
Automated Context-Sensitive Dialog Synthesis for Enterprise Workflows
Using Templatized Model Transformations

Amogh Kavimandan†∗, Reinhard Klemm‡, and Aniruddha Gokhale†

†Dept. of EECS, Vanderbilt University, Nashville, TN
‡Collaborative Applications Research, Avaya Labs, Basking Ridge, NJ

Abstract

In modern enterprises, workflows are essential to au-
tomating business processes. During their execution, work-
flows need to interact with users using a mechanism called
dialogs to deliver information and collect input that is re-
quired for further decision-making in the workflows. In-
formation delivery and input collection by enterprise work-
flows is often a time-sensitive matter. Thus, dialogs have
to be communicated to users in a timely fashion, which ne-
cessitates sending dialogs to user communication endpoints
that permit the recipients to quickly, effectively, and con-
veniently view the information and provide the requested
feedback. The proliferation of communication devices and
clients among enterprise users implies that the middleware
that creates dialogs has to provide mechanisms to tailor
the content and the rendering of dialogs to a large number
of endpoints. This customization poses several challenges
to developing and maintaining a manageable, extensible,
and flexible middleware mechanism for synthesizing dialogs
from specific decision points in enterprise workflows.

In this paper, we first describe the challenges associated
with context-sensitive dialog synthesis. We discuss how we
have applied templatized model transformation techniques
to automatically synthesize dialogs in enterprise workflows.
We show how our templatized transformation approach
supports the evolution of communication endpoints and sys-
tem requirements with a minimum of downtime and invasive
design changes. We demonstrate our approach in the con-
text of a representative enterprise case study.

1 Introduction
As part of their normal or exceptional operation, mod-

ern enterprise workflows not only set up communications
(calls, conferences, chats, etc.) between decision makers in
the enterprise but also need to deliver information to users
and, in return, collect important input from users in a timely

∗Contact author email:amoghk@dre.vanderbilt.edu

fashion. Such input is typically based on the information
that a workflow delivered to a user and serves as the basis
for further decision-making in the workflow. As enterprises
strive to increase productivity and efficiency by automat-
ing their business processes through workflows, there is a
growing need to accelerate this type of interaction between
workflows and enterprise users. In this context, we call a
mechanism to present information to a user and collect sub-
sequent feedback from the user a dialog between workflow
and user.

Increasingly, context-aware communications middle-
ware is used to provide communication support to work-
flows including the synthesis, delivery, and rendering of di-
alogs. The need for accelerating the interaction between
workflows and users results in a requirement to embed so-
phisticated context-sensitive dialog synthesis, delivery, and
rendering mechanisms in the middleware to reach enter-
prise users in a ubiquitous fashion. Due to ever-increasing
user mobility and progress in communications technology,
enterprise user communication environments have changed
from a limited set of fixed, largely stationary devices and
clients to a wide array of personal and shared, stationary and
mobile communications endpoints of differing capabilities
and supporting different kinds of media. The panoply of
endpoints in use in modern enterprises poses a set of com-
plex challenges to the context-sensitive support for dialogs
in communications middleware. With a potentially large
volume of dialogs between workflows and certain users, the
receipt, perusal of, and response to dialogs has to be as con-
venient and efficient for the user so as to maintain a high
level of user productivity.

The true difficulty with our goal of customizing dialogs
for a multitude of endpoints and based on user context, in
the interest of accelerating workflow/user interactions and
maintaining user productivity, is that most dialogs are cre-
ated at workflow runtime. Thus, dialog customization has
to be done dynamically as well and suggests the develop-
ment of a large number of customization software modules
(akin to device drivers). These modules would need to be
constantly adapted to the ever-changing landscape of end-

1

points.
Despite the need for such a customization, the set of di-

alogs tend to share strong commonalities with each other
and, depending on the endpoint on which they have to
be rendered, have certain distinct characteristics. Thus,
there is a significant opportunity to synthesize families of
dialogs by employing customizable and reusable software
patterns and artifacts, as opposed to building them from
scratch. Product-line architectures (PLAs) and its charac-
teristic scope, commonality, and variability (SCV) [5] en-
gineering process present a promising approach to develop-
ment of families of dialogs.

This paper first describes how we have conducted SCV
analysis for a family of dialogs. We then show how tem-
platized model transformations can be used to synthesize
customized dialogs. In our approach, the commonalities
among the dialog variants are captured as a common set of
transformation rules. Higher order parametrized rules cap-
ture the variability lending themselves well to the notion of
templatized transformations.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses an enterprise case study that motivated
our work on dialogs; Section 3 presents the challenges in
context-sensitive dialog synthesis in detail; Section 4 dis-
cusses design details of our solution and lists various steps
involved in the development of reusable model transforma-
tions, and how we have applied it to our case study; Sec-
tion 5 compares our work with the existing literature; Sec-
tion 6 provides concluding remarks and lists our plans for
future work.

2 A Case Study Motivating Context-Sensitive
Dialogs

An example of context-aware communications middle-
ware that supports enterprise workflows and ubiquitous,
automated dialogs between workflows and users is Her-
mes [8], developed at Avaya Labs Research. An illustrat-
ing use case scenario for Hermes, drawn from an extensive
case study with several insurance companies, is a business
process workflow that deals with claims in a car insurance
company. The workflow gets triggered when a policy holder
calls in an insurance claim for damages to his/her car. Sup-
pose this claim raises a difficult question and it is unclear
how to apply the insurance company’s rules to this claim.
In such a case, the workflow attempts to set up a conference
call between various employees of the insurance company,
including a legal expert, an appraiser, and the appraiser’s
supervisor, to resolve the question.

