the specification. To that end, two “base” connectors are
provided that collect the various configuration meta-data as
attributes. It is intended that users be able to define their
own connectors that are better suited to their usage cases.
To support this capability, the code generation techniques
should be extensible such that it is easy for users to create
their own connectors without having to modify the code gen-
erators. Section 3.6 discusses our approach to resolve this
challenge.

3. RESOLVING LWCCM AND DDS INTE-
GRATION CHALLENGES IN DDS4CIAO

This section describes how we resolved the challenges in
integrating LwCCM with DDS described in Section 2.3 by
presenting the architectural and design choices made for
DDS4CIAO, which is our implementation of the DDS for
Lightweight CCM specification outlined in Section 2.2.

3.1 Accurate Indication of Successful Connec-
tor Configuration

The central difficulty outlined in Challenge 1 from Sec-
tion 2.3 revolves around the final configuration stage of the
D&C process. In this case, there lies a crucial phase before
the application is “activated”, but after it is fully config-
ured. In this portion of the D&C process, the connector
business logic must make themselves ready for execution by,
for example, instantiating various DDS entities. In Figure 2,
which shows the lifecycle stages that connectors and compo-
nents go through, this is represented by the “Passive” state.
Unfortunately, the LwCCM specification currently provides
no mechanism to communicate to the connector that it has
entered this state; the only notification that is received when
the component/connector becomes passive is when the prior
state was “Active”. To understand the reason for this, it is
best to have a grasp of the layout of connectors and compo-
nents at runtime.

Installed

Configurable

Passive

Active

Removed

Unloaded

Figure 2: LwCCM Component and Connector Life-
cycle Stages

Instantiated connectors consist of two primary pieces. First,
there is a “Servant”, which consists of the external CORBA
interface and connector-specific container code. The Ser-
vant has two primary parts to its interface: (1) operations
common to all connectors which come from the LwCCM
specification (called the CCMObject interface), and (2) oper-
ations that result from the ports specified in the IDL dec-
laration of the connector. Second is the “Executor”, which
contains the actual business logic that implements the con-
nector. Operations on this interface result from two sources:
(1) specification-defined lifecycle operations (called the Ses-
sionComponent interface), and (2) operations that result
from the ports defined for the connector.
The configuration_complete operation mentioned in Sec-

tion 2.3 is part of the CCMObject interface but is not, how-
ever, present on the SessionComponent interface so it can-
not be directly delegated.2 Unfortunately, the first lifecycle
operation that is invoked on the Executor interface after
its construction as defined by the LwCCM specification is
ccm_activate. This lifecycle operation, however, must be
disjoint from and occur later than configuration_complete.
One approach to work around this problem is to delay the

creation of the DDS entities until the activation phase of the
application lifecycle. This is problematic, however, because
there exists no guarantee that a connector fragment will be
activated before its connected component. If a component is
activated before its connector and attempts to initiate out-
bound communication, that communication would naturally
fail, potentially causing pernicious and difficult to reproduce
errors. The ability for component business logic to receive
a notification upon configuration completion but before ac-
tivation has proven to be useful for components as well as
connectors because connectors are anyway treated as com-
ponents.
As a result, we have created a new interface that may

be optionally used to extend the behavior of component ex-
ecutors to be able to receive these notifications. This inter-
face, which we call ConfigurableComponent, uses a varia-
tion of the extension interface pattern to avoid changing the
standard-defined SessionComponent interface. This new in-
terface is intended to act as a mixin so that the component
implementations wishing to receive configuration_complete
will inherit from this in addition to the standard Session-

2This artifact results from the standards specification.

Component interface. The container, then, when it receives
configuration_complete from the D&C tooling, will at-
tempt a dynamic cast on the component implementation to
determine if the operation should be delegated on a per-
component basis.

3.2 Avoiding D&C-related Memory Footprint
Challenge 2, described in Section 2.3, deals with elimi-

nating unnecessary footprint from the specification-defined
deployment and configuration requirements of connectors.
DDS4CCM connectors are configured via attributes present
in the IDL interfaces defined by the specification, which al-
low for the fragment to be associated with a particular DDS
domain and topic as well as the QoS policies.

