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ABSTRACT
Product-line architectures (PLAs) are an emerging paradigm for de-
veloping software families for distributed real-time and embedded
(DRE) systems by customizing reusable artifacts, rather than hand-
crafting software from scratch. To reduce the effort of developing
software PLAs and product variants for DRE systems, developers
are applying general-purpose – ideally standard – middleware plat-
forms whose reusable services and mechanisms support a range
of application quality of service (QoS) requirements, such as low
latency and jitter. The generality and flexibility of standard mid-
dleware, however, often results in excessive time/space overhead
for DRE systems, due to lack of optimizations tailored to meet the
specific QoS requirements of different product variants in a PLA.

This paper provides the following contributions to the study of
middleware specialization techniques for PLA-based DRE systems.
First, we identify key dimensions of generality in standard mid-
dleware stemming from framework implementations, deployment
platforms, and middleware standards. Second, we illustrate how
context-specific specialization techniques can be automated and
used to tailor standard middleware to better meet the QoS needs
of different PLA product variants. Third, we quantify the ben-
efits of applying automated tools to specialize a standard Real-
time CORBA middleware implementation. When applied together,
these middleware specializations improved our application prod-
uct variant throughput by ∼65%, average- and worst-case end-to-
end latency measures by ∼43% and ∼45%, respectively, and pre-
dictability by a factor of two over an already optimized middleware
implementation, with little or no effect on portability, standard mid-
dleware APIs, or application software implementations, and inter-
operability.
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1. INTRODUCTION
Emerging trends and challenges. Product-line architectures (P-
LAs) [2, 20] are a promising technology for systematically address-
ing key challenges of large-scale software systems. In contrast to
conventional software processes that produce separate point solu-
tions i.e., solutions customized on a case-by-case basis, PLA-based
processes create families of product variants [31] that share a com-
mon set of capabilities, patterns, and architectural styles. PLAs can
be characterized using scope, commonality, and variabilities (SCV)
analysis [3], which identifies the scope of the product families in an
application domain and determines the common and variable prop-
erties among them.

PLAs have been created and applied to a variety of domains [10,
25], including the domain of distributed, real-time and embedded
(DRE) systems [5, 31, 32]. Examples of DRE systems include ap-
plications with hard real-time requirements, such as avionics mis-
sion computing [32], as well as those with softer real-time require-
ments, such as telecommunication call processing and streaming
video [22]. QoS challenges (such as low memory footprint and pre-
dictable or bounded latency) of DRE systems have hitherto led de-
velopers to (re)invent custom applications that are tightly coupled
to specific hardware/software platforms, which is tedious, error-
prone, and hard to evolve over product lifecycles. During the past
decade, therefore, a key technology for alleviating the tight cou-
pling between applications and their underlying platforms has been
middleware, which (1) functionally bridges the gap between ap-
plications and platforms, (2) controls many aspects of end-to-end
QoS, and (3) simplifies the integration of components developed by
multiple suppliers.

Although middleware has been used successfully in DRE sys-
tems [5, 31, 32], key challenges must be overcome before it can
be applied broadly to support the QoS needs of PLA-based DRE
systems. In particular, R&D is needed to help resolve the tension
between (1) the generality of standards-based middleware plat-
forms, which benefit from reusable architectures designed to sat-
isfy a broad range of application requirements, and (2) application-
specific product variants, which benefit from highly-optimized, cus-
tom middleware implementations. In resolving this tension, solu-
tions should ideally retain the portability and interoperability af-
forded by standard middleware.
Specializing Middleware for PLAs. The chief hypotheses of this
paper are that even for highly optimized general-purpose standard
middleware frameworks (1) there are opportunities to further op-
timize the system when unwanted generality from the middleware



is removed and (2) that optimizations are not feasible without first
removing the generality. This paper operationalizes these hypothe-
ses developing and applying a toolkit to help resolve key aspects
of the generality/specificity tension outlined above. This toolkit
automates the specialization [4] of general-purpose standard mid-
dleware to meet the needs of specific PLA-based DRE systems.

This paper provides the following research contributions:

1. We use a representative PLA case study drawn from Boeing’s
avionics mission computing PLA-based DRE system called
Bold Stroke [31, 32] to identify key dimensions of excessive
generality in standards-based middleware, focusing on Real-
time CORBA [18] used in Bold Stroke.

2. We show how context-specific specialization techniques [11]
(such as code refactoring [6], and code weaving [35]) can
be used to customize the widely used TAO [28] Real-time
CORBA implementation to remove excessive generality and
thus better support application-specific QoS needs of PLA-
based DRE systems, such as Bold Stroke.

3. We describe the design of a domain-specific language, tools,
and a process for automating the specialization techniques
discussed in the paper.

4. We discuss quantitative results that demonstrate the improve-
ment in performance and predictability of specializations ap-
plied to TAO in the context of our PLA case study.

Our results show that specialization techniques guided by context-
specific information can significantly improve the QoS of a standa-
rds-based middleware implementation that has already been opti-
mized extensively via general-purpose techniques [22, 24].

2. MIDDLEWARE SPECIALIZATION CHA-
LLENGES

General-purpose implementations of standard middleware are de-
signed to be reusable since they need to satisfy a broad range of
functional and QoS application requirements. PLAs define a fam-
ily of systems that have many common functional and QoS re-
quirements, as well as variability specific to particular products
built using the PLA. Resolving the tension between generality and
specificity is essential to ensure middleware can support the QoS
requirements of PLA-based DRE systems. Unfortunately, imple-
mentations of standards-based, QoS-enabled middleware, such as
Real-time CORBA and Real-time Java, can incur time/space over-
heads due to excessive generality. This section uses a representative
PLA-based DRE system scenario to identify and illustrate common
types of excessive generality in standard middleware.

2.1 DRE PLA Case Study
This section uses a representative DRE PLA scenario to (1) illus-

trate how the generality/specificity tension outlined above occurs in
production DRE systems and (2) identify concrete system invari-
ants that drive our specialization approach. The scenario is based
on the Boeing Bold Stroke avionics mission computing PLA [32],
which is a component-based, publish/subscribe platform built atop
the TAO Real-time CORBA Object Request Broker (ORB). Fig-
ure 1 illustrates the BasicSP application scenario, which is an as-
sembly of avionics mission computing components reused in dif-
ferent Bold Stroke product variants. This scenario involves four
avionics mission computing components that periodically send GPS
position updates to a pilot and navigator cockpit displays at a rate of
20 Hz. The time to process inputs to the system and present output
to cockpit displays should thus be less than a single 20 Hz frame.

Communication between components uses an event-push/data-
pull model, with data producing components pushing an event to

TIMER
20Hz

GPS NAV DISP
AIRFRAME

TIMER
20Hz

GPS NAV DISP
AIRFRAME

timeout data_avail

get_data ()

data_avail

get_data ()

Figure 1: BasicSP Application Scenario

notify new data is available and data consuming components pulling
data from the source. A Timer component pulses a GPS naviga-
tion sensor component at a certain rate, which in turn publishes the
data_avail events to an Airframe component that then calls
a method provided by the Read_Data interface of the GPS com-
ponent to retrieve the current location. After formatting the data,
Airframe sends a data_avail event to the Nav_Display
component, which pulls the location and velocity data from the
Airframe component and displays this information on the pilot’s
heads-up display.

Commonalities in the BasicSP scenario include the set of reusable
components (such as Display, Airframe, and GPS) in Bold
Stroke and middleware capabilities (such as connection manage-
ment, data transfer, concurrency, synchronization, (de)marshaling,
(de)multiplexing, and error-handling) that occur in all product vari-
ants. Variabilities include application-specific component connec-
tions (such as how GPS and Airframe components are connected
in different airplanes), different implementations (such as whether
GPS or inertial navigation algorithms are used), and components
specific to particular customers (such as restrictions on exporting
certain encryption algorithms). The rates at which these compo-
nents interact is yet another variability that may change in different
product variants.

Analysis of commonalities and variabilities in the BasicSP sce-
nario helps identify functional (e.g., specific communication proto-
cols) and QoS (e.g., end-to-end latency) characteristics of PLAs. In
turn, these characteristics map to specific requirements on – and po-
tential optimizations of – the underlying middleware. The remain-
der of this paper focuses on specialized middleware optimizations
of PLA functionality and QoS characteristics.