As part of the process of setting up the conference call,
the workflow has to first reach out to potential participants
and present (1) a conference call topic (open claim), (2)
documentation or a link to documentation pertaining to the
case, possibly containing audio, video, and image elements
in addition to text, (3) an invitation to a conference call, and

(4) a range of user response options to establish the user’s
ability, availability, and willingness to participate in the con-
ference call.

These four items constitute a simple dialog in Hermes.
For example, the dialog may first provide the information
"There is an open claim from policy holder 243779 that
cannot proceed due to a mismatch between the appraised
damage and a corporate limit on lifetime coverage for a
vehicle. For more information, please consult case num-
ber 243779-041". Next, the dialog may pose the question
"Can you be available to participate in a voice conference
about this claim at 2 PM EDT today?" Eventually, the di-
alog gives the user a range of response options including
"Yes", "1 hour earlier", "1 hour later", "Only if you cannot
find somebody else", and "No".

A communications-enabled workflow platform like Her-
mes could, of course, simply send a notification of a pend-
ing dialog to the recipient via an email that contains a link
to an enterprise portal with the actual dialog. The dialog
could then be an HTML form or similar. However, this
procedure may lead to many scenarios where the recipient
may not receive or respond to the dialog in a timely fashion,
thus violating our stated goal of accelerating the interaction
between workflows and users. The following are some of
these scenarios:

• The recipient is in a location such as a car, an off-site
meeting, or a conference room with sporadic, limited,
or no email access.
• Due to a focus on other activities, the recipient is not

checking incoming email frequently enough.
• The recipient can receive email on a mobile device

which does not have access to the enterprise portal.
• The mobile device of the recipient cannot render Web

pages or makes it very inconvenient to navigate the en-
terprise portal and dialogs.
• The recipient is driving or for other reasons is not in a

position to read a dialog or use a manual input device
(mouse, keyboard, keypad) to respond to it.

To remedy some of the problems that the above approach
to conveying dialogs to a user incurs, the Hermes middle-
ware attempts to send (1) a dialog topic (Item 1 above), (2) a
URL for the actual dialog in a Web-based portal (i.e., a link
to Items 2-4 above) to an endpoint that the user is likely
to be present on at this time. Hermes makes a determina-
tion of the target endpoint based on the user’s context infor-
mation which includes information about the user’s pres-
ence and activities on various monitored endpoints such as
telephones, instant messaging (IM) and email clients, Web
browsers, etc. However, the user must access the URL via
a Web browser to find the dialog in question. As with the
email approach described in the previous paragraph, forcing
the user to log into the Web portal, finding the dialog there,

2

reading it, and responding to it via a mouse or keyboard
may not be possible in a timely fashion or, at the least, may
negatively impact user convenience and productivity.

Our goal for Hermes is therefore to send the entire dia-
log to a specific endpoint and to customize its rendering to
this endpoint and a given communication modality (voice,
IM, email, Web, SMS, etc.). For example, assuming that the
user is present and active on a Web browser on his/her office
computer, a dialog may be presented as an HTML popup in
that browser [12]. This endpoint is also suitable for present-
ing the supporting documentation (Item 2 above) about the
insurance claim. The response options in the dialog can be
rendered as HTML buttons. In addition, a more sophisti-
cated response option may be included, such as a text box
that allows a freeform specification of a different time, day,
and modality by the user.

On the other hand, suppose the employee is known to be
present on his/her mobile phone that has no (known) data
connectivity and only a standard phone numeric keypad.
Due to its limited hardware capabilities, the content of the
dialog to be sent to the mobile phone ought to be signif-
icantly different from the HTML popup described earlier.
Moreover, the mobile phone user may not be in a position
to read the dialog on the mobile device or respond via the
keypad because he/she may be driving a car at this point in
time. Thus, the dialog may best be rendered as a call to the
mobile phone with a VoiceXML (VXML) script that first
renders Item 1 as voice, skips Item 2 except for a brief sum-
mary of the documentation, and renders Item 3. Finally, for
collecting the user’s response, the script reads the available
response choices and asks for either a voice response ("Yes"
etc.) and/or a key input ("Press 1 for Yes" etc.).

Clearly, the set of customized dialogs derived from a
defined sequence of Items 1-4 share strong commonalities
with each other and, depending on the endpoint on which
they have to be rendered, have specific distinct characteris-
tics. Next, we use the case study described in this section to
present a detailed discussion of the challenges involved in
dynamically adapting the content and rendering of dialogs
based on user context ("context-sensitive dialog synthesis")
in enterprise communications middleware such as Hermes.
We demonstrate how we have used model transformations
for the automatic synthesis of dialogs from specific decision
points in enterprise workflows.

3 Design Challenges in Context-Sensitive Di-
alog Synthesis

Using the case study of Section 2 we now discuss the de-
sign challenges in automatically synthesizing dialogs based
on the user context.
1. Programmatic, customizable mappings for dialog cre-
ation. The dialog in our insurance example asked only
one simple question to ascertain the ability, availability, and

willingness of an employee to participate in a conference
call. However, dialogs in general may be much more com-
plicated and may involve a sequence of sub-interactions.
Currently in Hermes, the content of a dialog is a simple text
template that a workflow designer manually creates for a
specific decision point in a workflow and that can be param-
eterized at runtime with user names, URLs, case and pol-
icy numbers, etc. The entirely manual creation and mainte-
nance, especially of complicated dialogs for a large number
of workflow decisions points, requires significant efforts.

