
DREMS ML: A Wide Spectrum Architecture Design
Language for Distributed Computing PlatformsI

Daniel Balasubramaniana, Abhishek Dubeya, William Ottea, Tihamer
Levendovszkya, Aniruddha Gokhalea, Pranav Kumara, William Emfingera,

Gabor Karsaia,∗

aInstitute for Software-Integrated Systems, Dept of Electrical Engineering and Computer
Science, Vanderbilt University, Nashville, TN 37212, USA

Abstract

Complex sensing, processing and control applications running on distributed
platforms are difficult to design, develop, analyze, integrate, deploy and oper-
ate, especially if resource constraints, fault tolerance and security issues are to
be addressed. While technology exists today for engineering distributed, real-
time component-based applications, many problems remain unsolved by existing
tools. Model-driven development techniques are powerful, but there are very few
existing and complete tool chains that offer an end-to-end solution to developers,
from design to deployment. There is a need for an integrated model-driven devel-
opment environment that addresses all phases of application lifecycle including
design, development, verification, analysis, integration, deployment, operation
and maintenance, with supporting automation in every phase. Arguably, a cen-
terpiece of such a model-driven environment is the modeling language. To that
end, this paper presents a wide-spectrum architecture design language called
DREMS ML that itself is an integrated collection of individual domain-specific
sub-languages. We claim that the language promotes “correct-by-construction”
software development and integration by supporting each individual phase of
the application lifecycle. Using a case study, we demonstrate how the design of
DREMS ML impacts the development of embedded systems.

Keywords:

IThis work was supported by the DARPA System F6 Program under contract
NNA11AC08C. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the views of DARPA. The authors
thank Olin Sibert and Graham O’Neil, and all the team members of our project for their
invaluable input and contributions to this effort.

∗Corresponding Author
Email addresses: daniel@isis.vanderbilt.edu (Daniel Balasubramanian),

dabhishe@isis.vanderbilt.edu (Abhishek Dubey), wotte@isis.vanderbilt.edu (William
Otte), tihamer@isis.vanderbilt.edu (Tihamer Levendovszky),
gokhale@isis.vanderbilt.edu (Aniruddha Gokhale), pkumar@isis.vanderbilt.edu
(Pranav Kumar), emfinger@isis.vanderbilt.edu (William Emfinger),
gabor@isis.vanderbilt.edu (Gabor Karsai)

Preprint submitted to Science of Computer Programming November 24, 2015

Architecture description language, model-driven development, fractionated
spacecraft

1. Introduction

Today’s large-scale distributed real-time embedded systems are enormously
complex and there is an ever-increasing need for engineering tools to sup-
port their design, development, integration, deployment, operation, and main-
tenance. Often these systems are running on a mobile distributed platform
with wireless connectivity. Such platforms are expected to host many different
applications running side-by-side, possibly in different security domains. The
platform is highly resource-constrained thus resource management is an issue.
Applications are often mission-critical and the system is expected to provide
some guaranteed level of service in all situations, hence fault tolerance is a re-
quirement. As an example one can consider a swarm of UAVs that act as a
sensor network with in-network processing (while also flying in formation) or a
fractionated spacecraft.

The DARPA System F6 program1 was concerned with developing a cluster
of small, independent spacecraft modules that interact wirelessly to maintain
coordinated flight and support the functions usually performed by a monolithic
satellite. This hardware platform is considered a reusable resource, a ‘global
space commons’, on which various distributed software applications can be de-
ployed and executed such that they share cluster resources. For a variety of
reasons, many challenges arise in hosting these applications so that they can
deliver services with the expected level of quality. For instance, it is expected
that multiple organizations and users whose diverse software applications have
varying demands for computational and communication resources are to be
supported on this distributed hardware which can experience highly fluctuating
connectivity. Moreover, the success of every mission depends on the capability
of autonomous fault management, the delivery of desired real-time services and
the availability of separate domains and levels of security.

To support these needs, we have developed an architecture called Distributed
Real-Time Managed System (DREMS) [1], and its core, the Information Archi-
tecture Platform (IAP) for F6 that comprises (i) a novel operating system, (ii)
a middleware layer that supports different communication-interaction patterns
including request-response and publish/subscribe, and (iii) a component model
that is used to develop DREMS applications [2, 3]. Note that an entire F6
cluster of satellites is considered an open (hardware) platform whose services
are available through the software platform (IAP) to applications developed by
various customers. In this sense it is similar to a cloud-computing platform that
follows a ‘Platform as a Service’ model.

1F6 stands for ’Future, Fast, Flexible, Fractionated, Free-Flying spacecraft’

2

The architecture provides first class support for multiple levels of security
(MLS) that is enforced by the operating system kernel, the core ingredient
of the Trusted Computing Base (TCB). Multi-level fault management is also
supported by the IAP, with different functions, such as detection, mitigation,
recovery distributed across the architecture.

Despite the elaborate and elegant runtime architecture to support DREMS
applications, developers face a number of complex inherent and accidental chal-
lenges in constructing their applications. The inherent challenges pervade all
phases of the application lifecycle, including design, development, deployment,
resource scheduling, security provisioning, verification, determining the right
testing strategies, runtime resource and fault management, and dealing with
evolution in requirements and maintenance. The accidental challenges stem
from the mundane and error prone activities of composing application com-
ponents, providing the glue code to interact with the middleware capabilities,
deploying the applications on the resources of the cluster, configuring the re-
sources according to the partition schedule, provisioning monitoring and fault
detection capabilities, testing, and dealing with all these complexities when it-
erating over the development cycle due to changes in requirements [4].

Clearly, there is a need for tools that application developers can use to handle
all these challenges. Although a variety of tools that handle individual aspects of
the problem space exist, such a disparate and disconnected tooling capability is
not desired for a number of reasons. First, every different tool implies a learning
curve on the part of developers and having to deal with the vagaries of individual
tools. Second, the developers are now responsible for connecting these disparate
tools into a tool chain requiring a number of transformations from the output
of one tool to another. While these challenges are predominantly accidental, a
more serious challenge stems from the fact that most of the existing tools do
not provide domain-specific architectural reasoning capabilities desired for the
IAP.

Architectural description languages, such as the Architecture Analysis and
Design Language (AADL) [5, 6], OMG SysML [7, 8], and OMG MARTE profile
for UML [9], are geared towards addressing the problem of disconnected and
disparate tooling. Architecture description languages enable the proper decom-
position of the system into manageable parts with well-defined interfaces (and
thus contracts) between them, which ease system integration problems. Overall,
an architectural model defined in these languages helps to capture in a single
place details about the system’s requirements, architecture and implementa-
tion details. A significant advantage for developers is that they can generate
a variety of artifacts: analytical models to conduct timing, reliability, security,
performance, etc. analysis from a single source. When language capabilities
are offered in the context of a model-driven engineering process, particularly
in the form of model-integrated computing (MIC) [10], application developers
can validate their system using domain-specific artifacts that promote the re-
alization of systems that are “correct-by-construction”, and utilize the model
transformation capabilities of MIC that can automate most of the mundane,
accidental complexities faced by developers.

3

This paper presents DREMS modeling language (ML), which is an archi-
tecture description language (ADL) and its associated tooling. DREMS ML
is a “wide spectrum” ADL because it provides a single source for DREMS ap-
plication developers and the system integrator to address all the inherent and
accidental challenges described above in realizing DREMS applications. Our
recent publications describing DREMS ML [11] have focused on showing how it
helps developers use the underlying component abstractions, configure the com-
ponents and deploy applications that are composed of interacting components.
Moreover, the focus of these papers was to describe the language in terms of its
support for reusability, property configuration at various levels and integration
with textual languages. The key topics we cover in this paper are the following:

• We briefly review the main features of the IAP with a focus on the software
component model. Our aim here is to highlight the development lifecycle
of DREMS applications that influences the design of the DREMS ML.

• We present the design of DREMS ML including all the sub-languages it
provides that address the inherent challenges in the different phases of an
application’s lifecycle.

• We illustrate how the language can be used throughout various system
development activities.

• We show through a case study how DREMS ML is used to develop applica-
tions and evaluate how the design of DREMS ML addresses the challenges.

The rest of this paper is organized as follows: Section 2 provides an overview
of the IAP, Section 3 delves into the details of DREMS ML, articulating how
it addresses the inherent and accidental complexities faced by developers; Sec-
tion 4 describes the development activities supported by DREMS ML. Section 6
describes related research and compares it to DREMS ML; Section 5 evaluates
the DREMS ML design in the context of a use case; and finally Section 7 offers
concluding remarks alluding to future work in this area.

2. The DREMS Information Architecture Platform

In this section, we briefly present the DREMS Information Architecture
Platform (IAP), which is the the run-time software platform and framework for
System F6. IAP also offers a component model [2, 3], which we also describe.

The IAP has a layered architecture [2] (shown in Figure 1, for a single host)
that comprises a novel operating system (DREMS OS), a modified and extended
Linux kernel, a middleware layer(DREMS ORB) and the component-based ap-
plications. Instead of traditional processes, DREMS executes applications in the
context of actors. Actors are temporally and spatially isolated processes that
are extended in the following ways. (i) They are unique identity across multiple
hosts, (ii) can be migrated from one host to another, and (iii) can be per-
sisted and restored. The operating system provides primitives for concurrency,

4

Figure 1 Information Architecture Platform

synchronization, file operations and secure information flows among actors and
hosts; it also enforces the temporal and spatial separation of actors, and resource
management policies. The middleware provides higher-level services supporting
request/response and publish/subscribe interactions for distributed software.