2.2 Common Types of Excessive Generality in
Middleware

Using the BasicSP scenario depicted in Figure 1, we describe
key types of excessive middleware generality manifested in PLA-
based DRE systems. The challenges for each type of generality are
shown in Figure 2 and discussed below. The figure depicts a stan-
dard distribution middleware architecture, i.e., Real-time CORBA,
and the numbers in the figure indicate the parts of the middleware
architecture where sources of excessive generality occur.
Challenge 1. Overly extensible object-oriented (OO) frame-
works. Middleware is often developed using OO frameworks that
can be extended and configured with alternative implementations of
key components, such as different types of transport protocols (e.g.,
TCP/IP, VME, or shared memory), event demultiplexing mecha-
nisms (e.g., reactive-, proactive-, or thread-based), request demulti-
plexing strategies (e.g., dynamic hashing, perfect hashing, or active
demuxing), and concurrency models (e.g., thread-per-connection,
thread pool, or thread-per-request). A particular DRE product vari-
ant, however, may only use a small subset of the framework alter-
natives. As a result, general-purpose middleware may be overly
extensible, i.e., contain unnecessary overhead for indirection and
dynamic dispatching that is unnecessary in a particular context.

In the BasicSP scenario, for instance, the transport protocol is
VME, the event demultiplexing mechanism is reactive, the request



demultiplexing mechanisms are perfect hashing and active demux-
ing, and the concurrency model is thread pool. A different variant
of this scenario for different customer requirements, however, may
use different framework components. A challenge is to develop
middleware specialization techniques that can eliminate unneces-
sary overhead associated with overly extensible OO framework im-
plementations for certain product variants or application-specific
contexts.

Figure 2: BasicSP Specialization Points

Challenge 2. Redundant request creation and/or initialization.
To send a request to the server, the middleware creates a request that
holds header and payload information. Rate-based DRE systems
often repeatedly generate certain events, such as timeouts that drive
periodic system execution. Since most request information (such as
message size, operation name, and service context) does not change
across events, middleware implementations can use caching strate-
gies [22] to minimize dynamic request creation. This approach,
however, still incurs the overhead of initializing the header and pay-
load for each request.

In the BasicSP scenario, for instance, the Timer component
always sends the same timeout event to the GPS component.
Similarly, the GPS and Airframe components send the same
data_avail event to their consumers. A different variant of
this scenario, however, may send different events to consumers. A
challenge is to develop middleware specialization techniques that
can reuse pre-created requests (i.e., from previous invocations) par-
tially and/or completely to avoid redundant initialization for cer-
tain product variants or application-specific contexts.
Challenge 3. Repeated resolution of the same request dispatch.
To minimize the time/space overhead incurred by opening multi-
ple connections to the same server, middleware often multiplexes
requests on a single connection between client and server. Mul-
tiple client requests targeted for different handlers in a server are
therefore received on the same multiplexed connection. Standard
Real-time CORBA servers typically process a client request by
navigating a series of middleware layers, e.g., ORB core, object
adapter(s), servant, and operation. To optimize request demul-
tiplexing, Real-time CORBA ORBs combine active demultiplex-
ing [22] and perfect-hashing [22] to bound worst-case lookup time
to O(1) for each layer. This optimization, however, still incurs
non-trivial overhead when navigating middleware layers and is re-
dundant when the handler in the server remains the same across
different request invocations.

In the BasicSP scenario, for instance, the Airframe and Nav_
Display components repeatedly use the same get_data() op-
eration to fetch new GPS and Display updates. In a connection
between GPS and Airframe components, therefore, the get_
data() operation is sent and serviced by the same request dis-
patcher. A different variant of this scenario, however, may service
operations via different request dispatchers. A challenge is to de-
velop middleware specialization techniques that need not navigate
layers of middleware to process the same request for certain prod-
uct variants or application-specific contexts.
Challenge 4. Redundant (de)marshaling overheads. PLA-based
DRE systems may be deployed on platforms with different instruc-
tion set byte orders. To support interoperable request processing,
standard Real-time CORBA ORBs therefore use the General Inter-
ORB Protocol (GIOP), which performs byte order tests when (de)-
marshaling requests/responses. These tests incur unnecessary over-
head, however, if all computing nodes in a DRE system have the
same byte order. The GIOP protocol also requires alignment of
primitive types (such as long and double) within a request/resp-
onse for certain hardware architectures, which forces middleware
implementations to maintain offset information within a request/-
response buffer and pad buffers to the next locations. Frequent
alignment and padding can cause costly buffer resizing and data
copying. The overhead associated with alignment can be elimi-
nated in homogeneous environments, i.e., when the same ORB and
compiler are used for (de)marshaling.

In the BasicSP scenario, for instance, the nodes where compo-
nents are deployed (NodeA and NodeB) have the same byte or-
der. The standard TAO Real-time CORBA middleware residing on
these nodes, however, still tests whether (de)marshaling is needed
when requests/responses are exchanged between nodes. A different
variant of this scenario, however, may run on nodes with different
byte orders, but with the same compiler/middleware implementa-
tion, in which case data need not be aligned. A challenge is to
develop middleware specialization techniques that evaluate ahead-
of-time deployment properties to remove redundant (de)marshaling
overheads for certain product variants or application-specific con-
texts.
Challenge 5: Generality of deployment platform. Another key
dimension of generality stems from the deployment platforms on
which middleware and PLA applications are hosted. Examples of
this deployment platform generality include different OS-specific
system calls, compiler flags and optimizations, and hardware in-
struction sets. Every OS, compiler, and hardware platform provides
different configuration settings that perform differently and can be
tuned to minimize the time/space overhead of middleware and ap-
plications.

In the BasicSP scenario, for instance, a product variant could run
the Linux OS with Timesys kernel and g++ compiler on NodeA
and the VxWorks OS with the Greenhills compiler on Node B.
Other variants could use different combinations of OS, compiler,
and hardware. A challenge is to develop specialization techniques
that discover and automate the selection of right combination of
OS, compiler, and hardware settings for a given deployment plat-
form.

2.3 Summary
This section described key dimensions of middleware generality,

using Real-time CORBA middleware as an example. These chal-
lenges also occur on other popular middleware platforms that use
common patterns [8, 29] to accommodate PLA variability, such
as different protocols, concurrency, synchronization, and (de)ma-
rshaling mechanisms.



3. RESOLVING MIDDLEWARE GENERAL-
ITY VIA CONTEXT-SPECIFIC SPECIA-
LIZATIONS

This section examines context-specific specialization techniques
that enhance the QoS of PLA-based DRE systems by alleviating
excessive generality in middleware implementations. These tech-
niques are related to partial evaluation, which creates a special-
ized version of a general program that is more optimized for time
and/or space than the original [13]. Context-specific specializa-
tions can be realized using code-refactoring and weaving [6, 35],
which use aspect-oriented programming mechanisms to factor out
and weave crosscutting concerns, as well as language mechanisms,
such as program optimization techniques [12]. Below we describe
the context-specific specializations applied to TAO to resolve the
challenges in Section 2.

3.1 Applying Context-Specific Specializations
to Middleware

Context-specific specializations described in this paper include
constant propagation, layer-folding, memoization, code-refactoring,
and aspect weaving. These specializations are driven by invari-
ant properties [16], which are specific application-, middleware-
, and platform-level characteristics that remain fixed during any
given system execution, but which may vary for other system confi-
gurations/requirements. The invariants themselves may be specific
for a particular PLA or applicable to many PLAs. Invariant proper-
ties covered in this paper include particular attribute settings (such
as timer rates), parameter values (such as arguments to a method),
and internal/external contexts (such as a request dispatcher and
hardware, OS, and compiler settings).

In simple cases, an invariant property manifests itself in the form
of a call to method m(), where one or more of the parameters of
the method is always bound to the same value. Our program spe-
cialization strategies push invariant data through the middleware
code, simplifying along the way. For example, we create a spe-
cialized version of m() where parameters with fixed values are
removed and the body of m() is simplified using information pro-
vided by the fixed parameter values. Below we describe our process
to identifying and specializing the middleware, using the BasicSP
case study to demonstrate our specializations. For each specializa-
tion, we describe the intent (purpose), invariance assumptions (i.e.,
conditions in our BasicSP case study that enabled certain special-
izations), and type (technique) of specialization applied to resolve
middleware generality challenges in Section 2.