Instead, we would like to come up with programmatic
mappings from workflow decision points and user context
to dialogs on specific endpoint types. User context not only
determines which endpoint to send the dialog to and to ren-
der on but also ideally results in adjusting the dialog con-
tent to the specifics of a user. If, for example, one of the
recipients of the insurance dialog in our above example is
hearing- or vision-impaired or is most fluent in a language
other than the insurance company’s official business lan-
guage, the dialog would ideally accommodate these user-
specific parameters. Different sets of employees also have
different skill sets. For example, the appraiser in our case
study may receive case details as part of the dialog that are
meaningful only to somebody with expertise in appraising
car damages.

Thus, programmatic mappings must allow customization
of the output dialogs based on parameters outside the work-
flow decision point and user context, such as the enterprise
for which the workflow is designed, the vertical market in
which the enterprise is operating, or technical constraints of
the communications middleware.
2. Dialog formatting and rendering. Even though content
formatting and rendering of a dialog are inextricably inter-
twined, we list the determination of how to format and ren-
der a dialog separately from the content selection because
the emphasis is different in both challenges. The challenge
in formatting a dialog for and rendering it on a target com-
munication endpoint is the large number of static and dy-
namic characteristics of endpoints, resulting in vastly differ-
ent types of formatting and rendering options for basically
the same dialog content.

The static characteristics include the modality (voice,
IM, email, Web, SMS, plain text, etc.), processing power,
screen size and resolution, type of input devices attached
to the endpoint, audio/video capabilities, etc. The dynamic
characteristics include current data connectivity and battery
power. An explanation of how such characteristics are de-
termined in Hermes is provided in [12]. For example, the
same abstract dialog may have to be rendered as a VXML
script over a voice connection, via an HTML form on a
mobile device, or as a sequence of SMS or IM messages,
each one of which would require the user to reply with an
SMS/IM message.

3

3. Response option definition. To be really useful, many
dialogs require fairly differentiated or complex feedback
from the user, based on response options given in the dialog.
Our insurance example listed response options such as "1
hour earlier", "1 hour later", "Only if you cannot find some-
body else" in addition to "Yes" and "No". Clearly, these
options unreasonably limit the recipient’s expressiveness in
terms of the most desirable time and communication modal-
ity of and willingness to participate in the conference call.
The situation is exacerbated in more complex dialogs.

There is a trade-off between the number of response op-
tions in a dialog on the one hand and user convenience and
productivity on the other hand. Too few response options
may frustrate the user because the response that the user
might like to give is not part of the dialog. Too many re-
sponse options may frustrate the user because it takes too
long and too much effort to peruse and understand the given
response options, and to select the most appropriate one.
4. Linking to additional documentation. Our stated goal
in Section 2 was to render the entire dialog in a target com-
munication endpoint, including potentially multimodal sup-
porting documentation (Item 2 in Section 2), in the interest
of a timely delivery of information to the user, collection
of a response, and increased user productivity and conve-
nience. However, even lengthy or rich text documentation,
let alone audio/video or other multimodal documentation
pertaining to the dialog, is often infeasible or too costly to
render on a given endpoint. In such cases, the program-
matic mapping to dialogs would have to produce a solution
that leaves the supporting documentation out of dialogs but
allows dialog recipients to access it as easily and quickly as
possible. A fallback solution is always to email links to the
documentation to the recipient but more sophisticated op-
tions may be possible as well. For example, the recipient of
a dialog on a mobile device may have the option of send-
ing an SMS with a fax number to an enterprise server that
would then send out supporting text documentation to that
fax number.
5. Extending customizable mappings to new endpoints.
The steady evolution of communication media and end-
points, in particular mobile devices and more powerful
enterprise-class hard- and softphones, increases the com-
plexity of managing dialogs. For example, suppose the in-
surance company in our example had upgraded their office
phone system to IP telephones with large touch-screens. A
dialog sent to such a phone may now best be rendered not
as a phone call but as a rich text popup on the display with
user response options rendered as touch buttons. Thus the
programmatic, customizable mappings from workflow de-
cision points to dialogs must be flexible enough to accom-
modate new endpoints with relatively minor changes to the
mappings and negligible workflow execution downtime.

Section 4.1.1 describes how our approach helps modu-

larize these mappings and separate their variabilities, and
Section 4.2 discusses how developers can incorporate new
endpoints by (partially) using existing mappings.

4 Templatized Model Transformation for Di-
alog Customization

This section describes how we have used Model trans-
formations Templatization and Specialization (MTS) [10],
which is our templatized transformation framework, for di-
alog customization. At the heart of our dialog synthesis ap-
proach are two phases shown in Figure 1 and described be-
low:

Templatized Transformation

Invitation_detail

Documentation.url
Topic.topic_detail

Response.user_response
Response.suggest_alternate
Response.amend_invitation

Invitation_detail
Topic.topic_detail

Response.user_response

Invitation_brief

Call.number
Topic.topic_info

G G’

G G’ G G’ G G’

G G’

G G’

G G’

