
Model-based IT Change Management for Large
System Definitions with State-related Dependencies

Takayuki Kuroda
NEC Corporation

1753 Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa, Japan
Email: t-kuroda@ax.jp.nec.com

Aniruddha Gokhale
ISIS, Vanderbilt University
Nashville, TN 37235, USA

Email: a.gokhale@vanderbilt.edu

Abstract—The rapid evolution and changes in the number and
variety of information technology (IT) resource requires more
efficient IT management schemes. Model-based management of
IT resources is a promising approach that offers administrators
an intuitive and declarative way to define a change requirement
by using a “desired state” model, which alleviates the need
to require deep knowledge about the operational logic of the
resources. However, prevalent management tools mainly provide
provisioning software applications from scratch only, and are
not applicable to the change management of already deployed
systems, particularly those that consist of hardware components.
A change process in already deployed systems requires some
components to step through a few temporary states before they
reach their desired states, however, most tools seldom assume
such temporary states. This paper addresses the above concerns
and describes a model-based management scheme for changing
IT systems including the hardware resources. Our approach
automatically generates the required tasks to apply changes from
a desired state model with state-related dependencies between the
resources. The contributions of the paper include: (1) a simple
base methodology of task planning for system change with our
desired state model, (2) a component-based system model to define
desired states in large-scale systems, and (3) enhancement of
task planning scalability for a number of managed resources.
Our approach provides an easier approach for administrators to
define their system by offering a library of reusable, pre-defined
models. Our approach is described in the context of a case study.
We present specifications to define the system changes efficiently
and validate the scalability of our approach by measuring the
processing time of task planning.

I. INTRODUCTION

Emerging information technologies (IT), such as Cloud
Computing, BigData and Internet of Things, require a large
number and variety of IT resources, which often change
over time. Provisioning these resources in the face of fre-
quent changes and upgrades call for an effective manage-
ment scheme. There is a trend towards using model-based
approaches to IT resource management, particularly for Cloud
Computing infrastructures [1], [2], [3], [4]. By using such
tools, an administrator of IT resources can define tasks to
update the types and quantities of resources in the form of
“desired state” model in contrast to a workflow.

The “desired state” model describes the states that the
resources should be in as a result of performing the update
actions. It offers an intuitive and declarative way to define
change requests without requiring deep knowledge about the
operational logic of internal resource models [5], [6]. It also
offers higher reusability of the definitions and an efficient way

to define change requests by combining pre-defined models
that may be available as libraries. Expressing the change
request as a desired state model instead of a workflow implies
that the administrator does not care about the actual process
to realize it thereby leaving it up to the tool to adopt a
desired process. Therefore, the model is easier to reuse as
a component rather than a hard-coded workflow because the
tools can generate a workflow from the model components,
which is appropriate for the particular combination of the
model components.

Despite the prevalence of model-based approaches to ad-
dress the challenges of change management for IT resources,
existing tools (e.g., [1], [2]) incur several limitations. For
example, the tools assume that no more than a single operation
is needed to get a resource to its desired state [6]. Such
an approach is applicable only when deploying applications
for the first time when nothing is provisioned prior to that,
and hence software resources can just be created or simply
overwritten. However, this approach has significant limitations
in the change management of an existing system. Updating
a system from its current state to the desired state will need
several steps to get each individual resource to its desired state
even for a software system [7]. We believe this problem will
be further amplified when we also consider hardware resources
since handling hardware is not as simple as handling software.

To elaborate, consider the case of change management in
software IT resources where a middleware package is to be
installed and the package depends on a temporary file. In this
case, the temporary file would be created first and the package
would be installed next. Subsequently, if it is desired that the
temporary file be cleaned up, then existing tools cannot express
such a requirement in a convenient manner. In this case, the file
should have “absent” as its desired state, and the installation of
the middleware package should depend on a “present” state of
the file. This example demonstrates the challenges in change
management in the context of just software resources. Now
consider an example that also includes hardware where the
change management involves adding extra memory to a server.
For the memory chip to be added to the server, first the top (i.e.,
casing) of the server should be opened, then the chip should
be added to the server, and finally the top would be closed. In
the change management of IT resources, such temporary and
intermediate steps need to be generated correctly.

In our previous work [8], we proposed a model-based
task generation scheme for hardware provisioning which can
generate all the tasks in the right order to deploy a system. Our

prior work demonstrated a model-driven approach that adopted
the concept of a “desired state” and generative techniques to
automate the process of task generation. However, our prior
work did not address the issue of change management, which
is a substantially harder problem to resolve. In this paper we
leverage and extend our earlier work by presenting a model-
based IT change management scheme that can generate tasks
that can not only deploy a system from scratch but also make
changes to an already deployed system.

Sebastian et al. [9] have shown an IT change planning
scheme based on the desired state model for large number
of managed resources. They generate change tasks from the
model based on state transition system and state-related depen-
dencies. Our approach adopts the same idea where we use a
model to express resources as a kind of state transition system,
and let the resources be related to each other by associating
a dependency on particular state of the resources. The key
contributions of our work that distinguishes it from [9] are:

• Our approach presents (1) a new and simpler base
methodology of task planning with our desired state
model and state-related dependencies, (2) component-
based system model to define desired states of large
scale systems, and (3) further improvements enhanc-
ing scalability of task planning for a number of
managed resources.