To evaluate our middleware specializations in a realistic con-
text, we applied them to the TAO Real-time CORBA ORB, which
is written in C++ and contains many general-purpose optimiza-
tions [22, 24]. We use this version of TAO as a baseline to quantify
the benefits of our specializations. We focus on TAO since it is a
mature, efficient, and open-source implementation of the Real-time
CORBA standard that is used in many production DRE systems
(www.dre.vanderbilt.edu/users.html).

3.1.1 Specialize Middleware Framework Extensibil-
ity via Aspect Weaving

We first describe specialization techniques for resolving chal-
lenge 1 in Section 2.2.
Intent. Eliminate unnecessary extensibility mechanisms (such as
indirections and dynamic dispatching) in OO frameworks along the
critical request/response processing path. This specialization can
be applied to many internal ORB frameworks, e.g., those handling
transport protocols, request demultiplexing, and concurrency mod-

els. For our case study, we choose to specialize TAO’s (1) Reactor
framework [27], which is responsible for demultiplexing connec-
tion and data events to their corresponding GIOP event handlers,
and (2) pluggable protocol framework [19], which allows TAO to
communicate transparently via different protocol implementations,
such as TCP/IP, VME, SSL, SCTP, UNIX-domain sockets, and/or
shared memory.
Invariance assumptions. After a Reactor framework implemen-
tation is selected for the BasicSP scenario, it does not change dur-
ing the lifetime of the ORB. Likewise, after a protocol implemen-
tation is selected it also does not change during the ORB’s lifetime.
Specialization. Figure 3(A) shows different Reactor implementa-
tions supported by TAO. The Select_Reactor uses the single-
threaded select()-based event demuxer, the Thread_Pool_
Reactor uses the multi-threaded select ()-based event de-
muxer, and the WFMO_Reactor uses the Windows WaitFor-
MultipleObjects() event demuxer. To work with multiple
Reactor framework implementations, TAO uses an abstract base
class (i.e., a generic Reactor_Impl) that delegates to concrete
subclasses via virtual method calls. Specializing the Reactor frame-
work with a concrete subclass (i.e., a subclass with no virtual meth-
ods) eliminates the indirection (generality) by using the concrete
reactor instance directly.

Figure 3: Reactor & Protocol Specialization

TAO’s pluggable protocol framework uses the Template Method
pattern [8] to configure different protocol implementations during
ORB initialization. As shown in Figure 3(B), this framework con-
sists of protocol-independent components, such as the Transport
class whose send() and recv() hooks encapsulate a connection
and provide a protocol-independent means of sending/receiving data.
Protocol-specific classes, such as the IIOP_Transport class,
override these hooks to implement protocol-specific functionality.
The Transport class interacts with other framework components,
such as the Profile class that encapsulates addressing informa-
tion in TAO, which in turn uses the Template Method pattern to
support multiple protocol implementations. Specializing the hook
methods in a template method with protocol-specific behavior elim-
inates indirection (i.e., the virtual hook methods).

The specializations described above are an example of aspect
weaving, where the generality (i.e., virtual methods and indirec-
tions) that crosscuts different classes and files is customized for a
specific context. For example, our BasicSP PLA scenario only uses
the Select_Reactor and VME protocol, so there is no need to
incur additional indirection and generality overhead.

3.1.2 Specialize Request Creation/Initialization via
Memoization

We now describe specialization techniques that resolve challenge
2 described in Section 2.2.
Intent. Rather than creating a new CORBA request repeatedly for
each invocation, create/initialize a request once and only update its
state that changes.



Invariance assumption. Many (often most) operation parameters
and/or context information in a request do not change across invo-
cations in DRE systems.
Specialization. Figure 4 shows the structure of a two-way CORBA
request using GIOP version 1.2. As shown in the figure, every

Figure 4: Opportunities for Request Creation Specialization

request has three components defined by the CORBA specifica-
tion: (1) a request header indicating the CORBA request version
(i.e., GIOP 1.0, 1.1, or 1.2) and the total size of the message, (2)
a request-specific header containing an object key that uniquely
identifies the servant and service context information that contains
service-specific information, such as the required priority and tran-
saction/security contexts, and (3) optional parameters passed as ar-
guments to the operation.

Figure 4 also contains overlapping ovals that show three types
of specializations of increasing strength that can be applied. In
some situations only the request header can be specialized, i.e., its
contents are held constant, updating only the total message size.
In other situations, both request and request-specific headers can
be held constant, updating only the payload. Finally, the entire
CORBA request can sometimes be reused wholesale across multi-
ple request invocations.

This specialization is an example of memoization, where a re-
sult is precomputed and saved rather than recomputed each time.
In our BasicSP PLA case study, the precomputed “result” is the
CORBA request. This specialization thus avoids unnecessary cre-
ation and/or initialization of requests.

3.1.3 Specialize Dispatch Resolution via Layer-Fold-
ing

We now describe specialization techniques that resolve challenge
3 described in Section 2.2.
Intent. Resolve the target request dispatcher once for the first re-
quest and reuse it to service all other requests sent over the same
dedicated connection.
Invariance assumptions. The same operation or operations in the
same IDL interface are invoked on a multiplexed connection.
Specialization. Figure 5 shows a normal layered demultiplexing
path through a CORBA server, i.e., the ORB core locates the target
Portable Object Adapter (POA) [23], which locates the servant, lo-
cates the skeleton, and then dispatches the request to an application-
defined method. Rather than navigating this layered path, a special-
ized implementation can cache the skeleton servicing the request
and invoke the method on the skeleton directly. A similar approach
can be applied to cache the target POA(s) and servant.

This specialization is an example of layer-folding plus memo-
ization, where an answer (in our case the dispatcher) is saved for
later use than recomputing it each time, thereby collapsing multiple
middleware layers during request processing.

Figure 5: Specializing Request Dispatching

3.1.4 Specialize Request Demarshaling via Constant
Propagation

We now describe specialization techniques that resolve challenge
4 described in Section 2.2.
Intent. Eliminate redundant tests for byte order when demarshal-
ing a CORBA request and do not align the individual fields within
the request.
Invariance assumptions. The communicating entities reside on
homogeneous nodes, i.e, nodes with the same byte order, com-
piler padding/alignment rules, and (de)marshaling mechanisms for
client(s) and server(s).
Specialization. Standard-compliant CORBA ORBs are required
to test byte order compatibility for each part of a CORBA request
(not just the payload), including all fields in the CORBA request
and request-specific headers. Figure 4 shows the different parts of a
CORBA request. For a typical request with a few basic types (such
as long, short, and octet parameters), these tests translate to
∼15–20 byte order tests per request. Removing these redundant
tests on homogeneous nodes can significantly improve demarshal-
ing efficiency, particularly as the data type complexity increases.
Similarly, while marshaling a CORBA request, ORBs align the in-
dividual components, e.g., request size, id and object keys, to their
natural boundaries. For a typical request with basic types, all∼15–
20 components must be aligned. Ignoring alignment can improve
marshaling efficiency and eliminate padding, thereby reducing the
request size.

These specializations are an example of constant propagation,
where the byte-order is propagated along with the request to the
recipient and checked to ensure the validity of the invariance as-
sumption. Similarly, unaligned data is sent along with the request
to the recipient, where demarshaling fails if data should be aligned.

3.1.5 Specialize Platform Generality via Autoconf
Mechanisms

We now describe specialization techniques that resolve challenge
5 described in Section 2.2.
Intent. Choose the right hardware, OS, and compiler settings to
maximize application QoS without affecting portability, interoper-
ability, or correctness.
Invariance assumptions. The deployment platform that hosts the
product variant remains fixed during the system’s lifetime.
Specialization. We use GNU autoconf (www.gnu.org/sof-
tware/autoconf) to apply platform-specific specialization tech-
niques, including:

• Exception support. For certain DRE systems, the use of na-
tive exception support is unavailable (e.g., not supported by older



C++ compilers) or undesirable (e.g., incurs excessive time/space
overhead). Certain middleware solutions support platforms that
lack exceptions, e.g., CORBA can emulate exceptions by append-
ing an Environment parameter to each method. We extended
TAO to use GNU autoconf to emulate exceptions when compil-
ers lack such capabilities, when users explicitly select this configu-
ration, or when performance tests indicate that emulated exceptions
are more efficient than native exceptions.

