
MoPED: A Model-based Provisioning Engine for
Dependability in Component-based Distributed

Real-time Embedded Systems
Sumant Tambe
Dept. of EECS

Vanderbilt University
Nashville, TN, USA

sutambe@dre.vanderbilt.edu

Akshay Dabholkar
Dept. of EECS

Vanderbilt University
Nashville, TN, USA

aky@dre.vanderbilt.edu

Aniruddha Gokhale
Dept. of EECS

Vanderbilt University
Nashville, TN, USA

gokhale@dre.vanderbilt.edu

Abstract—Developing dependable distributed real-time and
embedded (DRE) systems incurs significant complexities in the
tradeoffs resulting from the different conflicting attributes of
dependability, such as predictability, availability, and security.
In component-based systems, these challenges are exacerbated
since the tradeoffs must faithfully be reflected within the complex
metadata descriptors used to compose, deploy and configure the
system. The benefits of design-time approaches to address these
problems are well-understood. Existing model-driven design-
time tools for developing dependable systems, however, focus
largely on only one dependability attribute at a time and lack of
extensibility results in rigid and hard to maintain tool support.

This paper describes MoPED (Model-based Provisioning En-
gine for Dependability), which is a model-driven framework that
unifies reasoning about predictability, availability, and security
requirements for developing dependable component-based DRE
systems. We evaluate the capabilities of MoPED using a repre-
sentative case study and show how it alleviates complexities in
the design of dependable systems and reduces manual efforts in
the deployment phase by an order of magnitude.

I. INTRODUCTION

Emerging trends and challenges. Component-based soft-
ware engineering supported by middleware technologies (e.g.,
CORBA Component Model (CCM)) have emerged as a
preferred way of developing distributed real-time and em-
bedded (DRE) systems, such as shipboard computing sys-
tems, enterprise security and hazard sensing systems, and
intrusion-tolerance systems. These systems consist of applica-
tions whose quality of service (QoS) requirements – notably
predictability, availability, and security, must be satisfied si-
multaneously to ensure dependable operation [2], [14].

Prior research has focused on design- and run-time solutions
to address the problem of assuring dependability of distributed
systems. For example, OMG’s Model-driven Architecture
(MDA) and UML profiles can provide design-time solutions
to model either (1) predictability requirements [19], (2) avail-
ability requirements [5], [8] and (3) security requirements [4],
[11] to perform predictive analysis of a system’s dependability
properties. Likewise, MEAD [15] and ARMOR [12] provide
run-time solutions for dynamic adaptation of fault-tolerance
properties in response to changing resource availabilities.

For correct dependable operation of DRE systems, however,
multiple dependability attributes must often be simultaneously
satisfied. There are inherent challenges in satisfying multiple
dependability attributes together due to tradeoffs and conflicts
between them. For example, deploying replicas of a service
on hosts that are unauthorized to access by clients may result
in unavailability of the service to its clients on failure of the
primary service. It is hard to detect and analyze these errors
at runtime, which motivates the need to catch as many errors
at design-time as possible. The design-time tools must be able
to reason about the inherent tradeoffs and conflicts between
multiple dependability attributes.

In addition to addressing such inherent challenges, acciden-
tal complexities are incurred due to complexity of managing
metadata that compose, deploy and configure the systems on
the underlying component-based middleware in accordance
with design-time tradeoffs. Developers must supply correct
metadata to ensure that the system satisfies its dependability
requirements. These accidental complexities are exacerbated
since component-based middleware provides multiple levels of
granularity, such as the component-level, port-level, assembly-
level and connection-level, at which dependability attributes
can apply.

Solution approach → Unified dependability modeling
and reasoning using model-driven engineering. To ad-
dress the challenges above, we have developed a model-
driven engineering (MDE) design tool called Model-based
Provisioning Engine for Dependability (MoPED) that provides
high level, intuitive abstractions to model and reason about
the availability and security requirements while maintaining
predictability. MoPED provides a domain-specific modeling
language (DSML) for modeling the key architectural abstrac-
tions of component-based systems and their dependability
requirements expressed as availability and security attributes.
Moreover, it bridges the gap between high-level system re-
quirements and configuration of low-level middleware mech-
anisms.

Paper organization. The remainder of the paper is orga-
nized as follows: Section II motivates the need for a design-



time modeling and reasoning tool such as MoPED via a
detailed case study; Section III describes the challenges we
faced in the case study and how we address them using
MoPED; Section V quantitatively evaluates MoPED in the
context of the case study; Section VI compares MoPED with
related work; and Section VII presents concluding remarks.