• We provide an administrator an easy and efficient way
to define large scale systems by reusing pre-defined
components. The generated change tasks are in the
form of partial order tasks.

• We present a simple task planning algorithm which is
further enhanced for improved scalability.

• Through a case study of system change, we present
the practical specifications to define system change
requirements and the process to generate the tasks
in detail. Additionally we show the effectiveness to
define a large system by our component-model and
feasibility of the task planning in terms of its calcu-
lation time.

Although we present examples of hardware resource mod-
els as a case study in the rest of this paper, our methodology
is not limited to management of hardware resources alone.

The rest of this paper is organized as follows: We present
the fundamental methodology, model specification for sys-
tem definition and scalability improvement of our scheme
in Section II; We evaluate our approach in the context of
a case study and discuss additional topics and future work
in Section III; Related research efforts are compared with
our approach in Section IV; and finally we offer concluding
remarks in Section V.

II. MODEL-BASED CHANGE MANAGEMENT

This section delves into the details of the model-based
change management approach we have developed. First, we
present the base methodology of task planning. Next, we
present a component-based model to define large-scale systems
by an administrator. Finally, we present some improvements
to enhance the methodology of task planning.

A. Formal Description of State Model and Task Generation

The key functionality of our task generation scheme is
obtained from a State Model and a Task Generator. The state
model represents an internal expression of a system that is
to be managed. The task generator generates tasks that are
responsible for changing the states of all the resources into the
desired states according to the state model. In the following
we provide a formal definition of these concepts and illustrate
them with examples. A formal model is important since it
helps in analytical reasoning and verification for correctness.
This capability is needed in our system since we allow an
administrator to model their system including the change
management through composition.

In our system model we define a resource as an entity that
serves some purpose for the user, e.g., a server. Each resource
is assumed to be made up of individual parts or units, which
on their own are not useful to user, e.g., the top or casing of a
server. However, to represent the entire state of a resource, it is
important to understand the state of each of its units, e.g., the
top of a server may be open or closed. Thus, the state model
of a resource is a combination of the states of its elements.
This aspect is captured in our formal model described below.

Let E = {e1, ..., en} be a set of State Elements of resources
which compose the system to be managed. A state element
represents a unit in a resource, and is assumed to hold a state.
Formally, a state element e ∈ E is a 5-tuple (id, S, cs, ds, T)
where id(e)1 is the unique id of e, S(e) = {s1, ..., sn} the
set of States which the state element can be in, cs(e) ∈ S(e)
the Current State of e, ds(e) ∈ S(e) the Desired State of e,
and T (e) = {t1, ..., tn} the set of Transitions which shift the
current state of the element from one state to another in s ∈
S(e). A transition t ∈ T (e) is a 3-tuple (ssrc, sdest, D) where
ssrc ∈ S(e) is the source state, sdest ∈ S(e) is the destination
state, and D(t) = {d1, ..., dn} is a set of Dependencies needed
to be satisfied for executing the transition t. A dependency
d ∈ D(t) is a tuple (t, s) where the dependency implies that a
transition t depends on a state s. Note that a transition t ∈ T (e)
may have dependencies on the states of other state elements
{s | s 6∈ S(e)}.

(a) State Model. (b) State Graph.

Fig. 1: State Model and State Graph.

An example of a state model is illustrated in Figure 1a
where a state element is shown as rectangle, the state as an
oval, the current state as a double-lined oval, the desired state
as a filled oval, the transition as a solid-lined arrow, and the
dependency as a dashed-lined arrow.

1We use parenthesis and the parameter e when describing the concept in
the context of a specific element otherwise it is omitted.

The task generator is responsible for generating a shortest
length array of transitions R = (t1, ..., tn) from the state model
which changes all state elements from their initial state to
their desired states by satisfying all the dependencies. In the
example of Figure 1, there are two state elements {e1, e2}
where each of them has two states {s1, s2}. Both current
states, cs(e1) and cs(e2), are s1 and the desired state ds(e2)
is s2, while ds(e1) is none. When the desired state is not
defined, it means that any state is acceptable as its final state.
Here, e1 has a transition t = (s1, s2, ∅), and e2 has mutual
transitions between s1 and s2 which have dependencies on
s2 ∈ S(e1). Let ti,src→dest denotes a transition from a state
ssrc to sdest in an element ei. Obviously, the expected result
is R = (t1,1→2, t2,1→2).

We present the basic idea behind our algorithm to solve
this problem below. Our algorithm is categorized as a state-
space search in the AI planning research area. Algorithms in
this category are known not to be efficient for task planning
in terms of time and memory space consumption [10] but are
simple and easy to understand. We will present an additional
scheme to overcome such drawbacks later in this paper.

As a first step of our algorithm, the task generator creates
a State Graph from the state model. Though the state model is
composed of several state transition systems, the state graph
is a single state transition system. A node in a state graph
shows the state of all elements in the state model obtained
from a parallel composition of the states. The state of the node
has components of every state element, and every node has
different state combination of the elements. A link between
the nodes shows a workable transition in a state element.