• Loop unrolling. Middleware implementations need to copy
data between kernel, middleware and application buffers. An op-
timization applicable to certain OS/compiler platforms is to unroll
the loop of the memcpy() standard library function to certain ex-
tent. We extended TAO to use GNU autoconf to configure the
ORB automatically to use either the optimized or default version
of memcpy(), depending on tests that select the most efficient im-
plementation.
We use GNU autoconf to perform these performance tests au-
tomatically before the ORB compilation process begins. Based on
the test results, GNU autoconf sets certain macros in the TAO
source code, which then select which specializations to apply.

3.2 A Toolkit for Automating Context-Specific
Specializations

Large-scale DRE systems, such as Boeing’s Bold Stroke PLA,
contain millions of lines of source code. Manually handcrafting
specialization optimizations described in Section 3.1 into such large
code bases clearly does not scale. We therefore have created a
domain-specific language (DSL) [33, 34] and associated tools that
help simplify two steps in the specialization process: (1) identify-
ing specialization points and transformations, and (2) automating
the delivery of the specializations. The remainder of this section
describes the Feature Oriented Customizer (FOCUS), which is an
open-source DSL-based toolsuite and process we developed to au-
tomate the specialization of middleware for PLA-based DRE sys-
tems.

3.2.1 FOCUS Requirements and Goals
Our primary goal for FOCUS was to build a general-purpose

DSL, supporting tools, and a process to automate context-specific
middleware specializations and then to validate our approach by
applying it to TAO. The types of specializations discussed in Sec-
tion 3.1 yielded the following requirements for FOCUS:
1. Ability to manipulate code. Applying aspect weaving [15] to
framework specialization requires the ability to manipulate code,
such as performing search/replace specializations to devirtualize
hook methods in the Reactor_Impl base class and replace them
with concrete implementations.
2. Ability to refactor code regions. OO framework specializa-
tions need to move specialized code (e.g., concrete implementa-
tions of hook methods) from a derived class to the new concrete
class. Similarly, additional header files and methods may may need
to be moved from/to a derived class to/from a new concrete class.
Likewise, layer-folding optimizations require the capability to in-
ject code that bypasses layers at specific locations in the code.
3. Ability to elide code. Code refactoring, memoization, and as-
pect weaving specializations require the removal of certain redun-
dant functionality. In memoization optimizations, for instance, re-
dundant functionality that repeatedly creates the same request must
be replaced with code that caches the request header.

To support these requirements, middleware developers embed
annotations, i.e., code generation directives within middleware as
special comments. These annotations identify points of variability,

e.g., where a dispatching decision is made or a particular protocol is
created. This approach enables most of the middleware to remain
fixed, but identifies well-defined variability points where special-
izations can be woven automatically. It also enables middleware
developers to know the variability points when source code changes
are made, thereby minimizing skew between specializations and an
evolving middleware source base.

3.2.2 Automating Middleware Specializations with
FOCUS

The process of applying FOCUS can be executed in three phases
by middleware developers and application PLA developers, as dis-
cussed below.
Phase 1: Capturing specialization transformations. In this phase,
middleware developers capture the code-level transformations re-
quired to implement a specialization using the FOCUS Special-
ization Language (FSL). FSL is a DSL that supports four spe-
cializations: (1) search and replace transformations (<search> ...
<replace>), (2) copying text from different positions in multiple
files onto a destination file (<copy-from-source>), (3) commenting
regions of a program (<comment>), and (4) removing text from
a program (<remove>). FSL uses an XML DTD to capture the
transformations, thereby facilitating extensibility, i.e., additional
specializations can be represented via new XML tags and transfor-
mation, i.e., XSLT directives can be used to transform the special-
izations onto different tool input formats. Similar approaches have
been used in commercial tools, such as Ant (ant.apache.org),
which use XML to capture build steps and rules.

The output of phase 1 is a set of FSL specialization files that
capture all transformations needed for the specializations. FOCUS
itself does not automatically generate the specialization files, i.e.,
the middleware developers capture the code level transformations
in specialization files. Section 4.2.1 illustrates portions of trans-
formations needed to automate aspect weaving specializations in
TAO.
Phase 2: Middleware annotation. In this phase, middleware de-
velopers use the FSL specialization files to annotate the middleware
with metadata required for the desired transformations. Annota-
tions in FOCUS are only required for transformations that copy,
comment, or add code, i.e., when using the <comment>, <copy-
from-source>, or <add> tags, respectively. Other transforma-
tions, such as search/replace and remove do not require annotation.
Metadata is inserted as special comments in the source code using
source language syntax for comments. FOCUS uses this metadata
to aid the transformation of source code, but it is opaque to com-
pilers for general-purpose languages, such as C++ or Java, and im-
poses no extra run-time overhead on general-purpose middleware
source code.

During middleware evolution, such as feature addition/modific-
ation, middleware developers must respect the annotations. For ex-
ample, any new code added between annotations that mark the be-
gin and end of a copy/comment does not require changes to the spe-
cialization files. Section 4.2.1 shows how annotations and <copy-
from-source> tags can be used to minimize skew between special-
izations and middleware source code.

Annotations help the FOCUS transformation process by enabling
a lightweight specialization approach that does not require a full-
fledged language front-end to parse the entire source code to iden-
tify the specialization points (hooks). This approach enables FO-
CUS to work across middleware implementations in different lan-
guages, e.g., hooks can be left within a C++- or Java-based mid-
dleware implementation for FOCUS to weave in code. FOCUS
ascribes no significance to the names for hooks, i.e., they can be



arbitrary as long as there is a corresponding name in the specializa-
tion file.
Phase 3: Executing specialization transformations. In this phase,
PLA developers perform the steps shown in Figure 6, which shows
a standard middleware architecture and the locations where spe-
cializations are applied. PLA developers first determine if a cer-
tain specialization is applicable for a variant (step 1). To aid this
process, middleware developers need to document the applicability
and consequences, such as interface changes and standards com-
pliance of individual specializations. If a specialization is applica-
ble, PLA developers select the target specialization to apply within
the middleware. PLA developers do not apply the transformation,
they only choose the set of specializations. Based on the selected

Figure 6: Steps in the FOCUS Transformation Process

specializations, the FOCUS transformation engine queries the spe-
cialization repository to select the right file(s) (step 2). Based on
transformation rules in the specialization file, FOCUS executes the
transformations (step 3). A compiler for the general-purpose lan-
guage used to write the middleware then generates executable plat-
form code from the modified source file(s) (step 4). Step 1 is done
by PLA application developer (e.g., during SCV analysis), whereas
steps 2 – 4 are automated by FOCUS.

FOCUS’s transformation engine is written in Perl to leverage its
mature regular expressions support. Regular expressions enhance
the richness of the transformations that can be specified within FSL
specialization files. For example, search/replace capabilities in FO-
CUS use regular expressions to ignore leading trailing white spaces
and newline characters.

3.3 Summary
This section described the FOCUS specialization techniques, DSL,

tools, and process we developed to resolve the middleware gener-
ality challenges in Section 2. Table 1 lists the specialization tech-
niques along with the corresponding FSL features applied to re-
solve these challenges. FSL modifies copies of the OO framework
and middleware code, and thus does not affect application code or
the original OO frameworks and middleware.

Specialization Technique FSL features
Request creation Memoization search, replace, add
Demarshaling checks Constant propagation Not Applicable
Dispatch resolution Memoization + layer-folding search, replace, add
Framework generality Aspect weaving add, copy-from-source

search, replace
Deployment generality autoconf Not Applicable

Table 1: Summary of Specialization Techniques

4. APPLYING OUR SPECIALIZATION TOO-
LS TO TAO FOR THE BASICSP SCE-
NARIO

This section presents results from applying specialization tools
described in Section 3 to a TAO-based implementation of the Ba-
sicSP scenario in Section 2.1. These results quantitatively and qual-
itatively evaluate the extent to which specializations improve the
throughput, average- and worst-case latency, and jitter of standard
middleware implementations. The constant propagation and code
refactoring techniques described in the paper were automated using
GNU autoconf conditional compilation techniques described in
Section 3.1.5. The memoization, layer-folding, and aspect weaving
were automated via the FOCUS toolkit described in Section 3.2.2.