A group of one or more actors deployed together to work collaboratively
forms an Application and are called Application actors. One application
may be split across application actors potentially distributed across on different
hosts. Platform actors are actors that provide system-level services, such as
system management, component deployment, and fault management.

2.1. Component Model
The component model (DREMS COM) facilitates the creation of software

applications from modular and reusable components that are deployed in the
distributed system. Components are the basic units of composition for creating
distributed software applications on the IAP. Components are hosted inside con-
tainers, the portion of the component middleware responsible for managing the
lifecycle of component instances. Actors (and thus applications) are constructed
from interacting components, and all synchronization and data exchange among
components happens through interactions. The component model specifies the
execution semantics of a component, the interaction semantics between any
two components and the interaction patterns between the component and the
services provided by the framework to manage the life cycle of the component.

2.1.1. Interaction
Figure 2b shows the different communication and interaction patterns that

are currently supported by the DREMS middleware. All data exchanged in
these patterns are strongly typed. These patterns can be grouped into two
categories:

• Group Publish-Subscribe: A publisher is a point of data production and
a subscriber is a consumer of data. This is a group interaction pattern,

5

wherein multiple publishers and subscribers communicate within a spec-
ified ‘domain’ over a specified ‘topic name’. All data exchanged between
a publisher and a subscriber can be either stateful (i.e there are different
instances of the data) or stateless, a.k.a events (i.e. there is only one in-
stance of the data). Events are like singleton classes where there is only
one instance of the class, but the value of the data members can change.
Stateful data implies that there can be different object instances of the
topic with a different value assigned to each instance. These interactions
are specified in the OMG Data Distribution Services standard [12].

• Point to point: A point to point interaction is between two components;
one client (that has a receptacle) and the other server (that provides facet).
Facets and receptacles are typed with an interface that defines a collection
of methods. A facet port (of a server) is attached to the implementation
of the methods defined in the interface and it services the requests issued
through a receptacle (of the same type) of another component (a client)
for these interface methods.

Table 1 lists the communication patterns that can be realized using the ex-
tended ports that are currently part of the platform. Though the interaction
semantics of these ports is pre-specified, a middleware framework can choose
multiple implementations for them. For example, synchronous call/return and
asynchronous messaging can be supported using OMG’s CORBA infrastructure
while the publish/subscribe mechanism can be supported using OMG DDS.
Consequently, the DREMS COM implementation decouples the transport mech-
anism from the structural artifacts of a component by using the notion of con-
nectors [13]. A connector is a pluggable unit of container functionality; they
are similar to components in that they have a well defined interface, but are
entirely generated or implemented by the component middleware. Connectors
are deployed much like copmonents, and serve as the interface between a compo-
nent and the underlying communications middleware or other container services.
This design choice also enables the extension of available interaction patterns
by allowing the creation of new extended ports without requiring changes to
key portions of the component model implementation.

2.1.2. Component Architecture
Figure 2a provides an overview of the component model. Only the business

logic of the component needs to be manually written, the rest of the architecture
can be achieved by configuring the services provided by DREMS.

While the execution semantics are controlled by the component executor,
i.e. the business logic of the component, the interaction patterns are realized
via extended ports which support many distributed interactions patterns that
are commonly used. These ports are called extended because unlike traditional
single interface ports, these ports provide a collection of semantically related
interfaces that are used together.

Figure 2 shows a number of extended ports – each of them represent a re-
quested middleware service. It also shows the service interaction patterns that

6

Pattern Scope Description
1. Asynchronous remote
method invocation

Point to
point

Client component with receptacle makes the call but
does not block waiting for a reply from the server.
The reply from the server is handled as a separate
component operation on the client component.

2. Synchronous remote
method invocation

Point to
point

Client component with receptacle makes the call
and is blocked while waiting for a reply from the
server.

3. Stateless Data pub-
lisher and pull subscrip-
tion (Event Publisher
and Read or Get Sub-
scriber)

Group
Publish
Sub-
scribe

An event can be published and received by a num-
ber of subscribers. A new publication replaces any
old existing sample of the data in the buffers. The
subscribers are responsible for polling the middle-
ware periodically for new events.

4. Stateful Data pub-
lisher and pull subscrip-
tion (State Publisher
and Read or Get Sub-
scriber)

Group
Publish
Sub-
scribe

The publisher controls whether a new instance (dis-
tinguised by a key field) of the topic is created or
whether the value of an existing instance is updated.
The publisher can also control whether an existing
instance is completely removed from the distributed
system. The subscriber is responsible for polling the
middleware for updated instances.

5. Stateless Data pub-
lisher and push sub-
scription (Event pub-
lisher and Push Con-
sumer)

Group
Publish
Sub-
scribe

The publication side in this pattern is similar to
item 3 above, but a callback (invocation of a com-
ponent operation) is made by the middleware to the
subscriber when new data is available.

6. Stateful Data pub-
lisher and push sub-
scription (State Pub-
lisher and State Notify
Subscriber)

Group
Publish
Sub-
scribe

The publication side in this pattern is similar to
item 4 above, but a callback (invocation of a com-
ponent operation) is made by the middleware to the
subscriber when new data is available. A compo-
nent can also control if it receives an invocation on a
separate operation if the stateful publisher changes
the lifecyle of a topic instance. This is typically used
to indicate the ingress or an egress activity from a
group of publishers and subscribers.

Table 1 Communication patterns that can be realized using the available ex-
tended ports

can be realized by using the service extended ports. The service patterns are
used to interact with the framework managing the component and can also be
used to support periodic and aperiodic time-based triggers that initiate com-
ponent operations. Additionally, they can support state variables: component
attributes with (limited) history, which are often needed in software interact-
ing with physical phenomena. These interaction patterns can be also used to
support fault management and component life cycle control, i.e. activating or
shutting down a component.

As shown in Figure 2 functions associated with all extended ports, both
service and communication, can be grouped into two categories (a) component
[provided] operations and (b) framework [provided] operations. It is key to state
the difference between two.

The component operations are written by the component developers and
provide implementations that state the component’s response to either a service

7

Component

Component Executor
(Business Logic)

Extended Communication Ports

Lifecycle Control
Fault

 Manager
Timer

Collection of operations implemented by component
executor and called by the framework

Component Operations

Extended Service Ports: Used to provide service interactions

Collection of operations implemented by framework
executor and called by the component executor

Framework Operations

These are used
to support a number

of different communication
interaction patterns

(a) DREMS Component

Event Publisher

State Publisher

Receptacle (Uses)

Facet (Provides)

Push Consumer

State Notify Consumer

Get Consumer (Wait)

Read Consumer (no wait)

Available Extended
Communication Ports

(b) Communication Interaction
Patterns provided by the IAP

Figure 2 Component (left) and interaction patterns (right)

interaction (including a timer expiration, see container services) or a communi-
cation interaction. These operations have access to the component state directly
and can alter it. The framework provided operations are called from within a
component operation.

The framework operations typically do not block and return immediately, ex-
cept in two cases: (a) synchronous remote method invocation and (b) a get or a
waiting read performed by a subscriber. In both cases, the framework operation
call blocks until either a response is available or a timeout occurs. To specify
the timeout, all framework operations are marked with a timeout parameter.
This parameter is specified and configured using the modeling language.

Besides the extended ports, there are three container services: (i) Lifecycle
Control, (ii) Fault Manager, and (iii) Timer. While lifecycle control is responsi-
ble for delivering lifecycle events such as the initialization and shutdown, Fault
Manager handles fault-related events. The timer service is a periodic timer
that can be configured to periodically invoke a component operation. It is a
completely separate concept from the service/system timeouts.

Framework Operations

Framework

Dequeue Component
 Operation

(subject to component scheduling policy)

Component Executor
(Business Logic)

 Enqueue Component
 Operation

C
o

m
p

o
n

en
t

O
p

er
at

io
n

 Q
u

eu
e

Call Path (Forward)

Call Return Path

Framework
Operation

Framework
Operation

Timeout (sec)Timeout (sec)

Component
Operation

Component
Operation

Deadline (sec)Deadline (sec)

Priority [0..99]Priority [0..99]

Figure 3 The Component Scheduler

8

Figure 3 shows the interactions between the framework and the component
executor i.e. the business logic. Component operations invoked by the frame-
work are queued in a component operation queue. By default, the size of this
queue is only bounded by available memory in the actor. In the event that a
lower upper bound on the queue size is specified, any failure to insert an opera-
tion into the queue would be indicated to the Fault Manager, and if appropriate
throwing an exception to the client that initiated the operation. The framework
issued enqueue command returns immediately to the framework. The compo-
nent operation queue selects the next component operation to be executed based
on the a configurable scheduling policy. Currently, we support two policies: Pri-
ority First in First Out, and Earliest Deadline First. Both of these policies are
non-preemptive i.e. an operation once started cannot be interrupted. How-
ever, it is possible to monitor for deadline violation for the operation. The
fault management mitigation action to be issued upon deadline violation is a
subject of ongoing research and implementation; possible mitigation strategies
might include (1) indicating an exceptional condition to the client (in the case
of AMI/RMI), (2) failing over to a replica, (3) restarting the actor entirely, or
(4) an application specific response supplied by the application developer.

To support these scheduling policies two attributes for each component oper-
ation must be configured: deadline (i.e. anticipated worst-case execution time),
and an unsigned integer priority. For normal operations priorities must fall
within an closed interval (e.g. [0..99]), and while priorities greater than the
larger value of the interval are possible, they are reserved for component opera-
tions used to implement the lifecycle and fault management service interaction
patterns (see figure 2a).