Figure 1b illustrates an example of a state graph generated
automatically by the task generator from the state model shown
in Figure 1a. In this example, since there are two state elements
{e1, e2} and each of them has two states {s1, s2}, the state
graph includes four nodes {n1, n2, n3, n4}. Each of these
nodes has state combinations, such as (s1,1, s2,1), (s1,1, s2,2),
(s1,2, s2,1) and (s1,2, s2,2) respectively, where si,j denotes a
state sj ∈ S(ei). A transition te,i→j makes links between every
pair of nodes when the source node has a state se,i and the
destination node has a state se,j , and the other states of these
nodes are the same, except when their states do not satisfy
the dependencies of the transition. For example, a transition
t1,1→2 makes two links n1 → n3 and n2 → n4. One link
always makes one state change. In the same manner, the mutual
transitions t2,1→2 and t2,2→1 make links n3 ↔ n4, while
links n1 ↔ n2 are not made because they do not satisfy the
dependencies of the transitions on state s1,2.

Once the state graph is made, the problem is now to find
the shortest path from the initial node, which has the set of
initial states, to the desired nodes. Note that there can be more
than one desired nodes because a state element can have no
desired state. In this example, the initial node is n1 because it
has s1,1 and s2,1, and the desired nodes are n2 and n4 because
they have s2,2 regardless of the state of e1 component. One can
find the shortest path using any shortest path algorithms, such
as Dijkstra’s [11]. In our example the result is (n1 → n3 →
n4). Since these links are derived from t1,1→2 and t2,1→2, it
means the same array of transitions with the expected result
R = (t1,1→2, t2,1→2). Since the link n1 → n3 is derived from
the transition t1,1→2 and the link n3 → n4 is derived from the

transition t2,1→2, hence n1 → n3 → n4 implies (t1,1→2 and
t2,1→2) as expected.

An example state model and state graph in the case
of a temporary file and a middleware package example we
described in Section I is shown in Figures 2a and 2b,
respectively. The file has “absent” as both its current and
desired states. The package has “uninstalled” as its current
state and “installed” as its desired state. Also, the transition
tpackage,uninstalled→installed depends on the state sfile,present.
The shortest path in the generated state graph is (n1 → n3 →
n4 → n2). The shortest path implies the following steps:
creating the file, installing the package and deleting the file,
in that order.

(a) A state model exam-
ple. (b) A state graph example.

Fig. 2: An example of a state model and a state graph.

When each state element corresponds to an actual resource
and each transition has a concrete task description, the scheme
described above can generate executable tasks. We present a
way to define these information and practical examples below.

B. Component Model

In this section, we present our Component Model which
will be used by an administrator to define their systems to be
managed. Its specification embraces a state model to describe
the behavior and an architecture to describe the structure
that together enhance conceptualization, standardization and
reusability of the model. The hierarchical structure of our
component model is highly influenced by SCA (Service Com-
ponent Architecture) [12], [13] but the internal specifications
within the component have many differences. Moreover, our
prior work [8] described the original version of the component
model, however, for this work we have made some key exten-
sions (e.g., wireports that can have states and transitions, and
dependencies between parts or wireports) that were required
to solve the challenges we aim to resolve in this research. For
completeness sake, we present the original component model
as well as the extensions we developed.

The component model is structured by Type, Instance
and Version. The type includes abstract notions such as the
class of the resource, interface to connect resources, and the
patterns reflecting valid compositions of these resources. On
the other hand, an instance illustrates an actual system or actual
resource composing the actual system. An instance is defined
by assigning an instance id, a version and current states on a
type. A change request is input by an administrator in the form
of instance definition of its latest version. Subsequently, a state
model is generated from the difference between the existing
and new versions of the same instance. The detailed specifica-

tions to define type, instance and difference are presented in
the rest of this section.

1) Type: Our component model is composed of three first
class types: Primitive, Composite and Wire Interface. Primitive
is a fundamental unit which corresponds to an actual resource.
Composite is a conceptual component which is used to define a
pattern of component combinations. Component is an abstract
notion which contains primitive and composite. Both primitive
and composite can be assumed as component when they are
used. Wire interface defines an interface to combine two
components. A Task is a description of a practical action in
a transition of a state. It is defined in the wire interface or
primitive definition.

a) Primitive: defines a fundamental unit which corre-
sponds to an actual resource. For example “server”, “switch”
and “rack” and others are shown in Figure 3. A Primitive
can have two types of state elements: Part and Wireport.
A Part defines a piece of a primitive which holds a state
independently but not be combined with other components.
A Wireport defines a port to connect the primitive with other
component. There are two types of wireports: Consume and
Accept. A wire2 (i.e., a connection) is always defined between
a consume and accept of different components. Every wireport
has a wire interface so that only pairs of consume and accept
which have the same wire interface can be connected with
each other. While a part can have any number of states and
transitions, a wireport always has the states of scon and ssep.
A primitive can have any number of parts and wireports.
Dependencies can be defined between any pair of parts and
wireports in a primitive as long as they do not create cycles.