4.1 Analyzing General-purpose Middleware
To specialize general-purpose Real-time CORBA middleware for

PLA-based DRE systems, we first analyzed the end-to-end critical
code path of the following synchronous two-way CORBA opera-
tion in TAO:
result = object→operation (arg1, arg2)

A path represents a segment of the overall end-to-end flow through
the system. The critical path is the sequence of steps always needed
in TAO to process events, requests, or responses for synchronous
and asynchronous operation invocations. This code path is the same
for processing the get_data() two-way operation and data_
avail and timeout events in the BasicSP scenario. This code
path provides a baseline for quantifying the number of steps spe-
cialized along the critical request/response processing path within
standard middleware, as shown by the numbered bullets in Figure 7.

Server ORB

6

Object Adapter

Reactor 4,7,8

5

Buffer Manager

5
GIOP

Message
Parsers

1.0 1.01.1

Client ORB

2

Buffer Manager

  1
GIOP

Message
Parsers

1.0 1.21.1

  1

Connection
Cache

C2

3,9

Reactor C2

C2

10,11

Figure 7: End-to-End Request Processing Path

Using this figure as a guide, we now describe the steps involved
when a client invokes a synchronous two-way operation. After es-
tablishing a connection from client to server, the TAO client ORB
performs the following activities when a client application thread
invokes an operation on an object reference to a particular target
object running in a TAO server ORB:1

1. Buffer_Manager allocates a buffer from a memory pool.
The GIOP message parser marshals the parameters in the op-
eration invocation.

2. Send the marshaled data to the server using the established
connection, e.g., C2.

3. The leader thread waits on the Reactor for a reply from the
server; the follower thread(s) waits on a synchronizer.

1This discussion has been generalized using the Reactor, Acceptor-
Connector, and Leader/Followers patterns [29], which are used in
many CORBA ORBs, such as e*ORB, ORBacus, Orbix, and TAO.



The server ORB activities for processing a request are described
below:

4. Read the header of the request arriving on connection C2 to
determine the size of the request.

5. Buffer_Manager allocates a buffer from a memory pool
to hold the request and a GIOP message parser reads the re-
quest data into the buffer.

6. Demultiplex the request to locate the target POA, servant,
and skeleton – then dispatch the designated upcall to the ser-
vant after demarshaling the request parameters.

7. Send the reply (if any) to the client on connection C2.
8. Wait in the reactor’s event loop for new connection and data

events.

The client ORB performs the following activities to process a server
reply:

9. The leader thread reads the reply from the server on connec-
tion C2.

10. The leader thread either processes the reply or hands it to the
appropriate follower thread by signaling the synchronizer the
follower thread is waiting on.

11. The follower thread demarshals the parameters and returns
control to the client application, which processes the reply.

4.2 Specializing TAO Middleware
Having outlined the activities at the client and server, we now

describe how we specialized TAO using invariance assumptions to
resolve the challenges for PLAs described in Section 2.2 in the con-
text of the Bold Stroke BasicSP scenario. We also quantitatively
compare the end-to-end latency, throughput, and predictability im-
provements accrued from our approach. We used the Emulab [26]
testbed for our experiments. All measurements were performed
on an Intel Pentium III 851 Mhz processor with 512 MB of main
memory running on Linux 2.4.7-timesys-3.1.214 kernel, which is
a predictable real-time kernel module. The TAO middleware used
for the experiments was version 1.4.7, which was compiled with
gcc version 3.2.2.

To ensure portability and interoperability, our specializations larg-
ely comply with the Real-time CORBA specification and do not
modify any standard interfaces or BasicSP application code. Our
specializations affect middleware generality challenges shown in
Figure 2, are applied along the critical request/response processing
path, and affect end-to-end QoS.

TAO provides scores of configuration options (see www.dre.
vanderbilt.edu/˜schmidt/TAO-options.html). For
this analysis, we used a configuration representative of how DRE
systems commonly apply Real-time CORBA middleware [32], i.e.,
(1) portable interceptors are not used, (2) servants inherit statically
from org::omg::PortableServer::Servant, i.e., we do
not consider CORBA’s dynamic invocation/skeleton features, (3)
no proprietary policies were used in the ORB, and (4) TAO’s general-
purpose optimizations (e.g., active demultiplexing, perfect hashing,
and buffer caching strategies) were enabled for all experiments.

To showcase our results, a sample size of 100,000 data points
was used to generate results from the following experiments for
each specialization in Sections 3.1.1 through 3.1.5:

1. End-to-end performance metrics, which measure the dif-
ferences in end-to-end latency/throughput between general-
purpose and specialized versions of TAO. For each experi-
ment, high-resolution timers on the client collected end-to-
end measurement data used for analysis. We define pre-
dictability in terms of the standard deviation of the data points.

2. Path specialization metrics, which compare latency mea-
sures for specialized vs. general-purpose critical paths. For
each experiment, high-resolution timers within TAO mea-
sured latency improvements for the specialized code path.

3. Cumulative metrics, which measure the end-to-end latency
and predictability improvements accrued by applying all spe-
cializations.

For each specialization, we describe (1) the steps specialized along
the request/response processing path, (2) how the specialization
was automated, and (3) how our specialization affected CORBA
compliance and applicability.

4.2.1 Applying the Aspect Weaving Specialization
This specialization corresponds to step 3 and 9 in the client side

and step 8 in the server side of Figure 7.
Specialization automation. Specializing the Reactor component
involved (1) replacing the ACE_Reactor_Impl class with the
concrete ACE_Select_Reactor implementation within the re-
actor, (2) replacing the creation of other reactors with the special-
ized version in ORB factory methods [8], and (3) eliminating vir-
tual methods from the reactor and interfaces within the middleware.
To automate the specialization, we used FSL to capture the trans-
formations, some of which are shown in Listing 1.

1: <module name="ace">
2: <file name="Reactor.h">
3: <remove>virtual</remove>
4: <substitute>
5: <search>ACE_Reactor_Impl</search>
6: <replace>ACE_Select_Reactor</replace>
7: </substitute>
8: </file>
9: </module>
10: <module="TAO/tao">
11: <file name="advanced_resource.cpp">
12: <comment>
13: <start-hook>TAO_REACTOR_SPL_COMMENT_HOOK_START</start-hook>
14: <end-hook>TAO_REACTOR_SPL_COMMENT_HOOK_END</end-hook>
15: </comment>
16: </file>
17: </module>

FOCUS Listing 1: Reactor Specialization

Lines 1–2 capture the module (directory or package) and file
where transformations are done. Devirtualizing interfaces of the
reactor is done by line 3. Lines 4–8 replace the ACE_Reactor_
Impl with the desired concrete select reactor. Similarly, lines
12–15 show how unspecialized code within two points in the file
(<start-hook> ... <end-hook>) is commented out for the trans-
formations.

Listing 2 shows how we annotate the middleware source code
with hooks based on the FSL specialization file (Listing 1). Au-
tomating this specialization required ten new annotations in the
ACE Reactor framework, representing a 0.1% change to the mid-
dleware source files. The FSL transformations were ∼700 SLOC.

Listing 3 illustrates how FOCUS transformed source code so
that the base Reactor (ACE_Reactor_Impl) is replaced with
the specialized Reactor (ACE_Select_Reactor). This special-
ization is validated by our invariance assumption that after ACE_
Select_Reactor is selected, it does not change for the BasicSP
scenario. Another observation is that the annotations are preserved
during the transformation process, which enables multiple special-
izations to use the same hook for specifying transformations, thus
avoiding cluttering hooks within the middleware source code.