Many hardware platforms commonly used for DRE sys-
tems remain extremely memory-constrained, so the addi-
tional run-time memory footprint imposed by the CCM home
is at best undesirable. To avoid this additional overhead,
DDS4CIAO provides the capability to install “un-homed”
components and connectors. These un-homed components
are allocated from simple factory functions exported from
their implementation libraries in much the same manner
that Homes are already constructed. Component-specific
container code, which is generated automatically from IDL,
is then able to interpret the D&C plan meta-data and indi-
vidually invoke the attribute setter methods on the compo-
nent.

3.3 Reducing Connector-Related Memory Foot-
print

The solution Challenge 3, described in Section 2.3, at-
tempts to reduce the runtime footprint of connector imple-
mentations. In order to accomplish this goal, we must deter-
mine which, if any services that a component requires that
are not necessary for connector implementations. Given the
limitations of the standard LwCCM event ports described
in Section 2.2, it is highly unlikely that these inflexible port
types would be used in the context of a connector — in-
deed, the extended port/connector infrastructure could be
used to fabricate replacement infrastructure. Moreover, the
DDS4CCM specification makes no use of the existing event
infrastructure, making it an apt candidate for removal.

As a result, we sought to remove the event infrastructure
from the connector infrastructure in such a way that it would
still be present for standard components that may need to in-
terface with legacy systems. In this case, there are two pieces
to the event support in DDS4CIAO: (1) the base classes that
provide support to the component-specific generated con-
tainer code, and (2) the component-specific generated con-
tainer code itself, which includes a component-specific con-
text that provides services to the component business logic.
The first portion of the event support — the base classes
described above were split into two pieces — a connector
base and a component base. The container base contains all
necessary functionality for component and connectors mi-
nus the LwCCM event support. The necessary plumbing
LwCCM event support is contained in the component base,
which derives from the connector base. This way the code
generation infrastructure can choose to omit support for the
event infrastructure if desired by selecting a different base
class for the generated code. Our approach makes this arti-
fact configurable.

3.4 Supporting Local Facets
The solution to Challenge 4 outlined in Section 2.3 is

threefold. First, and most obviously, the Navigation and In-
trospection implementations generated for components with
local facets and receptacles had to be modified to suppress
any knowledge of these local ports. While this approach
solves the issue of undefined behavior from trying to mar-
shal one of these local object references, it also completely
removes any standards-based mechanism by which a con-
nection can be made by either the D&C tooling or any user
attempting to use the Navigation interfaces. To address
this undesired effect, a new connection API was created in
the private interface to the CIAO container (which is our
LwCCM implementation) that is used directly by the D&C
tooling. This API accepts as arguments the string identifiers
of two component endpoints as well as port names, and is
able to use these to obtain references to the local Executor
objects directly and create a connection without needing to
marshal any local references over standard interfaces.
In order to make use of this new API, however, the D&C

tooling needs an annotation on the connection meta-data so
that it can be made aware that it should not attempt to use
the standard Navigation API to make the connection. The
data structure in the deployment plan that contains connec-
tion information encodes the type of connection (e.g., Facet
vs. Receptacle) as an enumerated value. While this enumer-
ation could be extended to identify a new connection type
(i.e., LocalFacet), we endeavored to minimize changes to
specification-defined types. The connection data structure
does contain a section where requirements for deployments
can be described using name/value pairs. This section would
ordinarily be used to enumerate hardware capabilities or re-
sources required by the connection. In this case, we require
that any local facet connected be annotated with a require-
ment on the container, namely that it provide support for
local facets — when the D&C tooling encounters this anno-
tation it assumes the connection to be local.

3.5 Ensuring Portability of DDS4CIAO Imple-
mentation

As described in Challenge 5 from Section 2.3, we would
like to ensure that the design of the infrastructure is max-
imally portable in order to easily support implementations
from multiple DDS vendors. This goal is complicated by the
fact that despite the presence of a standard C++ language
mapping, there are subtle and pernicious differences between
the actual implementations of these mappings. Moreover,
there exist also subtle behavioral differences between imple-
mentations that complicate source-level compatibility, i.e.,
generated type-specific constructs such as DataWriters and
DataReaders may have different namespaces and naming
conventions, and indeed the same may be true of the en-
tire API.
We addressed this challenge by using three approaches.