Fig. 3: An example of primitive models.

An example of primitive is shown in Figure 3, where the
parts are shown as rectangles, and wireports are shown as
the shape of chevron placed on left side and right side of
components. Consumes are always placed on the right and
accepts are on the left. The notations of state models are
the same, but note that dependencies cannot be drawn from
transitions but from state elements when all transitions in the
element have dependencies on the same state.

2We use the term wire since it is used by the SCA specification.

The “server” in Figure 3 has two parts: “box” and “top,”
and three wireports: “NW”, “PCI” and “RS”. “NW” implies a
connection of a network port, “PCI” means a connection of a
PCIExpress port, and “RS” implies an insertion point for the
server in the rack space. Everything depends on state sbox,out
because no operation can be performed without opening its
package. “PCI” and “RS” depend on different states of “top”.
“top” is needed to be open when something is connecting with
“PCI” or separating from it, but it is needed to be closed when
the “server” is being inserted into “RS” or taken out of it. “top”
and “RS” have mutual dependencies on their states. “server”
has to be separated from “RS” when its top is being opened or
closed. Dependencies can be defined between wireports. The
dependency of “RS” onto sNW.sep means that the network port
should be connected after the “server” is inserted into a rack
space, and it should be separated before “server” is taken from
the rack space.

b) Composite: defines a pattern of component combi-
nations. A composite is composed of Component Definitions,
Wires and Promotes in addition to wireports and dependencies.
A component definition defines an inner component of the
composite with a type and default current states of the compo-
nent. A wire defines a connection of two components included
in the same composite. The Promote assigns a wireport of a
composite to a corresponding wireport of its inner component.
Dependencies can be defined between any state elements in a
composite as long as they do not create cyclic dependencies.
Figure 4 depicts an example of a composite, where wires and
promotes are shown as as a double line. “serverWithNIC”
in Figure 4 shows a set of “server” and “nic” which should
be interpreted as a server having two network ports, which
may be the case because that server is acting as a gateway.
A dependency from “RS” onto the second “NW” wireport is
added so that the network port of “nic” will work properly
with a rack space of “server”.

Fig. 4: An example of a composite model.

c) Wire Interface: defines an interface to combine two
components. For example, a wire interface “PCIExpress” de-
fines an interface to connect the “NIC” primitive with “Server”
primitive. Actually, the connection is defined as a Wire which
binds two Wireports of different components having the same
wire interface. Namely, the definition of wire interface is about
which pair of wireports can be connected by wires. The wire
interface also defines a common class of state element for
wires. It has two states scon and ssep which have mutual
transitions. Here, scon and ssep means the states of “Connect”
and “Separate”, respectively.

d) Task: is an action to be performed when changing
the current state of an element from one state to another.
Every task is connected with one transition and the effect
made by the task is limited to realize the change of state.

Fig. 5: An example of delta state model generation.

A task comprises templates of descriptions about what should
be done. For example, a task template for “PCIExpress” is
described in Lines 3-4 of Table I. Line 3 is an instruction
to insert a resource such as “nic” into a PCI Express slot of
another resource such as “server”. Conversely, Line 4 is an
instruction to eject it. Blanks in the templates will be filled
with information of related instance.

TABLE I: Examples of task template definitions.

Element Type Task Template Example

RackSpace connect Insert {{consume.id}} into {{accept.id}}
RackSpace separate Take {{consume.id}} from {{accept.id}}
PCIExpress connect Insert {{consume.id}} into {{accept.id}}
PCIExpress separate Take {{consume.id}} from {{accept.id}}
NetworkPort connect Connect {{consume.id}} with {{accept.id}}
NetworkPort separate Separate {{consume.id}} from {{accept.id}}
Rack.Box(in to out) Take {{id}} from its package
Rack.Leg(free to fix) Fix the leg of {{id}} on the floor
Rack.Leg(fix to free) Release the leg of {{id}}
Server.Top(close to open) Open the top of {{id}}
Server.Top(open to close) Close the top of {{id}}

2) Instantiation of Component Model: An instance defini-
tion of a component model comprises instance id, version, type
name and current states of all inner state elements. Given these
definitions, our Constructor of component model generates
an instance. All composites are extracted into primitives and
wires. If there are wires or dependencies connected with a
wireport of a composite, they are transfered into its inner
component by tracing their promote definition. All extracted
primitives and their state elements and wires should have their
own instance id. The id can be generated according to the
root instance id and its position in the instance definition.
For example, if an instance is identified as “test” and its
type is the “serverWithNIC” composite shown in Figure 4,
then the “server” primitive in the composite can be identified
as “test.server” and the “top” element as “test.server.top”.
The id is used to identify a specific primitive or element
when comparing two different versions of a system instance
definition. Thus, it should be defined explicitly if needed.