To specialize TAO’s pluggable protocol implementation, we used
<copy-from-source> capabilities provided by FSL. Listing 4 shows
how the concrete protocol specific implementations of template
methods defined in the Profile class are copied from the IIOP_
Profile class. The <copy-hook-start> <copy-hook-end> tags



//File: advanced_resource.cpp
ACE_Reactor_Impl*
TAO_Default_Resource_Factory::
allocate_reactor_impl (void) const

{
ACE_Reactor_Impl *impl = 0;
/* FOCUS: Comment hook */

//@@ TAO_REACTOR_SPL_COMMENT_HOOK_START
ACE_NEW_RETURN (impl, ACE_TP_Reactor, 0);

//@@ TAO_REACTOR_SPL_COMMENT_HOOK_END
}

FOCUS Listing 2: Annotated Middleware Source Code

//File: Reactor.h
class Reactor
{
public:
int
run_reactor_event_loop (REACTOR_EVENT_HOOK = 0);

// Other public methods ....
private:
// Code woven by FOCUS:
ACE_Select_Reactor *reactor_impl_;

// End Code woven by FOCUS
};

// File: advanced_resource.cpp
// Code woven by FOCUS:
ACE_Select_Reactor*
// End Code woven by FOCUS
TAO_Default_Resource_Factory::
allocate_reactor_impl (void) const

{
// Code woven by FOCUS:
ACE_Select_Reactor *impl = 0;

// End Code woven by FOCUS
/* FOCUS: Comment hook */

//@@ TAO_REACTOR_SPL_COMMENT_HOOK_START
// ACE_NEW_RETURN (impl, ACE_TP_Reactor, 0);
//@@ TAO_REACTOR_SPL_COMMENT_HOOK_END
// Code woven by FOCUS:
}

FOCUS Listing 3: Transformed Middleware Source Code

signify the start and end locations of the template method imple-
mentations in IIOP_Profile. These concrete implementations
are copied to the base Profile class at a location defined within
the Profile.cpp file. The advantage of this design is that changes
made to the implementations of the template methods in IIOP_
Profile.cpp do not affect the specialization file. In fact, after
we completed this specialization, IPv6 protocol support was added
to TAO, but our specializations required no changes. Similar to the
earlier specialization, the protocol specialization required∼20 new
annotations to TAO’s pluggable protocol framework, representing
0.2% change to the middleware source files.

<file name="Profile.cpp">
<copy-from-source>
<source>IIOP_Profile.cpp</source>
<copy-hook-start>PROFILE_METHODS_COPY_HOOK</copy-hook-start>
<copy-hook-end>PROFILE_METHODS_COPY_HOOK_END</copy-hook-end>
<dest-hook>PROFILE_SPL_ADD_HOOK</dest-hook>

</copy-from-source>
</file>

FOCUS Listing 4: Protocol Specialization

Empirical results. Figure 8 illustrates the improvements to end-
to-end latency by specializing two OO frameworks used in TAO.
Since reactors and protocols are used by both client and server
ORB, we present the most representative end-to-end results. Our
specialization improved average latency by ∼8µsecs (4%) for the
reactor case and in∼10µsec (5%) for the protocol case. These spe-
cializations also minimize dispersion measures for both the special-
izations, though not appreciably. The 99% and maximum measure
also decrease since removing virtual method indirection enhances
predictability. These results show how minimizing dynamic dis-
patch along the critical path can improve performance.
Applicability and CORBA compliance. Specialization of OO fr-
amework extensibility can be applied to all ORB implementations
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Figure 8: Results for Reactor & Protocol Specializations

that use virtual methods, yet can be customized via a single con-
crete instance late in the system lifecycle, e.g., during deployment
or initialization. This specialization is CORBA-compliant since
the reactor is part of TAO’s ORB core implementation, not part
of the public API defined by the Real-time CORBA specification.
Similarly the specialization of the protocol framework modifies no
standard APIs or application code, but only affects hook methods
specific to TAO’s implementation.

4.2.2 Applying the Memoization Specialization
This specialization corresponds to step 1 in the client side of

Figure 7.
Specialization automation. In TAO, the GIOP engine creates pro-
tocol specific request/response objects. Listing 5 shows a portion
of the transformations for this specialization. During the first in-
vocation of a request/response, the length of the actual header is
computed and cached (as shown in lines 1–6). For subsequent re-
quests the cached pre-marshaled header is used by moving the cur-
rent writable location by the total header size.

<add>
<hook>TAO_HEADER_CACHING_ADD_HOOK</hook>
<data>

1. if (__header_cached__)
2. {
3. // First invocation -- normal path
4. __header_cached__ = 0;
5. this->write_header (...);
6. skip_length__ = this->total_length ();
7. }
8. else
9. {
10. // All invocations -- Optimized path
11. this->skip (skip_length)
12. }
</data>

</add>

FOCUS Listing 5: Specializing Request Creation

We applied specialized request creation to TAO on a per-connect-
ion basis, i.e., the request headers cached are specific to a con-
nection. This design reflects our invariance assumption from the
BasicSP scenario, where the get_data and data_avail op-
eration are sent along separate connections. Automating this spe-
cialization required only two new annotations within TAO’s source
files. The FSL transformations were ∼250 SLOC.
Empirical results. Figure 9 illustrates the end-to-end and code
path specialization improvements that result from applying the re-
quest creation/initialization specialization on the request and request-
specific CORBA header, which improved average end-to-end la-
tency measures by ∼8µsec (4%), while the path specialization re-
sults improved by 25%. This discrepancy shows how much our



specialized code path influences end-to-end latency. The dispersion
measures improve slighty by applying this specialization. Both
99% and maximum measures improve, which show this special-
ization improves predictability. These results show how the end-
to-end path specialization results are influenced by the contribution
from the actual path specialized.
Applicability and CORBA compliance. Specializing the entire
request is possible only if no changes occur, which is the case
for control messages sent between Timer and GPS components.
Specializing the request and request-specific header is possible if
only the contents change between requests, which is the case for
the get_data() operation. This specialization can be applied
for the standard Real-time CORBA SERVER DECLARED priority
model, where the priority information is set a priori during object
reference creation.

Specializing only the request header is applicable to all requests,
though it has the least payoff in terms of improvements in per-
formance since it represents a relatively small portion of the re-
quest. All three approaches comply with the CORBA specification
since they do not change the type of the CORBA request message.
The third approach, however, does not update the request identifier,
which is used to uniquely identify the client thread processing the
response when multiplexed connections are used.
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Figure 9: Results for Request Creation/Initialization Special-
ization

4.2.3 Applying the Layer-Folding Specialization
This specialization corresponds to step 6 to step 8 in the server

side of Figure 7.
Specialization automation. We implemented the layer-folding spe-
cialization (Section 3.1) by caching the target request dispatcher
determined when the first request from the client on a connection is
serviced. Subsequent requests used the cached dispatcher directly,
i.e., the skeleton that services the requests. FSL annotations were
added to TAO’s POA so FOCUS can weave in code that cached the
skeleton servicing the request. Another annotation within TAO’s
ORB core marked the start of the normal request path.

These specialization transformations were similar to the aspect
weaving and memoization specializations discussed in Section 3.1
and are applied on a per-connection basis. Automating the special-
ization required five new annotations in TAO and the FSL transfor-
mation was∼250 SLOC. Multiple simultaneous client connections
that have different request dispatchers can therefore be serviced
concurrently. This design conforms to our invariance assumption
from the BasicSP scenario, where operations are same only on a
per-connection basis.

Empirical results. Figure 10 illustrates the end-to-end and code
path performance resulting from the dispatch resolution special-
ization, which improved average end-to-end latency measures by
∼30µsecs, which is ∼16% better than the general-purpose TAO
implementation. For the actual code path specialized this trans-
lates to ∼40% latency improvement. The dispersion measures for
end-to-end latencies improved by a factor of ∼1.5, while those for
the specialized path were twice as good as those for the general-
purpose path. The 99% measures are similar to the dispersion
measures, indicating improvement in predictability. The maximum
measures improved by 20% when applying the dispatch resolution
specialization to the specialized path and by ∼14% for the end-to-
end results. These results show that applying layer-folding special-
ization to the TAO middleware improves predictability and latency
considerably.
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Figure 10: Results for Dispatch Resolution Specialization

Applicability and CORBA compliance. This specialization ap-
plies to the get_data() operation in the BasicSP scenario where
the same operation is invoked repeatedly. Caching the target ser-
vant and skeleton sacrifices some CORBA compliance since thread-
specific state (e.g., CORBA Current and POA Current are not main-
tained). This context information is often unnecessary, however,
e.g., the POA current interface is used primarily when the POA is
associated with a Default_Servant (where one servant han-
dles all invocations) or Servant_Manager (which creates a ser-
vant dynamically to handle requests). Since these dynamic CORBA
policies are rarely – if ever – used in DRE systems, the impact on
CORBA compliance is negligible in this context.