The first approach targets the API that we wrote the imple-
mentations of the DDS4CCM basic ports against. The DDS
specification, in addition to the widely supported C/C++
language binding, also has a language binding that maps
the API into IDL interface definitions. This language bind-
ing is not widely implemented, but provides a promising
vehicle for implementing portable DDS business logic in the
context of the DDS4CCM basic ports. Since we are using
the same IDL code generator as with the rest of the CIAO

infrastructure, we can ensure that the APIs we are using to
implement these ports are consistent.

Much of the work for supporting different DDS implemen-
tations then can be accomplished by providing an implemen-
tation of this IDL language binding. At first glance, this
may seem a daunting proposition — however, this binding
consists of only about 36 interfaces, many of whose func-
tions may be directly delegated to the native implementa-
tion. The remaining problem with using this IDL-based ap-
proach is reconciling the differences between the CORBA
types that are part of the IDL language mapping and the
data types used natively by the DDS implementation. While
this conversion could be handled inside the vendor-specific
implementation of the IDL language binding, this approach
would incur potentially expensive data copies. Fortunately,
many DDS implementations provide a CORBA compatibil-
ity layer that allows them to directly use types generated by
the IDL compiler.

3.6 Connector Code Generation
Generating code for user-defined connectors is the focus of

Challenge 6 from Section 2.3. Our experience developing
code generators for our CORBA and LwCCM implementa-
tions has shown us that it is eminently undesirable to embed
large amounts of business logic in generated code. This is
largely due to the difficulty of maintaining and extending
the code generators themselves. If there is a bug, modifi-
cation, or extension to be made, this effort often involves
at least two engineers — one who is familiar with the mid-
dleware or problem at hand, and another who is familiar
with the process of extending and modifying the code gen-
erator. In addition to the extra personnel requirements, it
often substantially increases the amount of time to test these
changes, as not only does the initial proposed modification
needs to be be tested (typically supplied to the code gener-
ation engineer as a handcrafted generated file), but also the
final changes to the code generator and resulting modified
output. For the same reason, this accidental complexity of
the code generation process impedes the ability of users to
create their own DDS4CCM connectors.

In order to avoid these accidental complexities, we de-
signed the code generation infrastructure from the outset to
contain zero DDS4CCM business logic and to be extensi-
ble without the need to modify the code generator to add
new connector implementations. The first, and most obvi-
ous step given the presence of parameterized modules from
Section 2.2, was to leverage C++ templates for the imple-
mentations of the basic and extended DDS4CCM port types.
Using C++ templates in this case allowed us to make generic
two very important parts of the implementation — first, the
core DDS4CCM business logic contained in the basic and
extended DDS4CCM ports, but also the IDL wrapper (de-
scribed in Section 3.5) around our target DDS implemen-
tation. These IDL wrappers require access to type-specific
DDS entities (e.g. DataWriters and Data Readers) that are
created by the code generation infrastructure that is part of
the DDS implementation itself.

Connector implementations, then, are really a collection
of template instantiations for the various basic and extended
ports that are contained in their interface definition along
with some configuration glue code. While we could cer-
tainly generate the source code for these connector imple-
mentations, that would still represent an obstacle to novel

connector creation. Connectors themselves may contain a
nontrivial amount of configuration business logic that inter-
prets the values of attributes on the connector interface. As
a result, if a user were to define a new connector with new
configuration attributes, they would be required to modify
the code generator to be able to use their new connector.
To address this concern, we elected to make connector im-

plementations template classes as well. This allows the code
generator for DDS4CCM to be extremely simple. In effect,
the result of the code generation process is a header file that
contains a set of C++ traits [9] which specify the properties
necessary to use a particular IDL data type. These proper-
ties largely consist of the names of type-specific entities that
are generated from the DDS infrastructure. These traits are
then used to create concrete template instantiations of any
required connector implementations. By default, we gener-
ate instantiations of the standard DDS4CCM connectors —
the State and Event connectors described in Section 2.3. If a
user defines their own connector in IDL, the code generator
emits an include of a header file whose name derives from
the name of the connector in IDL, and a concrete instanti-
ation of a template class whose name is similarly derived.
While the user must then provide an implementation of this
template class, this is substantially less effort than would be
required to modify the code generator.