3) Generation of the State Model Difference Due to Change
Management: A Delta State Model (see Figure 5 for an
example) is generated taking the difference of two different
versions of a system instance definition. Its current states

show the current version of the system definition and desired
states show the new version. Change tasks which transfer
information from the current state to the new desired state
can be generated by the difference (i.e., the delta) between
the two state models using the Task Generator described in
Section II-A. A delta state model is generated by integrating
two versions of system instances into one delta instance and
picking up state elements from the delta instance. In effect,
first the delta instance is generated from the two versions of
the system instance definitions and comprises only primitives
and wires. Next, the state models are generated from these
primitives and wires by importing the state elements in the
primitives and wires. The details of the process are described
below.

First, all primitives included in any of these versions are
imported into the delta instance without duplication. Primitives
defined in both versions are marked as “existing”, their current
states are set as the same as the states in the current version,
and desired states are set as same with the states in the new
version. Primitives defined only in the current version are
marked as “old”, their current states are set as same with
the states in the current version, but desired states of all their
elements are not set (it means “any”). Primitives defined only
in the new version are marked as “new”, their current states
are set as same with the default states defined in their types
(which show the initial states when the products correspond
to the primitives are shipped), and desired states are set as
same with the states in its new version. Note that a wireport
can be associated with one wire in an instance definition, but
it can have two wires in a delta instance when a wireport is
connected with different wireport in the two versions.

We now explain how the current and desired state of each
wire is determined based on its marking. Wires connecting
“existing” primitives should have state scon for both of their
current states and desired states. Wires connecting “exist-
ing”primitive and “new” primitive or connecting “new” prim-
itives should have state ssep for their current states and scon
for their desired states. Wires connecting “existing” primitive
and “old” primitive should have state scon for their current
states and ssep for their desired states. Wires connecting “old”
primitives should have scon for their current states, and their
desired states should be not set. Additionally, every pair of

wires which is attatched to the same wireport are added a
dependency such that a transition ssep → scon of new wire
depends on a state ssep of an old wire, because these two
wires can not be connected at the same time actually.

Secondly, all state elements in the delta instance are chosen
to get a delta state model. In this step, a wire and two wire-
ports connected by the wire are merged into a state element.
Dependencies related with the wireports are transferred to the
merged state element. When there are two wires connecting
to a wireport, the dependencies related with the wireport are
transferred to both of them.

Figure 5 illustrates an example of a delta instance and a
delta state model generation. The two figures depict different
versions: 1 and 2 of “private cloud” instances, which consists
of the components shown in Figures 3 and 4, and are integrated
into a delta instance. Version 1 shows the current existing
system states stored in our change management function and
version 2 shows the definition of the desired states input by
an administrator. In version 1, “gatewayServer” is connected
with “rack” but it is replaced with “serverWithNIC” composite
in version 2. Thus, the “gatewayServer” is connected with
old wires (“NW2” and “RS2”), and “server” and “nic” are
connected with new wires (“NW3”, “RS3” and “PCI”) in the
delta instance. In the delta state model, all state elements
are picked up from primitives and wires. The current and
desired states of the old wires are set as scon and ssep,
and states of the new wires are set as ssep and scon, while
both states of other wires are set as scon. All dependencies
related to wireports are transferred to its related wires. For
example, the wire “PCI” has dependencies on snix.box.out,
sserver.box.out and sserver.top.open. They are transferred from
wireports “PCI” of “nic” and “server”. Additionally, each
transition tsep→con of new wires has a dependency on state
ssep of the corresponding old wire connecting to the same
wireport. For example, tNW3,sep→con depends on sNW2,sep

and tRS3,sep→con depends on sRS2,sep. Figure 6a shows the
generated task array from this delta state model.

(a) result in total order. (b) result in partial order.

Fig. 6: Conversion from total order to partial order.

C. Improvement to the task generation scheme

The basic task generation scheme presented in Section II-A
has two critical drawbacks for practical use. The first is that the
form of generated tasks is provided in a total order as shown
in Figure 6a. In practice, often this is not efficient because no
task can be conducted concurrently despite no dependencies.
Thus, we desire that the generated tasks maintain only a partial
order as shown in Figure 6b. The second problem is that the
computation of shortest paths becomes an expensive operation

when the number of managed resources increases because in
our current approach, the number of nodes of a state graph
generated from a state model increases exponentially by the
number of elements in the state model. The computation cost
of Dijkstra’s original shortest path algorithm is O(n2) where
n is the number of nodes, which can become significant with
large n. We present additional schemes to overcome these
problem in the following sections.

1) Conversion of tasks to partial order: The conversion of
tasks from total order to partial order is basically conducted by
neglecting orders between state elements which have no de-
pendency relationships on each other. This way the transitions
included in such state elements can be conducted concurrently.
Naturally, when other elements are related between these
elements, the transitions should be ordered indirectly by the
intermediate transitions. To do this, every task in the totally
ordered array is picked from the top to the bottom, and each
task is checked if its state element has a dependency on pre-
ceding tasks. If the element of the task depends on an element
of a preceding task or vise versa, the task is ordered after the
preceding task. In the example shown in Figure 6, tasks are
picked from tNW2,con→sep to tNW3,sep→con. When the second
task tRS2,con→sep is checked, state element “RS2” depends
on state ssep of “NW2” so that the task is ordered after the
preceding task tNW2,con→sep as shown in Figure 6b. The sixth
task tPCI,sep→con can be ordered after three preceding tasks:
tnic.box,in→out, tserver.box,in→out and tserver.top,close→open,
but it is not needed to be ordered after tserver.box,in→out

because tserver.top,close→open is already ordered after the task.
The checking of preceding tasks are started from ones in the
tail end, and if an order was assigned with a preceding task,
checking of the remaining tasks which are already ordered
before the preceding task are skipped.