4.2.4 Applying the Constant Propagation Specializa-
tion

This specialization corresponds to steps 1 and 11 on the client
and steps 4 and 6 in the server of Figure 7.
Specialization automation. We implemented constant propaga-
tion specializations by enhancing TAO’s (de)marshaling engine with
two new conditional compilation flags – CDR_IGNORE_ALIGNMENT
and DISABLE_SWAP_ON_READ – that are automatically (un)set
using GNU autoconf. These two flags were applied to the write()
and read()methods in TAO’s Common Data Representation (CDR)
engine to ignore alignment and byte-order values in the request/-
response fields, which incurred a 5% change to TAO’s CDR engine
implementation. This design conforms to our invariance assump-
tion that clients and servers run on homogeneous middleware, OS,
compiler, and hardware platforms, which is often the case for pro-
duction DRE systems.
Empirical results. Figure 11 shows the end-to-end and path per-
formance improvements from applying the aforementioned spe-



cialization. The specialized path for this experiment began when
a server demarshaled a request until the response was returned to
the client. Applying the specialization that ignored alignment im-
proved end-to-end latencies by ∼8µsecs (a 4% improvement over
the general-purpose TAO implementation), while eliminating byte
order checks improved latencies by ∼9µsec (a 4% improvement
over the general-purpose TAO implementation). Path specializa-
tion results improved by ∼ 4 – 5µsec (a 10% improvement) for
both the cases. Although the general-purpose TAO implementation
performs tests on the client and server for all fields in a CORBA re-
quest header, our specialization improvements were relatively small
since our initial experiment sent a single long data type, which re-
quired very few byte order tests.
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Figure 11: Results for Constant Propagation Specialization

To evaluate this specialization on more complex data types, we
conducted another experiment that sent an IDL structure with four
primitive types, a short, long, double and float interspersed
with a char. The use of a char type forced the general-purpose
TAO middleware to re-align the individual primitive types. The
specialized TAO middleware, however, did not incur this overhead.

A sequence of this structure with varying sizes was sent over
the network to measure the improvement in performance. Both spe-
cializations were enabled simultaneously for this experiment. Ta-
ble 2 illustrates the speedup in average end-to-end latency accrued
from applying our specialization. The results show that latency
measures improve between 12 – 30% with increasing sequence
lengths.

Sequence Length Speedup
64 11.5%

128 17.35%
1,024 20.12%
2,048 25.64%
4,096 30.12%

Table 2: Performance Speedup as a Function of Sequence
Length

These results underscore the fact that the benefits of specializa-
tions often depend heavily on the use cases that exercise the spe-
cialized code.
Applicability and CORBA compliance. Eliminating byte-order
checks and ignoring alignment specializations are applicable to ap-
plications deployed on homogeneous environments i.e., nodes with
the same byte order, e.g., NodeA and NodeB in our BasicSP sce-
nario, and/or the same platform implementations at sender and re-
ceiver. These specializations break interoperability with other CO-
RBA ORBs. A middleware implementation, however, can add re-
covery mechanisms, such as checking for byte order within the re-

quest before using the aforementioned specializations, though these
mechanisms violate our invariance assumption.

4.2.5 Applying Autoconf Techniques for Platform Spe-
cialization

This specialization corresponds to the underlying platform on
which the BasicSP scenario was run.
Specialization automation. To automate the loop unrolling op-
timization, we used GNU autoconf’s AC_RUN_IFELSE capa-
bility that compiled and executed a benchmark to compare perfor-
mance both with and without our optimization. If our optimiza-
tion was faster, autoconf sets the ACE_HAS_MEMCPY_LOOP_
UNROLL flag to enable the feature. For exception support, we
used autoconf’s AC_COMPILE_IFELSE feature to determine
if a compiler supported exceptions and then empirically evaluated
whether using native exceptions was faster than emulated excep-
tions.
Empirical results. Figure 12 illustrates how applying our loop un-
rolling and exception emulation specialization techniques together
improved average end-to-end latency measures by ∼17%. Maxi-
mum latency measures improved by ∼12%, while the 99% latency
measures were closer to the average for our specializations, thereby
indicating better predictability. These results show that specializ-
ing deployment platforms via GNU autoconf can improve QoS
significantly.
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Figure 12: Results for Specializing Deployment Platform

Applicability and CORBA compliance. The GNU autoconf
specialization techniques have no affect on CORBA specification
compliance.

4.2.6 Applying the Specializations Cumulatively
Figure 13 illustrates the QoS improvements accrued by applying

all of the middleware specializations discussed above to a remote
CORBA operation. The average end-to-end latency for the spe-
cialized TAO dropped by∼43%, while the dispersion measure was
twice as good as general-purpose optimized TAO ORB, indicating
a considerable improvement in predictability that is essential for
DRE systems.

Similarly, the 99% bound values for the specialized TAO im-
proved by∼40% while maximum measures improved by∼150µse-
cs, which is a 45% improvement over the general-purpose TAO
implementation. End-to-end throughput measures improved by an
average of ∼65%. To measure performance speedup for a com-
plicated data structure, we ran the experiment using the complex
data structure from our demarshaling experiments. For a sequence
length of 64 average latency improved by∼26%, while for a length
of 4,096, latency improved by ∼51%.
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Figure 13: Results for Cumulative Specialization Application

4.3 Evaluating FOCUS
Now that we showed how FOCUS’s DSL, tools, and process can

be applied to help middleware developers build and evaluate mid-
dleware specializations, we evaluate its pros and cons.
Pros. In resolving the challenges described in Section 2, FOCUS
has the following benefits:

• It preserves portability of the middleware implementations it
specializes, i.e., the specialized middleware should run on all
platforms on which the middleware runs. The FSL snippets
in Section 4.2.1 do not change the interface of Reactor or
protocol components in TAO.

• It has no external dependencies, i.e., it does not require ex-
ternal libraries to be linked for execution.

• It supports role separation, i.e., middleware developers cap-
ture the specialization and annotate the middleware, whereas
PLA application developers select the specializations based
on SCV analysis.

• It uses COTS tools and standard technologies, such as Perl
and XML, to automate the delivery of these specializations
to enhance its use in production middleware platforms.

• Its transformations incur no unnecessary overhead at runtime
since they are performed statically at compile-time, similar to
other source-to-source transformations, such as AspectC++
(www.aspectc.org/), DMS (www.semdesigns.com),
TXL (www.txl.ca), and Stratego-XT (www.program-tr-
ansformation.org/Stratego/). The transformed mid-
dleware source code woven by FOCUS (Section 4.2.1) illus-
trates that no tool-specific code is inserted in the transforma-
tion process.

• Its specializations do not affect business logic and only mod-
ify the structure of middleware implementations, particularly
OO frameworks. The non-transformed versions of the frame-
works are therefore still available when other developers need
to use their extensibility features. None of the specializations
described earlier modified or specialized BasicSP application
code.

Cons. FOCUS was developed primarily to help us evaluate the
benefits of middleware specializations, in general, and the TAO
ORB, in particular. It therefore has the following drawbacks:

• It automates the delivery of specializations, but not the iden-
tification of specializations suitable for a PLA or an individ-
ual variant.

• Developers must ensure that annotations are synchronized
with specialization rules, i.e., if the annotations are changed

the specialization files also must change. The impact of this
dependency can be ameliorated somewhat by providing guide-
lines to middleware developers and enhancing the FOCUS
parser to ensure the required hooks are present in the mid-
dleware before it performs transformations.

• Modifications/enhancements to the state and/or- interface of
implementations require manual changes to the specializa-
tions, i.e., if the name of an operation or its parameters change,
the specialization files need to be updated. This limitation,
however, is not specific to FOCUS but also to other source-
to-source transformation tools.