Endpoint-specific
dialog mappings

Specialization Repository

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

D
ialog

C
om

ponent

Phase I

Phase II

Phase II

Figure 1: MTS: Model Transformation Templatization
and Specialization

• Phase I: SCV analysis. In this offline phase, devel-
opers analyze their transformations and identify their
commonalities and variabilities across workflow struc-
ture patterns, various attribute values, and mapping
rules. The result of this analysis phase is fed into the
transformation in terms of a simple constraint nota-
tion specification discussed in detail in Section 4.1.1.
This phase is similar to coding templatized functions
in C++ that captures the pattern of the code to be gen-
erated later by the compiler.
• Phase II: Transformation specialization. In this

phase, the developers use higher order transforma-
tions defined in MTS to generate a variability meta-
model (VMM) from their templatized model transfor-
mations. VMM is useful in creating a specialization
repository of a particular product-line and is created in
terms of VMM models. The specialization repository

4

Dialog

-active_endpoint : ENDPOINT = OFFICE_PHONE
User_endpoint

-topic_info : string
-topic_detail : string

Topic

-info : string
Invitation_brief

-url : string
-brief_text : string

Documentation
-user_response : RESPONSE
-suggest_alternate : Employee = NULL
-amend_invitation : Amend

Response

+CELL_PHONE
+WEB_BROWSER
+OFFICE_PHONE
+IM
+PAGER

«enumeration»
ENDPOINT -detail_invitation_info : string

-meeting_date : Date
-meeting_time : Time

Invitation_detail

Invitation

-day : long
-month : long
-year : long

Date

-hour : long
-minute : long

Time

+YES
+NO
+CHANGE
+SUGGEST

«enumeration»
RESPONSE

-change_date : Date
-change_time : Time
-change_modality : ENDPOINT

Amend

-name : string
-eid : long

Employee

1

1

1

1

1

1

1

1

1

1

-number : long
Call

1

1

Figure 2: Generic dialog structure for supporting enterprise communication

contains a VMM model for each communication end-
point. A combination of templatized transformation
and a VMM model (corresponding to that endpoint)
is used for generating the communication dialog for
a specific endpoint. This phase is similar to template
instantiation in C++ when the compiler automatically
generates the code specific to the actual type of param-
eters passed to a template function.

We have used the Generic Modeling Environment
(GME) [15] as the modeling environment in MTS. GME
provides a general-purpose editing engine, a separate view-
controller GUI, and a configurable persistence engine.
GME is meta-programmable, and thus the same environ-
ment used to define modeling languages is also used to build
models, which are instances of the metamodels.

For defining transformation rules we have used the
Graph Rewriting And Transformation (GReAT) [9] lan-
guage. GReAT is developed using GME and can be used to
define model-to-model transformation rules using its visual
modeling language. It also provides the GReAT Execution
Engine (GR-Engine) for execution of these transformation
rules for generating target models.

Model transformations in GReAT require source and tar-
get domain-specific modeling languages (and their corre-
sponding metamodels). A transformation developer uses
the GReAT visual transformation language to define vari-
ous translation rules in terms of patterns of input and out-
put modeling objects. Finally, developers execute GReAT’s
transformation engine called GR-engine that translates an
input model using the specified rules into an output model.
The remainder of this section describes the details of our
approach.

4.1 Applying MTS for Context-Sensitive Dialog
Synthesis

In this section, we first explain the details of a generic di-
alog generated by the workflow which acts as the input for
our templatized transformation. We then discuss the con-
straint notation in MTS, and how it can be used for separat-
ing transformation variabilities for our customizable map-
pings. Finally, we show how VMM models in the special-
ization repository are incorporated into the middleware to
yield context-sensitive dialogs for individual endpoints.

4.1.1 Phase I: SCV Analysis

Figure 2 shows a simplified UML notation of a generic
dialog in an enterprise workflow in the Hermes middle-
ware. The following are some of the properties/attributes
in this communication dialog: (1) User_endpoint in-
dicates the most active endpoint the employee has used, (2)
Call specifies a number to call to retrieve a dialog, (3) Do-
cumentation contains further details about documenta-
tion pertaining to the claim in question, (4) Topic specifies
details about the claim itself, (5) Invitation contains
details about a conference call for discussing the claim, and
(6) Response allows an employee to reply to the invita-
tion in the current dialog.

Additionally, the Response element allows an em-
ployee to suggest an alternate employee that can be con-
tacted about the claim in question. The latter can be done
by setting user_response to FALSE and populating
the suggest_alternate attribute with an appropriate
value. Similarly, a user can send a request for a modified
invitation to the workflow that initiated this dialog by using
the amend_invitation enumerated data type.

As a first step in the automated synthesis of dialogs,
we must first determine the commonalities and variabili-
ties across the elements (instances). In our model transfor-
mations approach the commonalities constitute the templa-

5

Table 1: Dialog profiles for representative communication endpoints

Communication Dialog properties/Attributes
endpoint Modality Commonalities Variabilities

invitation_detail, meeting_date,
Cell phone/Office phone VXML invitation_info, topic_info, meeting_time, user_response,

User_endpoint topic_detail, claim_id, customer_name,
customer_id, claim_date

invitation_info, topic_info,
Pager text User_endpoint call

user_response, suggest_alternate,
Web browser SMIL invitation_info, topic_info, Documentation, invitation_detail,

User_endpoint meeting_date, meeting_time,
topic_detail, claim_id, customer_name,

customer_id, claim_date, amend_invitation

tized transformation rules while the variabilities constitute
the specializations. This is achieved via the SCV analysis.