4. EXPERIMENTAL RESULTS
This section outlines two key empirical observations of the

DDS4CIAO implementation described in Section 3 which
cover two important goals outlined in Section 1. First, in
Section 4.2, we quantify the impact that the code gener-
ation capabilities of DDS4CIAO have on the development
and maintenance of DDS-enabled applications. Second, in
Section 4.3, we characterize the overhead that DDS-enabled
applications must pay in terms of latency when using the
DDS4CIAO abstraction versus using the DDS API directly.

4.1 Experimental Scenario
All results described below were obtained using a simple

“ping-pong” application. We chose a simple example since
the business logic of the application is not important to eval-
uate the qualities of DDS4CIAO. Rather we are interested
in understanding the overhead, if any, of the integration of
LwCCM with DDS. In this application, an instance struct
containing an octet sequence of a configured length and a se-
quence number would be written to the DDS data space by
a“Sender”. The instance would arrive at a “Receiver” entity,
after which a new instance of the struct would be published
on a separate topic with an identical sequence number but
a zero length octet sequence. The “Sender”, upon receipt of
the second message, repeats the process with a new sequence
number up to a specified number of iterations.
Two versions of this application were produced. The first

uses the native C++ DDS API, with all customary error
checking included. In the second version, the “Sender” and
“Receiver”were each implemented as CIAO components and
used DDS4CIAO to interface with the DDS middleware.

4.2 Evaluation of Code Generation
To evaluate the effectiveness of the code generation tech-

niques described in Section 3.6, the implementation source
files from the experimental scenario outlined in Section 4.1
were analyzed with the SLOCCount [14] tool. This is a pro-

gram which counts physical Source Lines of Code (SLOC),
and uses a number of heuristics to discard any whitespace
and commenting present. For the purposes of this evalua-
tion, only implementation source files were counted, discard-
ing header files containing only class definitions. The reason
for this is that header files for the DDS4CIAO implementa-
tion are largely generated automatically based on the class
interfaces.

The results from this tool are summarized in Table 1. If
only the total SLOC for the native programs and the com-
ponent implementations are compared, DDS4CIAO shows
only a nominal improvement over that of the native imple-
mentation. It is important to consider, however, that the
DDS4CIAO implementation contains a large amount of gen-
erated class skeletons which are created from the IDL inter-
face descriptions from the component automatically (SLOC
for which is shown in the “DDS4CIAO Generated” column
of the table). When these lines of code are subtracted from
the total for the DDS4CIAO implementation, the improve-
ment becomes substantially more dramatic. In the case of
the Sender component, the improvement is on the order of
50%, and for the receiver the difference is an order of magni-
tude. The reason for this discrepancy is the Sender programs
— both native and DDS4CIAO — contains a substantial
amount of code in common to measure latencies and calcu-
late/display results.

Table 1: Comparison of Source Lines of Code

Compo-
nent

Native
Lines

DDS4CIAO
Total

DDS4CIAO
Generated

DDS4CIAO
Actual

Sender 643 560 211 349
Receiver 293 128 118 10

4.3 Evaluation of the Overhead of DDS4CIAO
To evaluate the overhead due to abstraction over the na-

tive DDS API introduced by the DDS4CIAO implemen-
tation, the experimental scenario described earlier in Sec-
tion 4.1 was used to evaluate the latency performance using
a recent commercial DDS implementation and DDS4CIAO
0.8.3. Each configuration was executed for 1,000 iterations
each with payload sizes along powers 2, from 16 to 8192
bytes. Each experimental run was executed in two trans-
port configurations: once using UDP and again using Shared
Memory transport. The experimental testbed consisted of
Dell Optiplex 755 computers, with an Intel E4400 CPU,
2GB of RAM, and gigabit network connections.

The results for the experimental runs with the UDP trans-
port protocol are shown in Figure 3, which compares the
average latency for each payload size, and Figure 4, which
compares the minimum latency results for each payload size.
These results show that for this transport protocol, the av-
erage latencies are nearly identical. Figure 5 shows the re-
sults from the experimental runs configured with the shared
memory transport. This average latency result shows that
the DDS4CIAO abstraction introduces approximately a four
percent overhead over the native implementation for the
shared memory transport. The best case results for the
shared memory experiment are shown in Figure 6.

Table 2 summarizes the standard deviation of the exper-
imental runs for both UDP and shared memory. These re-

Figure 3: Ping Latency Average with UDP

Figure 4: Ping Latency Minimum with UDP

sults show that the DDS4CIAO abstraction does not intro-
duce additional jitter over the native implementation.