Figure 4 Scheduling of component operations

Figure 4 depicts the semantics of component scheduling from the perspec-
tive of the Framework (Figure 3). The Figure uses hierarchy only as a syntactic
convenience to omit drawing transitions to/from every state contained by a
higher-level state; otherwise, our notation has the same semantics as a timed-
automata. The framework takes an operation from the Component Operation
Queue (transition from the state WaitinQueue). Then the execution of compo-

9

nent operation takes place. If executing the operation takes more time than the
specified timeout, the framework aborts the execution of the operation. It may
involve an outgoing invocation (network communication) or sending response to
a network communication query. During this whole process if a timeout expires
on an operation in the operation queue (this timeout is different from the one
for the operation execution), the framework handles it.

2.2. Task Scheduling
In this section, we briefly summarize the scheduling services provided by

DREMS. It groups tasks into different criticality levels: (a) Critical tasks are
those tasks which are required for system and mission management; (b) Appli-
cation tasks perform mission-specific, non-critical work; (c) Best Effort tasks
are those low priority tasks that are scheduled only when there are no runnable
tasks from the previous two categories.

The DREMS OS scheduler provides the ability to manage computation time
for tasks at the three different criticality levels: Critical, Application and Best
Effort. The Critical tasks provide kernel level services and system management
services. These task will be scheduled based on their priority whenever they are
ready. Application tasks are mission specific and are isolated from each other.
These tasks are constrained by temporal partitioning and can be preempted by
tasks of the Critical level. Finally, Best Effort tasks are executed whenever no
tasks of any higher criticality level are available.

Note that actors in an application can have different criticality levels, but
all tasks associated with an actor must have the same criticality level, i.e. an
actor cannot have both Critical tasks and Application tasks.

Therefore, the scheduling policy must be configured for the Application Ac-
tors. Their temporal isolation is provided via ARINC-653 [14] style partitions –
a periodically repeating fixed interval of the CPU’s time exclusively assigned to
a group of cooperating actors of the same application. Figure 5 depicts the par-
tition scheduler as a stopwatch automaton [15] from a partition’s perspective.
A partition can be in an active or inactive state. As described in Section 3.2.9,
partitions have an associated period and duration such that each partition is
run for the length of its duration every time an amount of time equal to its
period elapses. In order to find a schedule that satisfies the period and duration
constraints of all partitions, a constraint satisfaction problem [16] is formulated
such that a solution to this problem assigns to each partition a starting and
ending time relative to a calculated hyperperiod. The hyperperiod is the small-
est interval of time after which the periodic patterns of all the tasks is repeated.
Because the period of the scheduling is the hyperperiod, the time within the
current hyperperiod is equal to the system clock (sc) modulo the hyperperiod.
Offseti marks the start of partitioni within the hyperperiod.

10

Figure 5 Partition Scheduling

3. DREMS ML Architecture Design Language

3.1. Rationale for the Design of DREMS ML
This section describes the DREMS ML ADL 2. Our design of DREMS ML is

based on the argument that an ADL has to be expressive enough to support all
developmental activities shown in Figure 6 that ultimately produce deployable
software products.

As Figure 6 shows, the component implementor creates individual compo-
nents, including the definition of their interfaces and their business logic. The
application developer is responsible for creating applications using these com-
ponents. The system integrator then combines multiple applications to create
a deployment package that is run on the target system. In order for the system
integrator to perform verification and validation tasks, such as security analysis
(Section 4.3.2) and scheduling analysis (Section 4.3.5), the application models
must contain all information relevant to each analysis.

Component Implementer

Components
(obj or src)

Component
Meta-data

Component Implementer

Components
(obj or src)

Component
Meta-data

Component Implementer

Components
(obj or src)

Component
Meta-data

System Integrator
Application Developer

Application
Components
(obj or src)

Application
Meta-data

Compilation
Linking

Security
info

Executable

Deployment
Meta-data

Deployment package

F6OS
Libraries

Gen

V
&
V

V
&
V

Figure 6 DREMS Application Development Workflow and Roles

2The DREMS package, which contains the language and examples, is available at
https://drems.isis.vanderbilt.edu/

11

In other words, models have to represent interfaces, the components and the
architecture of applications, together with details about the software platform
and how applications are to be deployed on the platform. What an ADL should
not capture is the internal behavior of the components – this is best left in
the hands of skilled developers. An example internal behavior could be the
algorithm that a component uses to calculate data that is then sent to other
components.

When a component-based development process is followed as in DREMS, the
platform has to clearly delineate what a component is. We argue that a com-
ponent model (supported and enforced by a run-time framework) is essential.
When the ADL is used to model an application in terms of interacting compo-
nents, the designer has to clearly understand what the assembly of components
means and how it works.

Another aspect of component-based development is that of deployment: at
run-time, applications are created on-the-fly by activating and ’wiring up’ com-
ponents. Information needed for such deployment activities must be generated
from the ADL and processed by a special platform component: a deployment
and configuration engine that manages all applications and their components
running on the platform. Finally, the ADL also serves as a system integration
tool. For complex systems, e.g. the complete avionics suite of an aircraft, appli-
cations are developed in parallel, by different organizations. A distinct system
integrator has to integrate all the applications into a coherent software package
that is then deployed. Hence, the ADL should be capable of modeling the com-
plete set of distributed applications, which allows the integrator to (1) make
admittance decisions that ensure that the resources required by all applications
will be available on the system, and (2) perform the ‘systems engineering’ by
enabling various interactions (e.g. data flows) among applications.

We call such ADLs wide spectrum, as they support a wide variety of devel-
opment activities. Each of the considerations mentioned above are incorporated
in the design of DREMS ML and explained in the rest of this section.

Before delving into the details of the modeling language, we provide an
overview of what is deployed onto the runtime system (the IAP) and how the
modeling language fits in. Figure 7 shows a high-level view of the overall work-
flow. Three items are generated directly from a model: code, build system
files and a deployment plan. The build system files describe how to compile
the source files into the executable binaries that are eventually deployed onto
the system. The compilable code consists of IDL that describes the compo-
nent interfaces, which is translated into C++ code. This is combined with
the component business logic (i.e., the internal implementation) to produce the
executable binaries. The business logic and external libraries are not directly
subject to the timing analysis described in Section 4.3.5. Instead, users describe
an abstraction of the business logic’s timing behavior inside the model, and this
abstraction is analyzed for properties such as deadline violations and response
times; Section 4.3.5 provides details.

The final product deployed onto the IAP consists of two items: a package
of binary executables and a deployment plan. The deployment plan (physically:

12

an XML file) contains a declarative description of the software components im-
plemented in the binary executables, along with a list of which components to
instantiate, where those components should be instantiated and the communi-
cation connections that must be established between the components.

DREMS
model

Compilable
code (C++,

IDL)

Deployment
plan (XML)

Generated from
models

Business
logic

External
libraries

+

Binary
executables

Deployment
plan (XML)

Deployment package
(deployed onto runtime

platform)

External to
models

Build
system files

Domain-specific
model

Figure 7 Workflow showing the automatically generated artifacts and their use
in the development process.

3.2. Design of DREMS ML
The DREMS ML is a wide spectrum modeling language that supports the

entire development process. Below we describe the design of DREMS ML and
show how it supports all the phases of the development lifecycle. In doing
so it describes the design of the different sub-languages of DREMS ML that
were designed to address the stages of the process shown in Figure 6. For each
sub-language we describe (1) what is being modeled, (2) the motivation for
including it in the ADL, and (3) what it contributes to in the final product
of the development process. The sub-languages of the DREMS ML and the
metamodel of one of these sub-languages – in this case modeling of an application
– is shown in Figure 8. The syntax and semantics of the DREMS ML language
are described using the MetaGME Language [17].

Shown in the right pane of the screenshot are all the sub-languages sup-
ported by the DREMS ML. These languages are numbered and this numbering
effectively follows the application development lifecycle phases shown in Fig-
ure 6. As seen in the figure, a single overall modeling capability covers all the
stages of the lifecycle, which is the reason for its “wide spectrum” property.
The rest of this section delves into the design and justification for each of these
sub-languages.

3.2.1. Initial Step in Modeling
Since the DREMS ML supports a step-by-step approach to DREMS appli-

cation design and deployment, the language must provide a starting point for
the modeling phase. This capability appears in the sub-language numbered zero

13

Figure 8 Overall Structure of the DREMS ML as a MetaModel Modeled in
GME

and its metamodel is shown in Figure 9. The sub-language provides three top
level entry points for the application designer and integrator: everything that is
related with software, hardware and the system itself. The decision to separate
these three modeling capabilities is driven by a desire to separate concerns and
because different parties may be responsible for defining these three independent
artifacts.

Figure 9 DREMS ML-based Modeling: The Starting Point

14

3.2.2. Data Types and Interface Definitions
The first phase of the application lifecycle starts with component definitions

and their implementations. In order to do this, one must first define the data
types for all the component attributes and interfaces it supports. Thus, the
next sub-language pertains to modeling the data types whose meta model is
depicted in Figure 10.

Figure 10 DREMS ML: Definining IDL Data Types

The sub-language for data types and interface definitions is used to model:
(1) the data types that components use on their interfaces, and (2) the in-
terfaces provided and used by components. This sub-language is present in
the modeling language because in addition to primitive data types defined by
OMG standards, applications can also have user-defined data types. These user-
defined types include: enumerations, sequences (both unbounded and bounded),
arrays3, structures (which can contain any other primitive or user defined type),
unions, and typedefs (named types).

Interfaces are named collections of method signatures that can use both
built-in and user-defined data types for the parameters. This part of the mod-
eling language provides a central “repository” where interfaces and data types
can be defined and then referenced throughout multiple applications. Recall
that at a high level, component communication interactions fall into one of two
categories: (a) point to point interactions, and (b) publish-subscribe interac-
tions. Point to point interactions are achieved using call-return semantics; the
collection of methods that can be called is referred to as an interface.