SCV analysis for Dialog profiles (i.e., properties nec-
essary to create a dialog for an endpoint) are shown in
Table 1 for three representative communication endpoints.
The Modality field in the Table is a static characteristic of
an endpoint and indicates the communication type used to
deliver the dialog. Notice that a given endpoint may sup-
port more than one modality. The modality clearly affects
the format and rendering of a dialog. For example, VXML
and SMIL are W3C standard XML formats for designing in-
teractive voice- and multimedia-based dialogs, respectively.
As shown in Table 1, cell phones and office phones use
VXML while Web browsers use the SMIL modality. Note
that the modality will affect the format and rendering of a
dialog.

In Table 1, all profiles contain at a minimum the
invitation_info, topic_info and User_endp-
oint attributes. However, only the cell phone, browser,
and office phone endpoint profiles contain all of the at-
tributes in the Topic and Invitation elements of a di-
alog. Only the Web browser endpoint allows the user to
respond with an alternate employee that can be contacted
for the claim in question, or request a change in the invi-
tation, and can optionally present documentation about the
claim. Similarly, the Call element is present only for a
pager. Note that the User_endpoint attribute is com-
mon for all endpoint profiles and is used in selecting the
appropriate VMM in the specialization repository. We will
explain the details on this model selection in Section 4.1.2.

The results of the SCV analysis must then be mapped
to templatized transformation rules (for the commonalities)
and constraint specifications (for the variabilities). For ex-
ample, during our synthesis of a dialog family the com-
mon model elements in Table 1 get mapped directly from a
generic dialog in Figure 2. The variabilities from our SCV
analysis results, on the other hand, must be incorporated
into the transformation so that they can be subsequently
used by MTS. In our insurance case study, the variabilities
can be categorized as follows:

a. Compositional variabilities, where model elements
in each family instance/member are different and vari-
ability stems from these instances getting composed
using distinct model elements. For example, com-
positional variability exists between pager and Web
browser endpoints. Recall from Table 1 that the di-
alog profile of a pager endpoint consists of Call,
Invitation, Topic, and User_endpoint ele-
ments. On the other hand, the profile of a Web browser
endpoint is composed of Invitation, Topic,
Response, Documentation, and User_endp-
oint elements.

b. Qualitative variabilities, where two family instances
may share a common model element but not the ab-
solute values of attributes of that element. The term
quality here refers to what a system model describes
as a whole, which is a collective aggregate of val-
ues of all of its attributes. Thus, even though the
Response element is present in both the cell phone
and the Web browser, the suggest_alternate
and amend_invitation attributes are not applica-
ble and are omitted for the cell phone (because of lim-
ited capabilities of the endpoint). For a Web browser
endpoint, however, these attributes can be used in its
dialog and are available. A similar variability exists
for the attributes of the Invitation element for the
office phone and pager endpoints.

In our MTS approach, the constraint notation specifica-
tion is inserted as a special comment in the transformation
rules that is transparent to the GR-engine and thus does not
interfere with the engine’s execution and translation logic.
The constraint specification captures the variabilities in a
model transformation as simple implication relations be-
tween the source and target model elements. In our in-
surance case study both the source and target model ele-
ments belong to the Dialog modeling language and hence
the same input dialog specification is specialized and trans-
formed into a dialog for individual endpoints. As such, the
variabilities are captured in terms of generic dialog model
elements. Below we show excerpts from a complete con-

6

straint specification for capturing the variabilities that we
discussed in Items (a) and (b) above:

Sequencing {
....
....

}
Compositional {

Call
Documentation

}
Qualitative {

Response.user_response
Response.suggest_alternate
Response.amend_invitation
Invitation.invitation_info
Invitation.invitation_detail
Invitation.meeting_date
Invitation.meeting_time

}

The specification is quite self explanatory – the
Qualitative block captures all the attributes while the
Compositional block captures all the model elements
that vary between family members. The Sequencing
block is used later in the specialization in Phase II and will
be explained in Section 4.1.2.

4.1.2 Phase II: Transformation Specialization

We now describe the higher order transformation in GReAT
that we have developed that auto-generates the variabil-
ity metamodel (VMM) from the constraint specification in
templatized transformation. The current version of this
transformation contains ∼83 rules and operates on GME
and GReAT metamodels, the templatized transformation it-
self, and source and target modeling languages (of a templa-
tized transformation). Algorithm 1 gives some of the trans-
lation rules in this higher order transformation.

The auxiliary function initializeV MM(V) on Line 5 cre-
ates VMM V and initializes its attributes required in order
to define a new language in GME. As shown in the Algo-
rithm, for all the compositional mappings in the transfor-
mation, the source and target patterns are read in Lines 13
and 18. Next the types of each modeling object, for both
source and target patterns is found by parsing the respective
modeling languages as shown in Lines 15 and 20. The type
information is used to create appropriate modeling objects
corresponding to the specified source and target patterns in
Lines 16 and 21. A similar approach is taken in generat-
ing modeling objects in VMM for qualitative variabilities
in constraint specification as shown in Lines 25–42. Ad-
ditionally, attributes of the corresponding modeling objects
are also created as shown in Lines 31–33 and Lines 38–40.