2) Scalability enhancement for task generation: As de-
scribed above, the number of nodes of a state graph in-
creases exponentially with the number of elements of a state
model. Therefore, reducing the number of state element before
creating a state graph is the most effective improvement.
Based on this simple inference, we propose the following
two schemes: (1) invariant element elimination, and (2) state
element separation and merging of each result.

a) Invariant element elimination: State elements which
are not changed during a change session will not generate
tasks and their dependencies will not influence the other state
elements. In effect they are invariant for that change session
and hence can be eliminated from a state model before creating
a state graph. The state elements which are invariant can be
found by the following two criteria: (1) its desired state is not
defined or is the same as the current state, and (2) there is no
other changing transition depending on its states other than the
current state. To decide the transition in the second criterion is
movable or not, the state element having the transition has to
be decided if it can move or not. Therefore, the algorithm for
this elimination scheme forms a depth-first search. If a cycle is
detected in the searching stack, all state elements in the stack
will be judged as movable. In the delta state model shown in
Figure 5, the gray elements are invariant.

b) State element separation and merging: After the
invariant elements are eliminated, the remaining elements are
separated into groups. As described above, the task graph is

created from each group and a shortest path is calculated with
the graph. Therefore complicated parts in a state model, such
as parts where state elements are connected to each other by
dependencies, are supposed to be included in the same group.
The problem is deciding what criteria to use for determining
the group separation.

In order to reveal the criteria, we observe a state model
shown in Figure 5. For example, “server.top” and “RS3” have
mutual dependencies but “nic.box” is just connected with
“PCI” by an one way dependency. In fact, the “nic.box”
can be calculated separately from other elements because
the transition of the box element is just triggered by the
transition of “PCI” and the existence of the box element
does not influence the movement of others. Therefore, after
the transitions of the “PCI” are decided, a transition of the
box element can be calculated by taking only a part of the
transitions of “PCI” which depends on the box element into
account. More formally, we take state elements which make
cycles of dependencies into the same group. Additionally, we
set another type of relationship between the groups such that
when there is a dependency between state elements included
in different groups, the group having the depending element
should be calculated in advance.

Figure 7 illustrates the result of separating the state model
shown in Figure 5. Elements are separated into seven groups:
(G1, G2, ..., G7). “server.top” and “RS3” are included in the
same group because they comprise a cycle of dependencies. In
our case study of Figure 5, the order of groups was decided as
(G1, G2, ..., G7). G1 came first because it was not dependent
on elements in other groups. Naturally, the generated task from
G1 was RG1 = (tPCI,sep→con).

Fig. 7: An example of state model separation.

When generating the tasks of G2, the transition
tPCI,sep→con had to be taken into consideration because it
depended on a state in G2 and would trigger some transitions.
To do this, a pseudo element which included only such
transitions was created and added to the single state graph
upon which the shortest path computation is performed. In this
case, an element epseud = (pseudo, {s1, s2}, s1, s2, {tpseudo})
such that tpseudo = (s1, s2, sserver.top,open) was created and
calculated with elements in G2. The generated tasks of G2
included the pseudo transitions, and they are simply merged
with the original after they are converted into a partially
ordered result. When more than one transitions depend on
the elements in the group, more pseudo transitions and states
would be created. The entire result had a few redundant
orders between tasks but no practical difference with the result
without separation.

III. EVALUATION AND DISCUSSION

In the earlier sections we have discussed a case study
of a “private cloud” system definition and its result of task
generation. By using the models in this definition, we used
four different patterns of change requests:

1) from scratch to version 1,
2) from scratch to version 2,
3) from version 1 to version 2, and
4) from version 2 to version 1.

In this section, we confirm the final result of task generation
for the third case which we have already shown in Figure 5,
and which is chosen because it demonstrates a change. Then
we evaluate the effectiveness of system definition using our
component models. Finally, we evaluate the performance of
our improved task generation algorithm.

A. Case Study: Change Management from Version 1 to 2

Table II shows the final view of the generated tasks to
change the “private cloud” system from version 1 to version 2
as shown in Figures 5 and 6. Each definition of the transitions
is related to a task definition and template description presented
in Table I. Blanks in the templates are filled with the values
of model instances and rendered. This result is assumed to be
presented to human workers who actually deploy the hardware
system. The workers can simply carry out tasks starting from
the top to bottom in order. When the managed resource is
software, instead of a human worker, it will be a kind of
software agent and the template can render executable scripts
or a workflow. We omit showing the tasks of these other
cases but we have validated that these task are also generated
properly.

TABLE II: The final view of generated tasks.