The sub-language allows modeling the IDL types using both graphical and
textual notation. The syntax of the textual description is checked and enforced

3Arrays are fixed size containers, while sequences are variable size containers.

15

Data types model Topic model

Figure 11 Example Topic definition. References (right-side) to data structures
(left-side) define topics.

by including an add-on4 to the modeling language that parses the user-written
data types and interfaces, and alerts the user to any syntactical errors. From
this sub-language, IDL code containing syntactically correct data types and
interfaces is generated. This IDL is generated by a model interpreter, a program
that can be invoked from inside the modeling environment and access models
using APIs provided by the modeling environment. This is straightforward
because the model elements contain syntactically correct IDL code (as described
above).

3.2.3. Topic definitions
Recall that the group publish-subscribe set of component interactions is per-

formed by the exchange of data, as opposed to the invocation of methods used by
point-to-point interactions: a component “publishes” data that is consumed by
some number of components that “subscribe” to that data. All data exchanged
using the publish-subscribe interaction patterns is identified using topics. A
topic provides an identifier that uniquely identifies some data items within a
publish-subscribe domain. More formally, a topic is a tuple < x, y >, where x is
a unique name, and y is a structure data type. Note that while this definition
allows a single data type to be associated with multiple identifiers, a pair of
publish/subscribe ports will only interact if they are assigned the same topic:
the same data type alone is not sufficient.

A topic’s data type is specified as a data structure using the data types
modeling language. Data structures that are used as the data type of a topic can
be annotated by keys which are used to describe different instances of the same
topic. The topic definition sub-language then uses references to data structures
defined in the data types modeling language to define the topics available for
publish/subscribe interactions as shown in an example in Figure 11. From the
topic sub-language, configuration files that inform the middleware about the
allowed topics are produced.

4An add-on is an interactive tool: an executable extension to the graphical modeling
environment that is activated when a specific editing operation is invoked.

16

3.2.4. Component and assembly definitions
Having modeled the data types and topic definitions, the modeler can pro-

ceed to defining the components and their implementations. The sub-language
that enables component modeling is shown in Figure 12. The language is de-
signed in a way to faithfully capture the structure and semantics of a software
component. Recall that component definitions represent units of functionality
that interact with one another through pre-defined interaction patterns and are
the basic building block of applications. This sub-language is one of the core
parts of DREMS ML: component definitions define the abstract units of func-
tionality used by applications. From a component definition model, IDL code
that describes the ports, interfaces and method properties of each component
is generated.

Figure 12 DREMS ML-based Modeling: Defining the Components

A component definition consists of the interfaces it provides and requires, the
publisher and consumer ports it contains, and its exposed attributes. For this
reason all these artifacts are contained within the “Component” model artifact.
For each interface method provided by a component, a set of properties are
specified, including the worst-case response time, the deadline and whether the
deadline is hard (strict) or soft (flexible).

Note that the definition of a component is different from its implementation
(described next). This allows the same unit of functionality (the component
definition) to be implemented in multiple ways. Applications can then choose
which implementation of a component definition they wish to use.

A component assembly is a group of component definitions that are packaged
together to provide a functionality as a composite of simpler functions.

3.2.5. Component implementations
A component implementation represents a particular implementation of a

component definition. Recall that a component definition can contain interfaces,

17

which are a collection of methods that are used or provided by the component, as
well as DDS ports that the component uses to publish data for other components
or subscribe to data published by other components. Each component definition
can be implemented in multiple ways, and an application may use multiple
implementations of the same component definition.

The component implementation sub-language shown in Figure 13 is present
so that users can specify multiple ways of implementing a component defini-
tion and override properties of that component definition. From a component
implementation model, IDL code describing the implementation is generated.

Figure 13 DREMS ML-based Modeling: Defining the Component Implemen-
tations

A component implementation in the modeling language contains a collection
of artifacts, which represent required dependencies the implementation needs at
runtime, such as shared libraries (i.e., .so files) and confirmation files. A compo-
nent implementation can also contain timers, which are used by the implementa-
tion to invoke component operations on itself. An implementation may change
the properties of ports contained in the component definition it implements.

Figure 14 shows an example of how the properties of a port can be over-
ridden5 in an implementation. The properties that can be overridden are the
deadline, timeout and priority for individual functions contained (used) by the
port. The Figure depicts an implementation of a component definition named
OnDemandReceiver, which is one of the same component definitions described
later in Section 5. This component definition contains one uses port named
read_full_data, which states that the component uses the PositionServer inter-
face, which is shown in Figure 27. As shown in Figure 27, the PositionServer

5While component definition may provide an expectation of function properties, the im-
plementation specifies the actual values.

18

interface has one method named getPosition. The component implementation
shown in Figure 14 overrides the properties of this method on this implementa-
tion by connecting the port to an InterfacePropertiesOverride element (shown
on the right side of the Figure) and setting the desired values of the method
attributes there.

Figure 14 A component implementation overriding the properties of a port of
its component definition

The bottom part of Figure 14 shows that this implementation has overridden
the values for this method’s deadline, timeout and priority. The deadline and
priority attributes affect the operations on the component, and the timeout
affects the framework operation as discussed in previous sections. The user
interface shown at the bottom of Figure 14 was implemented as an add-on (see
Section 3.2.2 for a brief definition) to the modeling environment for convenient
specification.

3.2.6. Applications
The next phase in the application lifecycle is defining the applications us-

ing the components and their implementations that were defined in the earlier
phase. An application consists of a group of communicating components. The
application sub-language shown in Figure 15 defines applications by combin-
ing elements from the sub-languages above and extending them with additional
information. An application consists of one or more component definitions,
possibly grouped into assemblies, each of which is associated with a particular
implementation of that component definition. The component definitions are
then assigned to actors, which are similar to operating system processes and
form the basic unit for scheduling in the system.

The application sub-language also defines the connections between the ports
of components in that application. Every uses port of a component is connected
to a provides port of some component. The publisher and subscriber ports of
an application have topics assigned, which ensures that consumer ports using a
certain topic will receive data from any publisher ports using that topic.

From an application model, a deployment plan is generated. A deployment
plan is a configuration file that describes the locations of all the files and artifacts

19

Figure 15 DREMS ML-based Modeling: Modeling the Application

needed to launch the application. This deployment plan is used by a special
actor called the Deployment Manager to launch the actor and to configure the
components and the middleware within that actor.

3.2.7. Platform definitions
Recall that at the top level, the DREMS ML allows a different set of modeler

to define the characteristics of the platform used by the system The platform
definition sub-language shown in Figure 16 describes the physical hardware de-
vices that can be a part of the target system. The System F6 IAP is aimed at
space systems, so these models describe both in-space modules and ground mod-
ules that are to communicate with space modules. The main features captured
by this sub-language are the device, network and external network interfaces.
Because the underlying software infrastructure has stringent requirements about
the networks and devices which can be used, these networks and devices must be
explicitly modeled. These models are then reused in the platform configuration
models, as described below.

Figure 17 shows an example model with two modules (the left side of the
Figure) and the interfaces they contain (the right side of the Figure).

3.2.8. Platform Configurations
The preceding section described the platform definition sub-language, which

defines the devices that may be available during a mission. Because missions
are designed to operate in a dynamic environment where both software and
hardware faults may occur, all devices may not be available throughout an entire
mission. Devices can fail, and both planned and unplanned network outages may
occur. Additionally, the configuration of the devices may change over time: the
network address of a network interface may change, or the interface may be
assigned to a different network altogether.

20

Figure 16 DREMS ML-based Modeling: Modeling the Platform

The platform configuration sub-language defines different configurations of
modules and their interfaces. Each configuration consists of a set of modules
and the mapping of their network interfaces onto available networks, including
a network address. This allows a platform configuration to describe the state
of the physical system at a given point in time. From this description, a con-
figuration file that can establish the network configuration for each platform
configuration is generated that is used at software deployment time.

Figure 18 shows a sample platform configuration that uses the modules de-
fined in Figure 17. The modules are proxies of the modules defined in the
platform definition sub-language. Notice that the network and network address
change between the configurations. Alternative configurations are specified stat-
ically in the modeling language, but the switch to a new configuration on the
IAP runtime platform happens dynamically in response to events, such as a
device failing.

3.2.9. Software packages
The software package sub-language shown in Figure 19 describes three items:

(1) the scheduling of the application’s actors, (2) the domains6 used by compo-
nents for their publish and subscribe ports, and (3) the point-to-point interac-
tions between ports in different applications. Actor scheduling is configurable
within an application, and is therefore present in the modeling language. Actors
are assigned to schedules in one of two ways: they can be explicitly assigned
to a schedule’s temporal partition with a given period and duration7, or they
can be assigned so that the operating system schedules the actors using a ’best

6Domains are used to specify a region of the data space within which the publish subscribe
interactions can be established.

7Here we follow the ARINC-653 temporal partitioning model

21

Figure 17 Example platform definition. The SatModule1 module has two
network interfaces, and the SatModule2 module has two network interfaces and
one device interface.

Figure 18 Two platform configurations. Only SatModule1 is present in the
first configuration (left side), but both SatModule1 and SatModule2 are present
in the second configuration.

effort’ approach. Best effort actors run in the unused slack time remaining after
the actors running in the temporal partition(s) are executed.

For publish/subscribe, a domain for the publisher and subscriber ports of a
component determines the scope in which produced data is visible. For point-to-
point interactions connecting the point-to-point ports of components in different
applications allows a component in one application to use the interfaces provided
by a component in another application.

A software package model is reused in a software deployment model (de-
scribed below), where the schedules are mapped onto hardware modules and
the software domains are mapped onto real networks.