Thus, when higher order transformation represented by
Algorithm 1 is applied to the transformation for our in-
surance case study from Section 4.1.1, a VMM is gener-
ated automatically for the dialog family. Figure 3 shows
a screenshot of the generated VMM in GME. In this Fig-
ure, InputPattern denotes the source language pat-

Algorithm 1: Higher order transformation algorithm
for generating family-specific VMM from constraint
specification
Input: source modeling language S, target modeling language T , set of

templatized transformation rules R
Output: variability metamodel V
begin1

transformation rule r; constraint notation block cnb; set of constraint2
notation blocks CNB;
compositional variability cm;set of compositional variabilities CM;3
qualitative variability qm;set of qualitative variabilities QM; pattern p;
modeling object ob; attribute at; modeling object type type;attribute type
atttype;
integer c;4
initializeV MM(V);5
foreach r ∈ R do6

if r.cnb() 6= /0 then7
CNB← r.cnb();8

foreach cnb ∈CNB do9
if cnb.compositionalMappings() 6= /0 then10

CM← cnb.compositionalMappings();11
foreach cm ∈CM do12

p← cm.SRC();13
foreach ob ∈ p do14

parseLanguage(S,ob, type);15
createSRCOb ject(V,ob, type);16

end17
p← cm.T RGT ();18
foreach ob ∈ p do19

parseLanguage(T,ob, type);20
createT RGTOb ject(V,ob, type);21

end22
composeVariabilityAssociation(V)23

end24
if cnb.qualitativeMappings() 6= /0 then25

QM← cnb.qualitativeMappings();26
foreach qm ∈ QM do27

p← qm.SRC();28
foreach ob ∈ p do29

parseLanguage(S,ob, type);30
createSRCOb ject(V,ob, type);
foreach at ∈ ob do31

parseOb ject(ob,at,atttype);32
createSRCAttribute(V,ob,at,atttype);

end33
end34
p← qm.T RGT ();35
foreach ob ∈ p do36

parseLanguage(T,ob, type);37
createT RGTOb ject(V,ob, type);
foreach at ∈ ob do38

parseOb ject(ob,at,atttype);39
createT RGTAttribute(V,ob,at,atttype);

end40
end41
composeVariabilityAssociation(V)42

end43
end44

end45
end46

tern (e.g., it is generated in Algorithm 1 in Lines 13–16)
while OutputPattern denotes the target language pat-
tern (e.g., it is generated in Algorithm 1 in Lines 18–21).
As stated earlier, since the same input dialog specifica-
tion is refined as it is transformed in our case study, the
InputPattern model does not contain any elements.

Variabilities are separately modeled and contained in
the Compositional and Qualitative elements. The
specialization repository can now be easily synthesized by

7

Attributes can be
modified in VMM

models as opposed to
transformation rules

Compositional
elements generated

without attributes

Pattern corresponds to
a single constraint

specification in Phase
I; typically, a VMM
contains more than

one pattern

Figure 3: Auto-generated variability metamodel using SCV analysis results from Phase I

developers in terms of VMM models, where each model
captures an individual dialog profile (for example, as shown
in Table 1). Finally, VMM models are used in conjunc-
tion with our original (templatized) transformation to create
context-sensitive dialogs as shown in Figure 1.

4.2 Discussion

The mappings from workflow decision points to dialogs
are highly use case-specific and largely depend on the char-
acteristics of individual dialog family members. The ren-
dering of communication dialogs can be affected for indi-
vidual endpoints by modifying the specialization repository
instance at modeling level (i.e., the VMM model for that
endpoint). In particular, we showed how static characteris-
tics of an endpoint (in our example its modality), can be be
used to format dialogs.

Our approach can easily be extended to include dy-
namic endpoint information, such as current data connec-
tivity levels (bandwidth) or remaining battery power, sim-
ply by updating the specialization repository. For exam-
ple, Table 2 shows two dialog profiles for handheld devices.
The handheld_1 profile can be used for devices known
to have sufficient battery and bandwidth. On the other hand,
handheld_2 does not contain detailed claim information
and therefore is more applicable for devices with low batter
power and bandwidth.

With MTS it is possible to control the degree of flexi-
bility in responding to an invitation. Thus, on one hand, it
can be used to define a wide range of response options set
for the Web browser endpoint, and on the other, a minimal
response options set (with only "Yes" and "No" allowed op-
tions) for the cell phone. Some of these response options

Table 2: Using dynamic endpoint characteristics in dialog
formatting & rendering

comm. endpt. modality Dialog Prop./Attribs.
invitn_detail, meeting_date,

invitn_info, topic_info,
meeting_time, user_resp.,

handheld_1 text User_endpt., topic_detail, claim_id,
Doc., amend_invitn.,

customer_id, claim_date,
customer_name,
suggest_altern.

handheld_2 text invitation_info, topic_info,
user_response, User_endpoint

are dictated by the type of endpoints (e.g., options such as
suggest_alternate and amend_invitation can
not be used for the pager endpoints). For others however,
the transformation developers need to perform a careful
tradeoff analysis, between providing a rich feature set and
increasing employee productivity. MTS allows rapid syn-
thesis of dialogs (e.g., each with a separate response set)
and thus can be a very effective tool in a tradeoff analysis.

Finally, using VMM models for specifying variability
in dialog synthesis allows developers to reuse dialog cus-
tomization mapping rules for new endpoints. In addition,
VMM offers the following advantages: (1) both transfor-
mations and VMM models can evolve independently, and
(2) changes in requirements for dialogs targeted at a partic-
ular endpoint does not require recompilation of the model
transformation.