Task Depends on

1 Take “server” from its package.
2 Open the top of “server”. 1
3 Take “nic” from its package.
4 Insert “nic” into “server”. 2,3
5 Close the top of “server”. 4
6 Separate “cable” from “gatewayServer”
7 Take “gatewayServer” from “rack” 6
8 Insert “server” into “rack” 7
9 Connect “cable” with “server” 8

B. Qualitative Evaluation of the Effectiveness of System Def-
inition

We make a qualitative evaluation of the effectiveness
of our modeling approach. Given an existing definition of
“private cloud” version 1, for change management what the
administrator needs to do to define version 2 is simply picking
up the name of “serverWithNIC” from a model repository
and replacing “gatawayServer” with it. Naturally, both these
resulting versions of “private cloud” definitions can themselves
be added to the repository, and reused and combined with other
definitions. A remarkable advantage of this model is that the
administrator does not need to define dependencies on adjacent
components connected with wires because the dependencies
are included in the components and transferred when they are
instantiated. In the example of Figure 5, “nic” and “server” are

simply connected with a wire, but the necessary dependencies
are transferred from the primitives. It means that the depen-
dency definitions are also reused along with primitives. Since
our component model is based on the SCA specification, we
will be able to adopt the features of SCA such as autowires,
customization with properties and others, but this discussion
is beyond the scope of this paper.

C. Evaluating the Performance of Task Generation Algorithm

We also evaluated the scalability improvement of our task
generation algorithm that accounts for the the invariant element
elimination scheme and state element separation scheme. Ta-
ble III describes numbers of all elements, moving elements and
groups in addition to their calculation times in milliseconds,
of each change request. The calculation times are average
of ten times trials. The total element number is larger when
the change request is from an existing version, but moving
elements are less than those when changing from scratch
because these two versions share most of their components.

TABLE III: Element or group numbers and calculation times.

Request All Elements (ms) Movings (ms) Groups, Max (ms)

∅ → ver.1 12 (266.6) 12 (267.8) 11, 3 (10.4)
∅ → ver.2 10 (82.6) 9 (41.6) 11, 2 (15.8)

ver.1 → ver.2 16 (5633.6) 7 (20.8) 6, 3 (10.5)
ver.2 → ver.1 16 (5703.8) 8 (29.8) 7, 3 (4.0)

This result shows that calculation times increase rapidly
with the number of elements as expected. In the case of
ver.1 → ver.2, the time is 5,633.6 ms when the number
of elements is 16 but the time is reduced to 20.8 ms when
the number of elements was reduced to 7 due to the in-
variant element elimination scheme. These results highlight
the significant savings and the effectiveness of the invariant
element elimination scheme. The separation scheme also works
effectively. In all the cases, elements are separated into many
small groups. Most of the groups have one or two elements
and maximally have three elements.

The shortest path calculation times also reduced drastically
especially when the total number of moving elements is large.
In the case of ∅ → ver.1, computation time reduced from
267.8 ms to 10.4 ms due to the separation approach. We
surmise that the calculation time increases as the number of
moving elements in almost a linear fashion as long as the
number of elements included in a group is limited.

In fact, the groups which are not ordered by dependen-
cies(e.g., G2 and G5 in the Figure 7) can be calculated
concurrently. Thus, we will be able to improve the time
to plan tasks more by proper parallelization of the merging
process. Additionally, we can estimate the time approximately
by numbers of groups and elements. If the estimated time is
unfeasibly large, we will be able to suggest the administrator
to adjust the change request or separate it into several steps by
showing the problematic parts. These two topics will be part
of our future work.

One problem of the current separation scheme is that it
can fail task generation even if it would succeed when not
using separation. Naturally, more than one shortest paths can
be found in a group. If successor groups have more than one

dependency relationships with a precedent group, the selection
of the shortest path can affect contents of pseudo elements
in the successor groups, and can cause an unexpected failure.
Thus, when several shortest paths are found, all of them should
be tried. It can make the number of branches in the successor
processes, however, these branches will be calculated concur-
rently. So, if we can use concurrent processing environments,
such as Hadoop [14], we can still expect the entire processes
will be end in a linear time scale. Giving a proof of this
hypothesis is also one of our future works.

IV. RELATED RESEARCH

We now compare our work with related efforts. Approaches
to IT change management can roughly be divided into two
categories based on the form of user input: (1) action-based:
where the user input means some kind of actions to change
a target system, and (2) state-based: where the user input
indicates the desired states that the target system is expected
to be in.

In action-based approaches (e.g., [15], [16], [17]), the
CHAMPS System [15] represents a seminal work for au-
tomation and optimization in change management. It accepts
requested operations from a user and determines workable
tasks with analyzing dependencies between influenced arti-
facts. Refinement approaches [18], [16] allow users to input
abstract high-level requirements and refine it into low-level
executable operations. While they provide a powerful decision
support functionality, state based approaches (e.g., [5], [6], [7],
[9]) offer users an intuitive way to express change request
using the desired states of the individual managed object.