3.2.10. Software Deployment
Recall that the final phase of application lifecycle is handled by the system

integrator who decides how the software packages are configured and deployed.
The software deployment sub-language shown in Figure 20 describes how soft-

22

Figure 19 DREMS ML-based Modeling: Modeling the Software Package

ware packages (Section 3.2.9) are mapped onto cluster configurations (Section
3.2.8). This consists of a mapping from the schedules (which describe how the
actors of applications are scheduled) of a software package to the modules of
a cluster configuration on which those schedules should be run. This mapping
assigns a set of actors to a hardware module. This sub-language also maps the
publish/subscribe domains of a software package onto the networks available in
a cluster configuration. This is used to concretely specify which network carries
the publish/subscribe traffic generated by software components.

Figure 20 DREMS ML-based Modeling: Configuring the Software Package for
Deployment

The software deployment process is supported in the modeling language with

23

first class concepts for schedules, modules and the mapping between the two.

4. Developing Systems with the DREMS ML

The development process of applications to be run on the IAP is similar to
that of other embedded system applications: analysis, design, implementation,
verification and testing; preferably in spiral progressions. The use of an ADL
like DREMS ML helps in all these phases by allowing distributed development
and integration of systems with specific support for following three key roles:
component developers, application developers and system integrators. We de-
scribe these roles next.

4.1. Component developers
As described earlier, components are the basic units of software that can be

composed together to build larger and more complex distributed software appli-
cations. Components are developed with respect to a specification and provide
a small number of functionalities. Two different components built for the same
specification can be used interchangeably. Part of a component developer’s pri-
mary task is to model component definitions, implementations and component
assemblies and to specify runtime properties for the components. These run-
time properties include expected resource requirements, expected security label
constraints and the type of interactions supported by a component. To support
these activities, the modeling environment provides automatic generation of the
necessary build scripts and framework ‘glue’ code. The glue code includes:

• Data type and interface code.

• Communication stubs and skeletons.

• Placeholders for insertion of component executor or business logic code.

As a component developer creates tests that exercise their code, it is likely
that both the model and code will both change as bugs are discovered and the
implementation is refined. During this process, it is important that the code
automatically generated by the modeling environment does not accidentally
overwrite code that was manually added to previously generated code. To ensure
this does not happen, special markers are automatically placed in the generated
code to delineate where hand-written code should be placed and thus preserved
by the code generator in subsequent runs.

4.2. Application Developers
Applications are created by composing various components together, speci-

fying the information flow, specifying resource and/or security constraints. An
application developer does not have to write new code. They are able to use
the tools to generate deployment plans for their application and run them in a
test environment. The application developer role requires the modeling frame-
work to support composing different component models received from different

24

parties and combining them into a single model. This kind of model compo-
sition requires the tool to support some sanity checks to avoid duplicate type
definitions and name clashes. These checks include ensuring that the different
models do not define IDL data types with the same name. Once the models have
been composed, the application developers can create test system deployment
models to try out their applications. For this purpose, they have to use the
system integration role, which is described next. The end-result of the appli-
cation development process is a set of models, source code files (received along
with component implementation), and tested and verified software libraries and
artifacts.

4.3. System Integrators
System integration is the phase that results in a verified configuration of all

the software for a specific cluster configuration. The tasks of an integrator are
to specify the application instances in the system, specify the resource limits
for each application instance and specify the communication constraints i.e.
the topics and domains8 being used. The system integrator also specifies the
security labels at which all computing hardware and nodes will operate.

Based on these settings, a system integrator can perform a number of design
constraint checks described in the following subsections. Once the model has
been analyzed, the system integrator generates the application deployment plans
and system configuration scripts for the test system. These are then used to
deploy the test system and the test applications on the ground. Once verified,
the deployment plan and software artifacts are packaged together for deployment
in the production system.

4.3.1. Well-formedness checks
The modeling tools allow the system integrator to check that a model satis-

fies a set of constraints that are specified using the Object Constraint Language
(OCL) [18], a standarized language for writing constraints on modeling lan-
guages. Listing 1 shows an example constraint written in OCL that checks
whether a model satisfies the constraint that the CPU utilization of all compo-
nents assigned to a partition is less than 1 (100%). These OCL constraints were
developed as part of the modeling language and are included with it.

In addition to OCL constraints, the modeling language uses three additional
analyses to ensure that models are semantically correct: security analysis, re-
source anaysis and scheduling analysis. These are described presently.

Listing 1 OCL constraint to ensure valid CPU utilization
// Obtain a l l p a r t i t i o n s in a module
l e t g = s e l f . par t s (" Pa r t i t i on ") in
// Compute u t i l i z a t i o n o f a p a r t i t i o n as durat ion / per iod

8A domain can be used to isolate the communication of different applications from each
other.

25

l e t a l l =g . c o l l e c t (oclAsType (Pa r t i t i on) . Duration/
oclAsType (Pa r t i t i on) . Period) in
// Sum the u t i l i z a t i o n o f a l l p a r t i t i o n s
l e t seq = a l l . oclAsType (o c l : : Collection)−>asSequence () in
l e t r e s u l t = seq−>i t e r a t e (i ; sum : o c l : : Real=0|sum +
i . oclAsType (o c l : : Real)) in
// To be schedu lab le , the t o t a l u t i l i z a t i o n should be <=1
r e s u l t <= 1

4.3.2. Security analysis
The modeling language supports security analysis in the following way. MLS

(multi-level security) labels can be placed on all component ports, actors and
hardware modules. These MLS labels are linearly ordered hierarchical clas-
sification levels [19]. A label La is said to dominate another label Lb if the
classification level of La is greater than or equal to the classification level of Lb,
and we say that the dominance relationship holds between La and Lb. This
dominance relationship is a partial order [20].

Our MLS policy states that information can flow only from lower to higher
labels or between equal labels (according to the domination relation), e.g., a
Secret actor for mission A can read Confidential or Secret data for mission A,
but not Top Secret data for mission A or Secret data for mission B. Information
cannot flow from higher to lower labels or between incomparable labels.

We developed and integrated an MLS label checking library into the mod-
eling language which automatically checks that the information flows, specified
by connections between the ports of components in the modeling language, sat-
isfy the constraints of our MLS policy (i.e., that information can only flow from
lower to higher labels or between equal labels). The modeling language uses
this label checking library to perform a static security analysis before a system
is deployed. The static security analysis ensures at design time that (1) all
intended information flows are indeed allowed, and (2) unintended information
flows are disallowed.

This complex label checking is an advantage over general purpose archi-
tecture description languages, which do not support security labels and checks
on both component ports and hardware modules. Additionally, the underlying
platform enforces the MLS policy at runtime, ensuring that the label constraints
that were checked statically in the modeling language are also enforced during
execution.

4.3.3. Network resource analysis
DREMS ML includes a network resource analysis tool that allows a user to

validate whether the expected network usage requirements of their application
will be satisfied at run-time by the platform. Users specify the network resources
required by component ports and provided by node network links. As shown in
Figure 21, the network requirements of a component port are specified as time
intervals of the form time, bandwidth, latency, where the time value is relative

26

Figure 21 A component implementation’s port and network profile.

to the start of a system period. In the case of an orbiting cluster of satellites, this
period would be the orbital period of the satellites and the specified bandwidth
for a given interval would be constant until the next specified interval. Similarly,
the latency is specified on component ports as the maximum allowable latency
for port data transmission during that interval. A sequence of such network
resource requirement intervals is defined as a network profile.

The developer can apply the same network profile specification to the nodes’
network. As shown in Figure 22 and Figure 23, on each network link, the
developer specifies the network profile, for which the bandwidth specification
indicates the minimum provided bandwidth over the interval, and the latency
specification represents the maximum transmission latency incurred by traffic
on that link. When the entire model is interpreted, the components’ node
associations are resolved and each node’s components’ profiles are aggregated.
Using the methods described in [21], we can convolve these aggregate profiles

27

Figure 22 A node’s network link and associated network profile attribute.

Figure 23 Zoomed-in view of the network profile in Figure 22.

with the node’s link profile to determine (1) if the system can satisfy the network
quality of service requirements of all the applications, (2) what are the remaining
network resources, and (3) what network quality of service the applications will
receive. All of this information is then reported back to the user in the form of
a generated log file.

4.3.4. Scheduling analysis
Scheduling analysis is used to ensure that a valid schedule can be computed

from the individual temporal paritions to which Actors are assigned. Recall
that Actors are assigned to temporal partitions, each of which has a period
and duration. The duration tells how long the Actor should execute, and the
period tells how often the execution is repeated. For example, a partition with
a period of 4ms and a duration of 2ms would execute for a total of 2ms every
4ms. Because an Application can consist of many Actors assigned to temporal
partitions of different periods and durations, determining a repeating schedule
for all temporal partitions that satisfies the period and duration requirements
of each is a non-trivial task.

28

The scheduling analysis included with the modeling language computes a
valid schedule by formulating a constraint satisfaction problem from the peri-
odicity and duration requirements of all of the temporal partitions and provid-
ing this constraint satisfaction problem as input to an SMT solver [22]. If the
solver finds a solution to this constraint problem, then this solution is parsed
and stored inside the model. If a solution to the problem does not exist, the
user is informed that the scheduling requirements of their temporal partitions
cannot be satisfied.

4.3.5. Timing analysis of Component Operations
Components in DREMS communicate by requesting operations exposed

through component interfaces. Component operation requests are enqueued
into a component message queue from which operations are serviced one at
a time. Each component thread is scheduled in a temporally partitioned OS
scheduling scheme. As a real-time system, the order in which component op-
erations execute is important. Each operation has a deadline on its execution
time. Schedulability analysis at design-time ensures that every component in a
deployed application completes its operations without violating deadlines.