5 Related Work

We categorize related research into: (1) domain-space
research i.e., work that has attempted to address dynamic

8

dialog customization and synthesis, and (2) solution-space
research i.e., work that specifically deals with model trans-
formation reuse.
Context-sensitive dialog synthesis techniques: Research
presented in [4, 3] discusses how user interfaces can be cus-
tomized based on user context information. The authors
employ a model-based development process to model user
communication (in terms of interactions) with a context-
aware system. Services such as context-sensitive guided
tours using users’ mobile devices can be developed using
their prototypical approach.

A number of context-aware services and frameworks
have been proposed over the years [6, 19, 16] that incorpo-
rate users’ location and availability, and awareness informa-
tion while establishing communications between them. For
example, the connector service in [6] aims at establishing
communication between two users at the most appropriate
time, using the most appropriate endpoints, and takes fac-
tors such as physical location, social relations and current
state of the users into account [6]. Our previous work in
this area [12] discussed a Web browser-based dialog system
that facilitated user communications in response to events
in the enterprise workflow so as to improve and accelerate
decision-making.

In contrast to the above body of work, our paper focuses
on customizing dialogs such that they can be appropriately
rendered on user endpoints. Our work can be used in con-
junction with user interface customization approaches such
as [4] when different kinds of user endpoints are allowed to
use the context-aware service.
Model transformation reuse & templatization tech-
niques: The model driven architecture (MDA) [17, 13]
development process is centered around defining appli-
cation platform-independent models and applying (typed,
and attribute augmented) transformations to these mod-
els to obtain application platform-specific models. In the
context of MDA, requirements and challenges in generat-
ing specialized transformations from generic transforma-
tions are discussed in [14]. Existing model transforma-
tion toolchains [18, 7, 2] provide some support for develop-
ment of higher order transformations – PROGRES and ATL
allow specification of type parameters while VIATRA al-
lows development of meta-transformations i.e., higher order
transformations that can manipulate transformation rules
(and hence, model transformations).

Reflective model driven engineering (MDE) ap-
proach [1] proposes a two dimensional MDA process by
expressing model transformations in a tool- or platform-
independent way and mapping (i.e., transforming) this
expression into actual tool- or platform-specific model
transformation expressions. Although reflective MDE
focuses on having durable transformation expressions that
naturally facilitate technological evolution and develop-

ment of tool-agnostic transformation projects, mappings
still have to be evolved (i.e., modified) with change in
platform-specific technologies. MTS on the other hand,
is concerned with managing and evolving model transfor-
mation variability in systems developed using an MDA
process. Parameterization techniques supported by MTS
can be highly effective in managing variability of mappings
from platform-independent to specific forms in the context
of the above body of work.

An aspect-oriented approach to managing transforma-
tion variability is discussed in [21, 20] that relies on cap-
turing variability in terms of models and code generators.
In essence, using the aspect-oriented approach requires de-
velopers to learn a new modeling language for creating as-
pect models for their product-line. In contrast, MTS gener-
ates VMM from variability specification in the templatized
transformation to automate the entire process. The popu-
lation of VMM models itself, as shown in Section 4, does
not involve learning an entirely new language since all its
modeling objects are part of a source (or target) modeling
language of the transformation.

6 Conclusion

In this paper we discussed a model transformation-based
approach to customizing dialogs between enterprise work-
flows and users to a variety of user communication end-
points, from cell phones to Web browsers to office phones.
Our two-phase approach to dialog specialization offers
the following benefits: (1) It allows developers to sepa-
rate variabilities in their dialog mappings in Phase I such
that templatized model transformations can be developed.
(2) Through use of VMM models in the specialization
repository in Phase II, developers can easily create family
instance-specific dialogs for individual endpoints, and ex-
tend existing mappings such that dialogs for new endpoints
could be synthesized.

The following is a summary of lessons learnt from our
work:
•Mapping of workflows to context-sensitive commu-

nication is essential to rapid decision-making in enter-
prises. With the increasing reliance on automated processes
in enterprises, there is an immediate need to accelerate the
communication between workflows and enterprise employ-
ees. Such communication enables employees to make in-
formed business decisions with lesser "turnaround time",
which ultimately leads to increased overall productivity and
efficiency of the enterprise. Our MTS approach provides a
simple, extensible solution to context-sensitive dialog cre-
ation. The templatized transformation together with the
specialization repository are useful in automatically map-
ping workflow decision points onto appropriate dialogs.
Since the variabilities are expressed as VMM models, addi-

9

tion of dialogs, corresponding to new endpoints introduced
in the enterprise, can be achieved simply by creating a new
VMM model.
• Templatized transformations & specializations can

be more widely applicable to development of PLAs in
other domains. The MTS approach in this work has been
demonstrated specifically in the context of context-sensitive
dialog synthesis. However, the MTS toolchain, its vari-
ous development processes and artifacts are not domain-
specific and can be re-targeted for other domains. Thus, the
toolchain itself can be applied in general to any product-line
development scenario, without requiring any change. An
effort is underway in applying the MTS approach to config-
uration of heterogeneous component-based distributed ap-
plications [11, 10].

In the future we plan to apply our MTS approach to more
complex customizable mappings. In our ongoing work, we
are extending our approach to allow customization of con-
nectors that map abstract communication primitives (exam-
ples of such primitives include "set up a conference call",
or "call an available expert on Java") generated by the Her-
mes workflows to the concrete underlying communications
infrastructure.

MTS is available in open source as part of the CoS-
MIC MDE tool suite from www.dre.vanderbilt.
edu/cosmic.