Some efforts [5], [6], [7] on this topic proposed a scheme to
generate executable procedures from declarative state models.
They maintain a repository of best practice actions primarily
defined by IT practitioners apart from resource models. On
the other hand, prevalent tools in practical use (e.g., [1], [2])
adopt a model such that the resource and relevant operations
are tightly coupled. We believe this is a promising approach
for better reusability and validity of the models. When the
best practice actions decoupled with resources become large,
its maintenance issue will cause another problem. Therefore,
to promote reuse of large sets of best practice models, we did
not adopt refinement of operations as in [18], [16] but adopt
SCA-like component model which can abstract a structural
aspect of a system even though refinement is a complementary
approach to define desired state of a large system definition in
resource-across manner.

Sebastian et al. [9] have conducted research similar to
ours, and as explained earlier, our work is influenced by
their work. They proposed a planning algorithm with object
models based on state transition systems. This work focuses
on efficient planning algorithms for a large set of objects
in data centers. The algorithms of ours are totally different
but they also focus on the dependencies between objects to
calculate tasks correctly and efficiently. Due to a lack of
access to the details of this related work, we can only surmise
that the two approaches may derive from the same principle.
Understanding the similarities and performance comparison
will also be our future work. We believe that the advantages of
our algorithm are simplicity of the base methodology with state

model and state graph, and the point that the calculation time
of task planning can be roughly estimated by the number and
size of the element groups. Moreover, providing an effective
component model based on standards to define large system
to administrators is an added plus of our approach.

V. CONCLUSIONS

In this paper an approach to model-based change manage-
ment of hardware IT infrastructures was presented. To realize
the concept, a fundamental methodology for task generation
based on a state model and a state graph, a specification of
component models and improved task generation scheme for
a large-scale definitions are presented. Through a simple case
study of change management of a component in a private cloud
platform, its performance and efficiency to generate tasks with
an intuitive and simple modeling work are demonstrated. We
discuss additional topics to enhance the utility of this scheme
including our planned future work to address some of the
limitations, such as the need for advanced functionalities and
the need to validate our scheme with more case studies and
thorough practical experiments.

ACKNOWLEDGMENT

The first author conducted the research while on a sabbat-
ical leave at Vanderbilt University. Both authors thank NEC
for the support.

REFERENCES

[1] “Chef,” 2014, http://www.getchef.com/chef/.
[2] “Puppet,” 2013, http://puppetlabs.com/.
[3] I. Redbooks, Virtualization With IBM Workload Deployer: Designing

and Deploying Virtual Systems. Vervante, 2011.
[4] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services

using tosca,” Internet Computing, IEEE, vol. 16, no. 3, pp. 80–85, 2012.
[5] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar, and A. V.

Konstantinou, “Model driven provisioning: Bridging the gap between
declarative object models and procedural provisioning tools,” in Pro-
ceedings of the 7th ACM/IFIP/USENIX International Conference on
Middleware, ser. Middleware’06. Berlin, Heidelberg: Springer-Verlag,
2006, pp. 404–423.

[6] T. Eilam, M. Elder, A. Konstantinou, and E. Snible, “Pattern-based
composite application deployment,” in Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on, 2011, pp. 217–224.

[7] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
Runtime Management of Composite Cloud Applications,” in Proceed-
ings of the 3rd International Conference on Cloud Computing and
Service Science, CLOSER 2013. SciTePress Digital Library, May 2013,
Conference Paper.

[8] T. Kuroda and A. Gokhale, “Model-based automation for hardware
provisioning in it infrastructure,” in To Appear in the Proceedings of
Systems Conference (SysCon), 2014 IEEE International, March 2014.

[9] S. Hagen and A. Kemper, “Model-based planning for state-related
changes to infrastructure and software as a service instances in large
data centers,” in Cloud Computing (CLOUD), 2010 IEEE 3rd Interna-
tional Conference on, July 2010, pp. 11–18.

[10] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” Artif. Intell., vol. 90, no. 1-2, pp. 281–300, Feb. 1997.

[11] E. W. Dijkstra, “A note on two problems in connexion with graphs.”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[12] J. Marino and M. Rowley, Understanding SCA (Service Component
Architecture), 1st ed. Addison-Wesley Professional, 2009.

[13] “Service component architecture (sca), sca assembly model v1.00
specifications,” 2007.

[14] “hadoop,” 2012, http://hadoop.apache.org/.
[15] A. Keller, J. Hellerstein, J. Wolf, K.-L. Wu, and V. Krishnan, “The

champs system: change management with planning and scheduling,” in
Network Operations and Management Symposium, 2004. NOMS 2004.
IEEE/IFIP, vol. 1, April 2004, pp. 395–408 Vol.1.

[16] D. Trastour, R. Fink, and F. Liu, “Changerefinery: Assisted refinement
of high-level it change requests,” in Policies for Distributed Systems and
Networks, 2009. POLICY 2009. IEEE International Symposium on, July
2009, pp. 68–75.

[17] S. Hagen and A. Kemper, “A performance and usability comparison
of automated planners for it change planning,” in Network and Service
Management (CNSM), 2011 7th International Conference on, Oct 2011,
pp. 1–9.

[18] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman, “Shop2: An htn planning system,” J. Artif. Int. Res., vol. 20,
no. 1, pp. 379–404, Dec. 2003.