In this regard, we have devised a Colored Petri Net-based [23] approach to
modeling and analyzing component-based applications that we have integrated
into DREMS ML. We assume a well-defined set of interaction semantics (such as
the ones used by DREMS ML). DREMS ML captures the structural semantics
of component-based applications in that a developer specifies properties such
as (1) what a component is, (2) what the component ports are, (3) where each
component is deployed, (4) what constitutes a process assembly. The business
logic of each component operation is then written by an application developer
after the modeling tools generate the necessary intermediate skeleton code for
the various component operations. Our primary goal for this analysis was to be
able to model these component operations within DREMS ML. In essence, the
behavioral semantics of the component are captured by modeling the individual
behaviors of the operations that each component would execute. Therefore,
when a component A requests a remote operation on another component B, the
request is enqueued on component B’s message queue. When the dispatching
thread of component B is scheduled, this operation is dequeued from the message
queue and component B is triggered into execution. When component B is
executed, it simply executes the sequence of steps written inside the business
logic of the operation. Therefore, by modeling this operational behavior and
the structure of the application, we have sufficient information to simulate the
hierarchical scheduling nature of DREMS.

Figure 24 shows two business logic elements connected to a Sensor com-
ponent. One of the elements connects to a component timer and contains the
behavior of the timer-triggered callback executed by the Sensor. Figure 25
shows the on_timer operation corresponding to the on_timer business logic
callback function written by a developer. This operation has a priority of 60
and a deadline of 10 ms. Once the timer triggers, the Sensor component uses
the Notification_Publisher port to publish on the Notification topic taking 8

29

Figure 24 Component connected to two business logic elements

Figure 25 The business logic of the timer operation in Figure 24

ms. This publish operation occurs three times within the LOOP. This is a sim-
ple grammar-based representation of the business logic of the timer operation
written by a developer.

Using model interpreters, this model is translated into a colored petri net-
based analysis model. The analysis model captures the structural and behavioral
properties of all applications within the DREMS ML model. The places in this
CPN model contain tokens representing the state of system variables such as
the component message queue, component thread states, offsets on component
timers, system timer clock and component interactions. The transitions in this
CPN model capture the nondeterministic set of events that can transpire in
the simulation. This includes discrete events such as thread scheduling, thread
blocking, operation requests and timer expiry. Using state space analysis tech-
niques provided by the CPN Tools [24] tool suite, a bounded state space of
operational behaviors is generated. User-defined queries can be generated from
DREMS ML to verify system-level properties such as lack of deadline violations,
deadlocks and bounded worst-case response times. This CPN-based analysis is

30

described more fully in [25].

5. Evaluation

In this section, we will provide an evaluation of the DREMS Modeling Lan-
guage through exploration of a simple but representative example from the F6
domain. This evaluation will be conducted along the development phases out-
lined in Section 4.

The Satellite Navigation Distribution Service (SATNAV) is a component
application intended to demonstrate the salient details of the modeling language.
SATNAV is intended to be a sub-application of, for example, a larger component
application that calculates flight plans for the satellite to maintain cluster flight.
This example has three key participants:

• Distributor: A component that collects readings from various sensors on
the satellite bus that indicate the current position and velocity of the satel-
lite. These readings are collated and published to interested consumers
(receivers).

• Continuous Receiver: A component that is interested in all sensor up-
dates published by the Distributor, and is thus provided with the full
information read from the position sensors. This component consumes
relatively more bandwidth than the On Demand Receiver (described be-
low). Due to the increased bandwidth requirements, this component is
most appropriately co-located on the same node as the distributor.

• On Demand Receiver: A component that may only be sporadically
interested in new updates from the Distributor. This is intended to reduce
the bandwidth requirements and thus only consumes the identifiers of
sensors that have new data. When the component detects an update on
a sensor it is interested in, it may call back on the distributor to obtain
the full information.

The following subsections will describe the modeling and development of a
system using this component application. The examples were created using the
Generic Modeling Environment (GME)[26] configured to support DREMS ML.
Note that in GME a model can have multiple aspects: visual views of the model
that visualize selected subsets of the model elements.

5.1. Component development
This section will describe the modeling language and implementation process

from the perspective of the component developer through the following phases:
data type and interface definition, topic definition, component and assembly
definition, and finally component implementation.

31

Figure 26 SATNAV data types

Figure 27 SATNAV interfaces and exceptions

5.1.1. Data types and interface definitions
SATNAV has two key data types that are essential to its operation: a data

type describing the full readings obtained from a sensor, and a data type that
simply contains an identifier for a particular sensor. These are modelled by
inserting a struct element into the model, shown in Figure 26, showing two
structs: Identity, intended to identify a single sensor, and Position, intended to
describe a reading from a single sensor. This element is populated through an
IDL editor in which these structures may be described. The //@key comment
following the name field of the Position structure indicates to the modeling tool
that this field should be considered the key when constructing a stateful topic.

The interface used by the On Demand Receiver component to query the full
update from a particular sensor, in addition to an exception that may be thrown
if an invalid sensor identifier is passed to the operation, is also described in this
location using a similar process: an exception and interface element is inserted
into the model, and IDL defined using a similar process as before. This interface
is named PositionServer.

32

Figure 28 Component assemblies

5.1.2. Component implementation
The component implementation model describes the concrete implementa-

tions of the component definitions described earlier: this will result in the gener-
ation of skeleton code that the component developer may populate with business
logic. This model is also used to associate artifacts, shared libraries and other
configuration files required by the component implementations.

5.1.3. Component and assembly definitions
As described earlier, this example contains three components: a Distributor,

a ContinuousReceiver, and a OnDemandReceiver. In the interest of brevity, we
will describe modeling only the Distributor component; the other two are simi-
larly modeled. We begin by inserting a component definition into the model and
opening it. This component has three ports: a stateful publisher that uses the
SatFullInfo topic defined earlier, a stateless publisher that uses the SatName
topic, and an asynchronous RMI port that provides the SatPosition interface.
A port representing each of these is placed into the component definition model
and populated with the respective data type.

Once all three component definitions have been modeled, we create an assem-
bly: a LocalAssembly that contains the Distributor and a ContinuousReceiver.
The OnDemandReceiver will not be part of an assembly and will be modeled
as part of the deployment later. This is accomplished by creating an assembly
model, and inside inserting the two component definitions defined earlier that
are intended to be part of this assembly. As shown in Figure 28, the ports
defined inside these component definition models are now exposed on the com-
ponents inside the assembly, allowing us to establish connections amongst the
components.

In the Interaction aspect of the assembly model, we define connections be-
tween RMI ports of components; in this case, the SatPosition ports. Since the
Distributor component, which provides this interface, and the OnDemandReceiver,
which requires it, are not in the same assembly, we cannot directly establish this
connection. Instead, we create external port on the LocalAssembly and delegate
it to the PositionServer port on the Distributor, as shown in Figure 28.

A different aspect, ’Topics and Domains’, is used to establish mapping be-

33

Figure 29 Application Deployment Aspect

tween publish/subscribe ports and topics. To accomplish this, we populate the
assembly with two Virtual Topics, elements that are later assigned to concrete
topics in the deployment model. A Virtual Topic is similar to a template param-
eter that has to be bound to a specific topic later. One Virtual Topic is used to
represent the SensorFullInfo topic, and a connection is drawn from the stateful
publish and subscribe ports on the Distributor and ContinuousReceiver ref-
erences, respectively. Another Virtual Topic is used to represent the SensorName
topic, and connections drawn between the stateless publication port on the
Distributor. This is shown in Figure 28.

5.2. Application development
In this section, we describe the process of modeling an application, which is

divided into three aspects:

• Deployment: Assemblies and components are instantiated, concrete com-
ponent implementations are assigned, and components are assigned to ac-
tors.

• Interactions: Connections are established between external ports of com-
ponents and assemblies.

• Topics and Domains: Concrete topics are assigned to Virtual Topics
and other publish/subscribe ports.

5.2.1. Deployment aspect
In the Deployment aspect of the Application model, we accomplish two

primary tasks. First, we associate concrete component implementations with
the assemblies and component definitions that we wish to deploy. Second, we
associate components and assemblies with containers (logical groupings of com-
ponents) and actors.

We begin by inserting the assemblies and components that we wish to deploy
into the model. In this example, we wish to deploy the LocalAssembly (contain-
ing the Distributor and ContinuousReceiver) and the OnDemandReceiver
(which is not part of any assembly). Next, we insert implementations (mod-
eled in Section 5.1.2). Component instances inside the assembly are exposed as

34

Figure 30 Application Interaction aspect

ports; we assign implementations by establishing a connection between the port
and the desired implementation; for components deployed without an assembly,
we establish a connection between the component and the desired implementa-
tion, as shown on the right hand side of Figure 29. Containers are assigned in
a similar fashion, by creating a connection between the component (or port of
an assembly) and the desired container. Containers are assigned to Actors in a
similar fashion. This is shown on the left hand side of Figure 29.

5.2.2. Interactions aspect
The Interactions aspect of the Application model is shown in Figure 30. This

aspect shows the components inserted into the application in Section 5.2.1, but
hides the component implementations, containers, and actors. In this view, we
create a connection between the PositionServer provided by the LocalAssem-
bly and required by the OnDemandReceiver. The interactions aspect may also
be used to expose ports to other applications in a manner similar to assemblies,
described in Section 5.1.3; that capability, however, is outside the scope of this
evaluation.