5. RELATED WORK
This section compares our research on component-based

DDS with related work.
PocoCapsule [8] is an Inversion of Control container

based on the Dependency Injection (DI) design pattern.
This component framework allows developers to use “Plain
Old C++ Objects” (POCO) that have been decorated with
PocoCapsule macros that allow the loading of these C++
classes into a PocoCapsule container. DDS4CCM and DDS4CIAO
differ in several important aspects from PocoCapsule. First,
DDS4CCM—and LwCCM in general—are industry stan-
dards that have language bindings defined for many pro-
gramming languages. Second, PocoCapsule still requires
some amount of low-level glue code in the component busi-
ness logic. Third, the DDS for PocoCapsule implementa-
tion currently only uses CORBA local interfaces to simulate

Figure 5: Ping Latency Average with Shared Mem-
ory

Figure 6: Ping Latency Minimum with Shared
Memory

Table 2: Standard Deviation For All Experiments
Size UDP CIAO UDP Shared CIAO Shared

16 11.3 12.4 17.7 18.4
32 12.4 9.4 15 14.2
64 12.5 12.6 15.5 9.9
128 13.3 9.3 16 10.4
256 6.2 13.1 15.9 12.6
512 12.3 11.2 11.6 8.8
1024 14.7 8.1 15.7 12.1
2048 12.7 4.3 15.5 14.8
4096 7.1 13.7 15.3 10.8
8192 12.1 17.7 15.1 14.4

small parts of the DDS API, and hence is not operable with
standard-compliant DDS implementations.

Simple API for DDS (SimD) [2] uses C++ templates
and template meta-programming to provide a simpler API
for DDS that reduces the amount of infrastructure-related
code required for DDS applications by an order of magni-
tude. Using SimD, a simple DDS application can be written
in only 4 source hand-written lines of code, instead of dozens
lines of code using the native API. While SimD reduces the
complexity of the boilerplate code required for DDS appli-
cations, it differs substantially from DDS4CIAO in that it
does not address run-time deployment and configuration ca-
pabilities provided by DDS4CIAO. Moreover, it has not yet
been proposed as a standard.

Researchers at Real-Time Innovations, Inc [1] propose ex-
tensions to the DDS API to allow declarative configuration
of DDS entities via an XML file that is interpreted at run-
time. The application then queries the DDS middleware to
obtain a particular DataReader or DataWriter that has been
configured already with a domain and topic binding and QoS
settings. While their work improves the state-of-the-practice
in standards-based DDS application configuration, its capa-
bilities are not as extensive as DDS4CCM and DDS4CIAO.
First, our existing D&C tooling provides coordinated in-
stallation of application implementations and startup across
multiple nodes. Second, the connector infrastructure devel-
oped for DDS4CIAO allows integration with other distri-
bution middleware, such as CORBA, TENA, JMS, or even
socket based network programs. Third, the decoupling pro-
vided by the DDS4CIAO implementation enables the selec-
tion of DDS implementation at deployment time.

SOFA [3, 4] is a component model with an integrated

D&C framework that provides remote communication capa-
bilities via a connector infrastructure similar in spirit to that
which is part of the DDS4CCM specification. SOFA, how-
ever, only provides connectors for CORBA and RMI distri-
bution middleware. Our approach differs from that taken by
SOFA in that the connectors implemented by DDS4CIAO
are themselves lightweight components. The advantage of
our approach is that any improvements to the QoS capa-
bilities of the CIAO container can be automatically applied
not only to all components deployed, but also connectors as
well.

6. CONCLUDING REMARKS
This paper presents a novel generative approach for de-

veloping DDS-based component-oriented DRE systems. We
have prototyped and evaluated our approach via the DDS4CIAO
middleware platform, which implements the Lightweight CCM
(DDS4CCM) specification, while addressing a number of in-
herent and accidental complexities in integrating the DDS
and LwCCM technologies. In particular, we have made
extensive use of variants of the extensible interface pat-
tern to extend the existing standard-defined LwCCM in-
terface and deployment metadata to overcome incompati-
bilities between DDS and LwCCM and overcome oversights
in the DDS4CCM specification. Additionally, we describe a
template driven code generation technique that maximizes
portability amongst DDS implementations while allowing
users to extend DDS4CCM by defining their own connec-
tor types without having to modify the code generator.
Our experience developing applications with DDS4CIAO