References

[1] J. Bézivin, N. Farcet, J.-M. Jézéquel, B. Langlois, and
D. Pollet. Reflective Model Driven Engineering. In Proceed-
ing of The 5th International Conference on Unified Model-
ing Language, Modeling Languages and Applications, pages
175–189, Oct. 2003.

[2] J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E. Rougui.
First Experiments with the ATL Model Transformation Lan-
guage: Transforming XSLT into XQuery. In Companion
of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2003. ACM, 2003.

[3] T. Clerckx, K. Luyten, and K. Coninx. Dynamo-aid: A
Design Process and a Runtime Architecture for Dynamic
Model-based User Interface Development. In Engineering
Human Computer Interaction and Interactive Systems Lec-
ture Notes in Computer Science, volume 3425/2005, pages
77–95. Springer Berlin/Heidelberg, July 2005.

[4] T. Clerckx, C. Vandervelpen, K. Luyten, and K. Coninx. A
Prototype-Driven Development Process for Context-Aware
User Interfaces. In Task Models and Diagrams for Users In-
terface Design Lecture Notes in Computer Science, volume
4385/2007, pages 339–354. Springer Berlin/Heidelberg,
Aug. 2007.

[5] J. Coplien, D. Hoffman, and D. Weiss. Commonality and
Variability in Software Engineering. IEEE Software, 15(6),
November/December 1998.

[6] M. Danninger, G. Flaherty, K. Bernardin, H. K. Ekenel,
T. Köhler, R. Malkin, R. Stiefelhagen, and A. Waibel. The
Connector: Facilitating Context-aware Communication. In
Proceedings of the 7th International Conference on Multi-
modal Interfaces (ICMI 2005), pages 69–75, Trento, Italy,
Oct. 2005. ACM.

[7] G. Csertán and G. Huszerl and I. Majzik and Z. Pap and A.
Pataricza and D. Varró. VIATRA: Visual Automated Trans-
formations for Formal Verification and Validation of UML
Models. In Proceedings of 17th IEEE International Confer-
ence on Automated Software Engineering, pages 267–270,
Edinburgh, UK, 2002. IEEE.

[8] A. John, R. Klemm, A. Mani, and D. Seligmann. Hermes:
A Platform for Context-Aware Enterprise Communication.
In Proceedings of the 3rd International PerCom Workshop
on Context Modeling and Reasoning (CoMoRea), Pisa, Italy,
Mar. 2006. IEEE.

[9] G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the
Use of Graph Transformations in the Formal Specification
of Computer-Based Systems. In Proceedings of IEEE TC-
ECBS and IFIP10.1 Joint Workshop on Formal Specifi-
cations of Computer-Based Systems, Huntsville, AL, Apr.
2003. IEEE.

[10] A. Kavimandan and A. Gokhale. A Parameterized Model
Transformations Approach for Automating Middleware QoS
Configurations in Distributed Real-time and Embedded Sys-
tems. In Proceedings of ASE Workshop on Automating Ser-
vice Quality, (WRASQ 2007), Atlanta, GA, Nov. 2007.

[11] A. Kavimandan and A. Gokhale. Automated Middleware
QoS Configuration Techniques using Graph Transforma-
tions. Technical Report ISIS-07-808, Institute for Software
Integrated Systems, Vanderbilt University, Nashville, TN,
May 2007.

[12] A. Kavimandan, R. Klemm, A. John, D. Seligmann, and
A. Gokhale. A Client-Side Architecture for Supporting
Pervasive Enterprise Communications. In Proceedings of
the IEEE International Conference on Pervasive Services
(ICPS) 2006, Lyon, France, June 2006. IEEE.

[13] A. Kleppe, J. Warmer, and W. Bast. MDA Explained:
The Model Driven Architecture(MDAT M): Practice and
Promise. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, Apr 2003.

[14] J. Kovse. Generic Model-to-Model Transformations in
MDA: Why and How? In Proceeding of 1st OOPSLA
Workshop on Generative Techniques in the context of Model
Driven Architecture, Nov. 2002.

[15] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom,
J. Sprinkle, and G. Karsai. Composing Domain-Specific De-
sign Environments. IEEE Computer, pages 44–51, Novem-
ber 2001.

[16] A. E. Milewski and T. M. Smith. Providing Presence Cues to
Telephone Users. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW 2000), pages
89–96, Philadelphia, PA, Dec. 2000.

[17] Object Management Group. Model Driven Architecture
(MDA), OMG Document ormsc/2001-07-01 edition, July
2001.

[18] A. Schürr, A. J. Winter, and A. Zündorf. Progres: Language
and environment. In H. Ehrig, G. Engels, H. Kreowski, and
G. Rozenberg, editors, Handbook on Graph Grammars and
Computing by Graph Transformation: Applications, Lan-
guages, and Tools, pages 487–550. World Scientific Publish-
ing Company, 1999.

[19] J. C. Tang, N. Yankelovich, J. Begole, M. V. Kleek, F. C.
Li, and J. R. Bhalodia. ConNexus to Awarenex: Extend-
ing awareness to mobile users. In Proceedings of the Inter-
national Conference on Computer Human Interaction (CHI
2001), pages 221–228, Seattle, WA, Apr. 2001. ACM.

[20] M. Voelter and I. Groher. Handling Variability in Model
Transformations and Generators. In Companion to the An-
nual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA
2007), Montréal, Canada, October 2007. ACM.

[21] M. Voelter and I. Groher. Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development.
In Proceedings of the 11th Annual Software Product Line
Conference (SPLC), Kyoto, Japan, Sept. 2007.

10