5.2.3. Topics aspect
The Topics aspect of the Application model is shown in Figure 31. This as-

pect shows pub/sub ports on components, and Virtual Topics of assemblies. In
this view, we insert two concrete topics: FullInfo and SensorName. These con-
crete topics are associated with the subscriber port on the OnDemandReceiver
and the virtual topics exposed by the LocalAssembly.

5.3. System integration
5.3.1. Software Packaging

In the software packaging model, the system integrator specifies the tem-
poral partitions available in the system, assigns actors to temporal partitions
(and by extension the components and containers within those actors), and may
establish connections amongst external ports provided by the applications that
are instantiated. This is accomplished with three aspects: Scheduling, which

35

Figure 31 Application Topics aspect

Figure 32 Software Packaging Scheduling aspect

handles specification and assignment of actors to schedules; Interactions, which
handles connections between applications; and Topics, which allows further re-
finement of the publish/subscribe configuration of the system. The Interactions
and Topics aspects are similar in function to those described in Section 5.2.2
and Section 5.2.3, and will not be described here.

In the Scheduling aspect, shown in Figure 32, partition schedules are mod-
eled and assigned to actors. Software applications are placed in this model,
and the actors contained within those application models are exposed as ports.
Actors are assigned to schedules by creating a connection between the actor and
the desired schedule.

5.3.2. Cluster configuration
In the Cluster Configuration model, the system integrator specifies the hard-

ware configuration of the cluster: which hardware nodes are available, their
configuration (network interfaces, available devices, etc.). Multiple cluster con-
figuration models may be provided to represent how the cluster configuration is
expected to evolve over time as satellites join and leave the cluster.

36

5.3.3. Software configuration
In the Software Configuration model, the system integrator specifies how

software packages map to available hardware in cluster configuration models.
Software packages are placed in this model; partition schedules present in the
software packages are exposed as ports, which may be connected to cluster
configurations present in this model. By mapping the software packages to
one cluster configuration, it is possible to show how the software configuration
changes when the cluster configuration is changed.

6. Related work

This section describes related work in the field of architecture description
languages for real-time, embedded systems. We classify the work along two
dimensions: those that pertain to standards, technologies and tools, and those
that are related to research efforts that describe architecture description lan-
guages or use the standard technologies.

6.1. Standards and Technologies for Architecture Description Languages for
Embedded Systems

The Architecture Analysis and Design Language (AADL) [5, 6] is a standard
developed by the Society of Automotive Engineers. Originally developed for
aerospace systems, the standard is applicable to the model-based specification
and analysis of embedded real-time systems and systems of systems. It has
comprehensive support for modeling a variety of component types and their
interactions. Component abstractions in AADL consist of software components,
computational hardware, and the overall system. Different interaction patterns
between components are supported in AADL. Using AADL it is possible to
conduct analysis for a variety of critical system properties, such as performance,
schedulability and reliability.

Despite the comprehensive support offered by AADL for model-based specifi-
cation and analysis of embedded real-time systems, for the system F6 we decided
to address the problem by developing a completely new architecture design lan-
guage. This decision stemmed from our preference for domain-specificity over
generality as explained below. For instance, AADL aims to support the needs
of a wide range of embedded real-time systems, making it a general-purpose
architectural description language. Consequently, a component in AADL can
be of different types including a process, thread, and thread group among other
things. In contrast, in the IAP, a component has precise semantics, wherein an
application developer understands a component to be unit of encapsulation for
application business logic. In AADL it is possible to define one component type,
such as a thread, and map it to the hardware resources to realize execution se-
mantics. On the other hand, in the IAP, components cannot be directly mapped
to hardware resources. They must first be composed together into actors, which
in turn are allocated to the resources, and a collection of actors represents an
application.

37

In the IAP, we support a variety of interaction patterns among components
that may use different interaction paradigms such as call-return and publish/-
subscribe, provide first class support for multiple levels of security and support
an elaborate fault management scheme. These patterns can be easily extended
with new interactions, if required. Additionally, the ports on the components
support “programming by contract” with the help of pre- and post-condition
checking.

Also note that the concept of an actor in IAP is slightly different from that
of a traditional process. Moreover, scheduling of activities at the component-
level and the actor-level occur at two different levels in our IAP. For example,
although actors can support multiple threads, the run-time framework allows
only one thread to execute at any given time in one component, i.e., at the
component-level, the IAP enforces a per-component, one-thread-at-a-time ap-
proach to the scheduling of threads in each component. This decision was
made to relieve application developers from having to use complex synchro-
nization primitives and to avoid race conditions. These activities are in turn
mapped to a partition at the actor-level and scheduled on the hardware using
an ARINC653-style partition-based scheduling semantics.

Many of these key distinguishing features and semantics of the IAP are hard
to realize with relative ease in AADL without substantial additional effort. We
believe that although it is possible to extend as well as constrain generic model-
ing capabilities using techniques, such as stereotypes as used in UML or annex
capabilities in AADL, we decided against this approach due to the additional
efforts required in this process since such additional efforts and extensions may
often incorporate ad hoc decisions, which ultimately may hinder the correct-by-
construction realization of IAP applications. Therefore, our approach is based
on using a domain-specific modeling language.

Other general-purpose approaches similar to AADL are OMG’s SysML and
OMG’s MARTE profile for UML. SysML [7] is a general-purpose modeling lan-
guage for systems engineering. SysML leverages a subset of the Unified Modeling
Language (UML) while extending it with capabilities needed to model complex
systems engineering problems, which is called the SysML profile for UML. The
extensions enable engineering analysis. The Modeling and Analysis of Real-time
and Embedded (MARTE) systems [9] is a UML profile to extend UML to sup-
port the model-driven development of real-time and embedded systems. Similar
arguments we made on domain-specificity versus generality apply in the context
of these standards, too, which made us design DREMS ML.

By no means do we discount the strengths of these standards, and our fu-
ture work may involve automated transformations between DREMS ML and
these standards so that we can leverage the extensive tool support and analysis
capabilities that are commonly available with tools based on these standards.
We believe such transformations will not be complicated since there are some
similarities between DREMS ML and the standards. For example, hierarchical
decomposition, and packaging are some common features available across all
these technologies.

38

6.2. Related Research on Architecture Description Languages for Embedded Sys-
tems

In [27], the authors extend SysML with concepts borrowed from AADL by
proposing the ExSAM profile. The key benefit derived from this exercise was
the ability to model various kinds of system engineering concepts while at the
same time be able to leverage the large set of existing AADL-based analysis
tools. In effect their approach strengthens our argument towards building a
domain-specific DREMS ML. Like the ExSAM project, interpreters in DREMS
ML can transform the artifacts to AADL, wherever possible, to leverage the
analysis tools in AADL.

The work described in [28] illustrates extensions to AADL using its Error
Model annex feature to model and reason about errors including modeling of
probalistic faults, how they propagate, recovery from failures, and degraded
modes of operation ensuing from the faults. The resulting dialect of AADL
developed by the authors is called SLIM (System-Level Integrated Modeling).
While the area of fault modeling and reasoning as espoused and adopted in this
work is very useful to our work in DREMS ML, this work also demonstrates the
need for extensions to AADL to attain certain domain-specific objectives, which
are intuitive to the system engineers. To that end our philosophy if DREMS
ML is aligned with this work. In essence, DREMS ML is a form of architectural
description language.

The EAST-ADL2 [29] project defines an architecture description language
tailored towards automotive embedded systems. In particular, its goals are to
capture in one place all the artefacts of an embedded systems including require-
ments, features, behaviors, and software and hardware components. It also
includes dependencies stemming from decisions that must be made in the con-
text of various refinements, allocation decisions, composition and communica-
tion. EAST-ADL2 has been developed to work in concert with AUTOSAR [30]
to provide a complete and effective development environment for automative
systems starting all the way from conception all the way to implementation.
EAST-ADL2 is a domain-specific language built using a UML2 profile. EAST-
ADL2 demonstrates an effort that does not use AADL, however, still supports an
architectural description language for automative systems. Like EAST-ADL2,
DREMS ML is also a domain-specific language built using a metamodeling
language provided by our GME tool that is based largely on UML. Like EAST-
ADL2, DREMS ML also works in concert with the IAP runtime architecture,
which is used to provide a “cluster-as-a-service” capability to distributed, real-
time and embedded systems.

A survey on architectural description languages is described in [31]. A key
motivation for this work was to understand the best practices in ADLs. Among
the key findings, the authors recommend that any ADL have better support
for communication among different stakeholders. In tune with these recommen-
dations, DREMS ML has support for multiple different developers to use the
language to build the system as a series of enhancements. Another key recom-
mendation is that any ADL should be simple, pragmatic, and support collabo-

39

ration instead of been heavy-weight. The design of DREMS ML is aligned with
this philosophy.

Although DREMS is built on OMG standards, the Fractal Initiative [32]
and ProCom [33] aim at a similar language-independent component specifica-
tion framework. The modeling language itself is tied to our component model,
but the philosophy of the component specification chain (definition-instance-
implementation) can simplify the design over these other component models as
well.

With regard to analysis for architecture description languages, there are a
number of formal tools that perform behavioral analysis on architecture de-
scription languages, such as [34, 35, 36, 37]. DREMS ML includes analysis for
syntactic and well-formedness checks (Section 4.3.1), security analysis (Section
4.3.2), resource usage analysis (Section 4.3.3) and scheduling analysis (Section
4.3.4).

7. Conclusions

We introduced a novel, wide spectrum architecture design language for the
modeling, development, integration, verification, deployment and maintenance
of component-based, distributed real-time embedded applications. The salient
features of the language are: (1) integrated domain-specific modeling languages
to support all developmental activities, (2) a software component model with
precisely defined execution semantics that allows the compositional construction
of complex applications, (3) reliance on industry standards for a wide range of
component communication and interaction patterns, (4) automatic generation
of all implementation and deployment artifacts (except the component business
logic code) from a single source, (5) support for complex system integration
activities, including verification and testing. The language is defined with the
help of a metamodel and a prototype implementation is in use by flight software
developers today.