provided the basis for the following lessons learned:
Substantially reduced DDS application complexity.
Tests and example applications developed with DDS4CIAO
have shown that the simplified interface to the underlying
DDS middleware, provided by the DDS4CCM specification,
provides a platform that easier to write and develop DDS
applications.
Automatic configuration of DDS middleware. By
providing a strict separation of concerns between configuration-
based aspects of DDS application development and configu-
ration aspects, users can automatically configure the under-
lying middleware at deployment time using standards-based
deployment plan descriptors already available with LwCCM.
Deployment-time binding of DDS implementation
may ease application benchmarking. It is also possible
that the DDS implementation used by the component ap-
plication could be chosen at deployment time, rather than
compile time. This enhancement will allow developers to
evaluate the merits and performance characteristics of dif-
ferent DDS implementations rapidly.
Applying connectors to the CCM CORBA infras-
tructure. The connector-based approach to integrating the
DDS distribution middleware into CIAO has shown substan-
tial promise. Unfortunately, however, the CORBA infras-
tructure that underlies CIAO/CCM still remains tightly in-
tegrated into the container implementation. A similar con-
nector based approach could be used to convert LwCCM
into a “Common Component Model”, which is completely
agnostic to the underlying communications middleware, by
moving all of the extant CORBA communications functions
to connectors themselves. This approach has the advantage
of not only being able to remove the CORBA infrastructure
currently used for synchronous two-way communication, but

also makes it possible to, for example, swap in an alternative
non-CORBA based connector implementation, if desired.

CIAO, DAnCE, and DDS4CIAO are available in open-
source format from download.dre.vanderbilt.edu.

7. REFERENCES
[1] Alejandro de Campos Ruiz and Gerardo

Pardo-Castellote and GianPiero Napoli and Fernando
Crespo-Sanchez and Javier Sanchez Monedero.
High-level Programming of DDS Systems. In
Proceedings of the OMG Annual Real-time and
Embedded Systems Workshop (RTWS), Arlington, VA,
Mar. 2011.

[2] Angelo Corsaro. Simple API for DDS.
http://code.google.com/p/simd-cxx/.

[3] L. Bulej and T. Bures. A connector model suitable for
automatic generation of connectors. Technical report,
2003.

[4] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0:
Balancing advanced features in a hierarchical
component model. Software Engineering Research,
Management and Applications, ACIS International
Conference on, 0:40–48, 2006.

[5] C. Esposito and D. Cotroneo. Resilient and timely
event dissemination in publish/subscribe middleware.
International Journal of Adaptive, Resilient and
Autonomic Systems, 1:1 – 20, 2010.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Comput. Surv., 35(2):114–131, 2003.

[7] J. Hill, D. C. Schmidt, J. Slaby, and A. Porter.
CiCUTS: Combining System Execution Modeling
Tools with Continuous Integration Environments. In
Proceedings of the 15th Annual IEEE International
Conference and Workshops on the Engineering of
Computer Based Systems (ECBS), Belfast, Northern
Ireland, Apr. 2008.

[8] Ke Jin. Component-Based CORBA+DDS
Applications in PocoCapsule vs CCM. http:
//www.pocomatic.com/docs/whitepapers/corba/.

[9] N. C. Myers. Traits: a new and useful template
technique. C++ Report, June 1995.

[10] Object Management Group. Lightweight CORBA
Component Model RFP, realtime/02-11-27 edition,
Nov. 2002.

[11] Object Management Group. Data Distribution Service
for Real-time Systems Specification, 1.2 edition, Jan.
2007.

[12] Object Management Group. DDS for Lightweight
CCM Version 1.0 Beta 2. Object Management Group,
OMG Document ptc/2009-10-25 edition, Oct. 2009.

[13] OMG. Deployment and Configuration of
Component-based Distributed Applications, v4.0,
Document formal/2006-04-02 edition, Apr. 2006.

[14] D. A. Wheeler. Sloccount, a set of tools for counting
physical source lines of code, 2009.

[15] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and
D. C. Schmidt. Evaluating Technologies for Tactical
Information Management in Net-Centric Systems. In
Proceedings of the Defense Transformation and
Net-Centric Systems conference, Orlando, Florida,
Apr. 2007.