• The FOCUS transformation engine does not check that the
woven code executes correctly, which is a common limi-
tation with other source-to-source transformation tools that
rely upon general-purpose compilers and automated quality
assurance tools to ensure the transformations compile and
run properly.

4.4 Summary
Specialization is a promising technique for alleviating the time/-

space overhead stemming from excessive generality in standard
middleware implementations and improving their QoS. This sec-
tion quantified the benefits of specializations we applied to TAO
based on invariants stemming from the BasicSP scenario, which
itself is based on the SCV analysis embodied in the Boeing Bold
Stroke PLA. Our empirical results showed how our specializations
improved the QoS of PLA-based DRE systems while also pre-
serving application source code and middleware portability/inter-
operability as much as possible.

Our techniques are not tied to TAO or the Bold Stroke PLA. To
apply these specialization techniques in other contexts, PLA and
middleware developers need to identify whether the invariance as-
sumptions for the specializations hold for the variants and under-
stand the consequences of applying the specializations. For exam-
ple, alleviating unused OO framework generality (challenge 1) can
specialize the middleware for different product variants. Avoiding
redundant request creation (challenge 2) occurs in middleware im-
plementations that provide the notion of a request message, includ-
ing CORBA, .NET, and Web Services. Optimizing repeated reso-
lution of the same dispatch (challenge 3) can benefit middleware
implementations (such as CORBA, COM, and EJB) that navigate
multiple layers/lookup tables to process target requests. Specializ-
ing (de)marshaling (challenge 4) and deployment platform gener-
ality (challenge 5) can be applied to other middleware that target
heterogeneous OS, compiler, and hardware platforms.

5. RELATED RESEARCH
This section compares our work on context-specific specializa-

tions with other specialization approaches including partial eval-
uation, apsect-oriented programming (AOP), code synthesis, and
program optimizers.

5.1 Partial Evaluation
Marlet at. al [16, 7] describe the use of the Tempo C program

partial evaluator tool to automatically optimize common software
architecture structures with respect to fixed application contexts.
For instance, the authors show how partial evaluation can be ap-
plied to fold together and optimize layers in early generations of
middleware, i.e., a remote procedure call (RPC) implementation,
by specializing RPC invocations to the size and type of remote pro-
cedure parameters (yielding speed-ups of 1.7x and 3.5x). The au-
thors [16] also customize a publish/subscribe framework to a con-
text in which subscribers of a particular event are known a priori.



This type of architecture is representative of the structures en-
countered in middleware for PLA-based DRE systems, which mo-
tivated us to consider similar techniques that could be applied with
good effect to optimize Real-time CORBA implementations. In
our work, we have identified additional CORBA architectural struc-
tures that are amenable to optimization via specialization. Techni-
cal challenges remaining include extending the automatic C pro-
gram techniques described in [16] to richer object-oriented lan-
guages, such as C++ and Java, that place a greater emphasis on
dynamically created data.

Schultz et. al [30] describe an automatic program specializa-
tion technique for Java wherein they use language-level mecha-
nisms to eliminate virtual dispatch overhead. While our focus is
also on eliminating such kinds of overhead, our approach focuses
on language independent mechanisms. Le Muer et. al [1] describe
a module-based language similar in syntax to the C language to en-
able non-experts to describe the program and data structures that
need to be specialized. A special compiler to synthesize metadata
for the Tempo partial evaluator has been developed. Our approach
is similar to that of Le Muer et. al., however, instead of a special
language and compiler, we use XML, middleware annotations and
Perl-driven transformations to automate the specializations.

5.2 Aspect-Oriented Programming (AOP)
[35, 9] has applied aspect-oriented programming (AOP) tech-

niques to factor out cross-cutting middleware features, such as port-
able interceptors, (de)marshaling routines, and dynamic typing. Some
specializations described in this paper can be implemented using
AOP. The primary difference is that our specializations focus more
on the transformations (woven code) required to specialize mid-
dleware, whereas AOP is more of a delivery mechanism to realize
specializations.

5.3 Empirically-guided Optimizers
The ATLAS [14] numerical algebra library uses an empirical

optimization engine to set the values of optimization parameters
by generating different program versions that are run on various
hardware/OS platforms. The output from these runs are used to se-
lect parameter values that maximize performance. Similarly, our
GNU autoconf specializations run empirical benchmarks on the
target deployment platform to determine the OS, compiler, and
hardware parameters that maximize performance.

5.4 Code Synthesis Techniques
’C (tick-C) [17] extends ANSI C to provide dynamic code gener-

ation capabilities. ’C provide code specifications that capture val-
ues of run-time constants. ’C implementation tcc is a compiler that
translated ’C to C and to assembly code. Our FOCUS approach,
differs from ’C as follows (1) it captures the code transformations
required to optimize code for a run-time constant and (2) provides
only a source to source transformation.

The Synthesis Kernel [17] generated custom system calls for
specific situations to collapse layers and eliminate unnecessary pro-
cedure calls. In this approach, specialized kernel code is dynami-
cally synthesized to improve performance. This approach has been
extended to use incremental specialization techniques. For exam-
ple, [21] have identified several invariants for an OS read() call
on HP/UX. Our work extends the range of specializations to en-
compass middleware invariants in the context of PLA-based DRE
systems, which have some different constraints. For example, we
do not consider dynamic re-plugging costs since it would unduly
increase jitter for product variants in many DRE systems.

6. CONCLUDING REMARKS

This paper describes how context-specific specializations can be
automated and applied to optimize excessive generality in standards-
based middleware implementations used for PLAs. We applied
specializations based on the Bold Stroke avionics mission comput-
ing PLA to optimize the TAO Real-time CORBA ORB. Our re-
sults showed the throughput of Bold Stroke BasicSP scenario im-
proved by ∼65%, its average- and worst-case end-to-end latency
measures improved by ∼43% and ∼45%, respectively, and its pre-
dictability improved by a factor of two, without affecting porta-
bility, standard middleware APIs, or application software imple-
mentations, while preserving interoperability wherever possible.
These improvements are particularly notable since TAO has al-
ready been tuned via many general-purpose middleware optimiza-
tions [22, 24]. We also described how GNU autoconf and FO-
CUS were used to automate the middleware specializations de-
scribed in the paper. FOCUS has been integrated with the open-
source TAO release available from www.dre.vanderbilt.edu/
TAO.

The remainder of this section discusses the consequences and
implications of our specialization techniques and tools.
Implications on QoS. The specializations discussed in this paper
had no inter-dependencies, i.e., the specializations do not overlap in
the end-to-end code path. As middleware and system architects de-
velop a catalog of specializations, it will be necessary to document
the interplay between the specializations and analyze the implica-
tions on mixing and matching different specializations. Similarly,
not all the specializations will be applicable to every PLA applica-
tion scenario, so PLA developers will need to work in conjunction
with middleware developers to determine the applicability of the
different specialization techniques to product variants.

Quantitative results show that improvements from applying our
specializations can be scenario-specific. For example, the demar-
shaling results showed how a complicated structure benefited more
from the specialization than a simple type. When the specialized
path is traversed more often, therefore, its influence on end-to-end
performance is more significant.
Implications on adaptability. Our specialization mechanisms do
not consider adaptation costs, i.e., the overhead of handling and re-
covering from situations where the invariance assumptions are vio-
lated. Adding such mechanisms require activities (such as loading
new libraries or adding run-time checks) that can incur consider-
able jitter, and thus are not desirable for DRE systems.
Implications on schedulability. In many DRE systems, real-time
tasks are scheduled and analyzed offline to ensure they complete
before their deadlines. Latency overheads caused by general-purpose
middleware implementations may cause deadline misses for criti-
cal tasks scheduled a priori. Applying our specializations could
reduce middleware overhead considerably, helping ensure that crit-
ical tasks complete before their deadlines. Our optimizations might
also enable such tasks to finish well ahead of their deadlines, thereby
increasing the total slack, i.e., time interval available for scheduling
other tasks (such as soft real-time tasks), in the system. More avail-
able slack could potentially increase the number of schedulable soft
real-time tasks in the system.
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