Further development work on the language will include: (1) models for sup-
porting fault management in the deployed system, (2) models for quality of
service properties (requirements and capabilities), (3) integration with verifica-
tion and validation tools. Further application domains (beyond System F6) will
be also considered, where complex distributed real-time applications are needed.

References

[1] T. Levendovszky, A. Dubey, W. Otte, D. Balasubramanian, A. Coglio,
S. Nyako, W. Emfinger, P. Kumar, A. Gokhale, G. Karsai, Distributed
real-time managed systems: A model-driven distributed secure informa-
tion architecture platform for managed embedded systems, Software, IEEE
31 (2) (2014) 62–69.

40

[2] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. Otte, J. Parsons,
C. Szabo, A. Coglio, E. Smith, P. Bose, A Software Platform for Fraction-
ated Spacecraft, in: Proceedings of the IEEE Aerospace Conference, 2012,
IEEE, Big Sky, MT, USA, 2012, pp. 1–20.

[3] W. R. Otte, A. Dubey, S. Pradhan, P. Patil, A. Gokhale, G. Karsai,
J. Willemsen, F6COM: A Component Model for Resource-Constrained and
Dynamic Space-Based Computing Environment, in: Proceedings of the
16th IEEE International Symposium on Object-oriented Real-time Dis-
tributed Computing (ISORC ’13), Paderborn, Germany, 2013.

[4] I. Coutts, J. Edwards, Model-driven distributed systems, Concurrency,
IEEE 5 (3) (1997) 55–63. doi:10.1109/4434.605919.

[5] P. H. Feiler, D. P. Gluch, J. J. Hudak, The Architecture Analysis & De-
sign Language (AADL): An Introduction, Tech. Rep. ADA455842, DTIC
Document (2006).

[6] P. Feiler, B. A. Lewis, S. Vestal, The SAE Architecture Analysis & Design
Language (AADL) A Standard for Engineering Performance Critical Sys-
tems, in: Computer Aided Control System Design, 2006, pp. 1206–1211.
doi:10.1109/CACSD-CCA-ISIC.2006.4776814.

[7] Object Management Group, Systems Modeling Language (SysML), Ver-
sion 1.3, Object Management Group, OMG Document formal/2012-06-01
Edition (Jun. 2012).

[8] M. Hause, et al., The SysML Modelling Language, in: Fifteenth European
Systems Engineering Conference, Vol. 9, 2006.

[9] Object Management Group, UML Profile for MARTE: Modeling And Anal-
ysis of Real-Time Embedded Systems, Version 1.1, Object Management
Group, OMG Document formal/2011-06-02 Edition (Jun. 2011).

[10] J. Sztipanovits, G. Karsai, Model-integrated computing, Computer 30 (4)
(1997) 110 –111. doi:10.1109/2.585163.

[11] A. Dubey, A. Gokhale, G. Karsai, W. Otte, J. Willemsen, A Model-Driven
Software Component Framework for Fractionated Spacecraft, in: Proceed-
ings of the 5th International Conference on Spacecraft Formation Flying
Missions and Technologies (SFFMT), IEEE, Munich, Germany, 2013.

[12] Object Management Group, DDS for Lightweight CCM Version 1.0 Beta 2,
Object Management Group, OMG Document ptc/2009-10-25 Edition (Oct.
2009).

[13] W. R. Otte, A. Gokhale, D. C. Schmidt, J. Willemsen, Infrastructure for
Component-based DDS Application Development, in: Proceedings of the
10th ACM international conference on Generative programming and com-
ponent engineering, GPCE ’11, ACM, New York, NY, USA, 2011, pp.

41

53–62. doi:http://doi.acm.org/10.1145/2047862.2047872.
URL http://doi.acm.org/10.1145/2047862.2047872

[14] ARINC Incorporated, Annapolis, Maryland, USA, Document No. 653:
Avionics Application Software Standard Inteface (Draft 15) (Jan. 1997).

[15] F. Cassez, K. Larsen, The impressive power of stopwatches, in:
C. Palamidessi (Ed.), CONCUR 2000 - Concurrency Theory, Vol. 1877
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2000,
pp. 138–152.

[16] I. Ripoll, R. Ballester-Ripoll, Period selection for minimal hyperperiod in
periodic task systems, IEEE Transactions on Computers 62 (9) (2013)
1813–1822. doi:http://doi.ieeecomputersociety.org/10.1109/TC.2012.243.

[17] A. Lédeczi, A. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom, J. Sprin-
kle, G. Karsai, Composing domain-specific design environments, Computer
34 (11) (2001) 44–51. doi:http://dx.doi.org/10.1109/2.963443.

[18] J. Warmer, A. Kleppe, The Object Constraint Language: Getting Your
Models Ready for MDA, 2nd Edition, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[19] D. E. Bell, L. J. LaPadula, Secure computer systems: Mathematical foun-
dations, Technical Report 2547, Volume I, MITRE (1973).

[20] G. Birkhoff, Lattice Theory, 3rd Edition, Colloquium Publications, Amer-
ican Mathematical Society, 1967.

[21] W. Emfinger, G. Karsai, A. Dubey, A. Gokhale, Analysis, verifica-
tion, and management toolsuite for cyber-physical applications on time-
varying networks, in: Proceedings of the 4th ACM SIGBED Interna-
tional Workshop on Design, Modeling, and Evaluation of Cyber-Physical
Systems, CyPhy ’14, ACM, New York, NY, USA, 2014, pp. 44–47.
doi:10.1145/2593458.2593459.
URL http://doi.acm.org/10.1145/2593458.2593459

[22] L. M. de Moura, N. Bjørner, Z3: An efficient smt solver, in: TACAS, 2008,
pp. 337–340.

[23] K. Jensen, L. M. Kristensen, Coloured Petri Nets - Modelling and Valida-
tion of Concurrent Systems, Springer, 2009.

[24] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S.
Stissing, M. Westergaard, S. Christensen, K. Jensen, Cpn tools for edit-
ing, simulating, and analysing coloured petri nets, in: Proceedings of the
24th International Conference on Applications and Theory of Petri Nets,
ICATPN’03, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 450–462.
URL http://dl.acm.org/citation.cfm?id=1760066.1760097

42

[25] Colored Petri Net-based Modeling and Formal Analysis of Component-
based Applications.
URL http://ceur-ws.org/Vol-1235/paper-10.pdf

[26] The ISIS Model Integrated Computing (MIC) Toolsuite.
URL http://www.escherinstitute.org/Plone/tools/suites/mic

[27] R. Behjati, T. Yue, S. Nejati, L. Briand, B. Selic, Extending sysml with aadl
concepts for comprehensive system architecture modeling, in: R. France,
J. Kuester, B. Bordbar, R. Paige (Eds.), Modelling Foundations and Ap-
plications, Vol. 6698 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2011, pp. 236–252. doi:10.1007/978-3-642-21470-7_17.
URL http://dx.doi.org/10.1007/978-3-642-21470-7_17

[28] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll,
M. Roveri, Safety, dependability and performance analysis of ex-
tended aadl models, The Computer Journal 54 (5) (2011) 754–775.
arXiv:http://comjnl.oxfordjournals.org/content/54/5/754.full.pdf+html,
doi:10.1093/comjnl/bxq024.
URL http://comjnl.oxfordjournals.org/content/54/5/754.
abstract

[29] P. Cuenot, P. Frey, R. Johansson, H. Lönn, Y. Papadopoulos, M.-O. Reiser,
A. Sandberg, D. Servat, R. T. Kolagari, M. Törngren, et al., The EAST-
ADL Architecture Description Language for Automotive Embedded Soft-
ware, in: H. Geise, G. Karsai, E. Lee, B. Rumpe, B. Schatz (Eds.), Model-
Based Engineering of Embedded Real-Time Systems, LNCS 6100, Springer,
2011, pp. 297–307.

[30] Autosar GbR, AUTomotive Open System ARchitecture, http://www.
autosar.org/.
URL http://www.autosar.org/

[31] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang, What Indus-
try Needs from Architectural Languages: A Survey, Software Engineering,
IEEE Transactions on 39 (6) (2013) 869–891. doi:10.1109/TSE.2012.74.

[32] G. Blair, T. Coupaye, J.-B. Stefani, Component-based architecture: the
fractal initiative, Annals of Telecommunications 64 (1) (2009) 1–4.

[33] T. Bureš, J. Carlson, I. Crnkovic, S. Sentilles, A. Vulgarakis, Procom–
the progress component model reference manual, Mälardalen University,
Västerås, Sweden.

[34] J. Magee, J. Kramer, D. Giannakopoulou, Behaviour analysis of software
architectures, in: Software Architecture, Springer, 1999, pp. 35–49.

[35] X. He, J. Ding, Y. Deng, Model checking software architecture specifi-
cations in sam, in: Proceedings of the 14th international conference on
Software engineering and knowledge engineering, ACM, 2002, pp. 271–274.

43

[36] P. Pelliccione, P. Inverardi, H. Muccini, Charmy: A framework for design-
ing and verifying architectural specifications, Software Engineering, IEEE
Transactions on 35 (3) (2009) 325–346.

[37] M. Y. Chkouri, A. Robert, M. Bozga, J. Sifakis, Translating aadl into bip-
application to the verification of real-time systems, in: Models in Software
Engineering, Springer, 2009, pp. 5–19.

44