II. SATISFYING DEPENDABILITY REQUIREMENTS OF DRE
SYSTEMS: A CASE STUDY PERSPECTIVE

Figure 1 shows a representative DRE system in an office en-
terprise security and hazard sensing environment. This section

Fig. 1. An Enterprise Security and Hazard Sensing System

describes key inherent and accidental challenges that must be
met at design-time when addressing dependability criteria for
such DRE systems.
(1) System deployment and configuration. Deploying and
configuring office enterprise security and hazard sensing sys-
tems involves addressing the following requirements of its
constituent subsystems:

a. Business application subsystem. Figure 1 shows Busi-
ness Accounting and Employee Payroll application compo-
nents, enterprise servers (email and web servers), and em-
ployee terminal components that must be deployed in the Busi-
ness security subdomain.

b. Security surveillance and hazard sensing subsystem.
Figure 1 shows the server, parking camera controllers and
user interface components of the security guard monitors.
The software components belonging to this subsystem must
be deployed in the Sensor security subdomain, which has
stricter access control policies than Business security subdo-
main where normal business operations run. Moreover, the
criticality of this subsystem requires it to be highly available
and predictable. Individual tasks in the sensor application, such
as the fire sensor task, sensor controller task, and the display
task have end-to-end soft real-time deadlines, which must be
met in all but exceptional (failure) scenarios.
(2) Security and availability tradeoffs. The system has
multiple users organized into a hierarchy of roles, such as
administrator, developer, manager, and regular employees.
Although Business and Sensor security subdomains separate
the two subsystems, components in one security subdomain
often require access to components deployed in the other

security subdomain. For example, access control policies
should allow access to the parking camera controller from
employee terminals but prohibit access to the server camera
controller. Similarly, network administrators may have access
to the server camera controller but not to the fire sensor
controller, which is accessible only to the security guard
monitors.

Along with the security access control requirements, avail-
ability requirements of the enterprise office system requires
replication of critical software components to improve avail-
ability. For example, the Business Accounting and Employee
Payroll components should be replicated. To avoid violating
security requirements, however, these components must be
deployed on hosts belonging to the same security subdomain.

In the various use cases above, it is tedious and error-
prone to transform the high-level dependability requirements
of the scenario described above into declarative metadata that
configures low-level component middleware mechanisms. This
process is even more complicated when security and availabil-
ity attributes must be handled simultaneously. In the following
section, we show how MoPED resolves these challenges.

III. MODEL-BASED PROVISIONING FOR DEPENDABILITY

This section describes the design of Model-based Provision-
ing Engine for Dependability (MoPED), which is a modeling
framework that allows component-based system developers to
express dependability design intent at different levels of gran-
ularity using intuitive visual representations. MoPED is devel-
oped using the Generic Modeling Environment (GME) [13],
which is a meta-programmable tool for developing DSMLs.
MoPED provides three main capabilities: (1) domain-specific,
QoS modeling support, (2) unified availability and security
modeling support, and (3) ensuring predictability of the real-
time components using schedulability analysis.

.

A. DSML Support for Dependability Using MoPED

We now identify the need for a domain-specific approach
for modeling QoS attributes of dependability. We describe our
solution approach based on a feature model [7] of component-
based systems.

1) Challenge: Dependability modeling support for
component-based systems: Non-functional DRE system
requirements, such as availability and security, must be
satisfied to ensure their dependable operation. For example,
caller access rights must be verified before invoking a method
on a component protected by access control policies. These
non-functional requirements manifest themselves at several
levels of granularity, such as methods, ports (interfaces),
components, and component assemblies. Similarly, availability
requirements are typically applied at component or assembly
level in terms of the number of replicas desired.

A domain-specific approach can help capture the require-
ments of dependable systems. This approach should leverage
rich component-based abstractions and composition mecha-
nisms provided by nearly all component platforms. When the



Fig. 2. Different Levels of Granularity for Dependability Specification.

choice of implementation technology is made, dependability
requirements should be transformed into mechanisms and
policies of the selected component technology.

2) Resolution: A component-based approach for modeling
dependability requirements.: MoPED leverages the Compo-
nent Quality of Service Modeling Language (CQML) [25]
DSML that provides a feature model based on mandatory
and optional features present across contemporary component-
based middleware infrastructures. Contemporary component
infrastructures, such as EJB, CCM support all the mandatory
CQML features such as components, connections, remotely
invocable methods, and a notion of deployment. Moreover,
CCM supports the optional CQML features (e.g., port and
assembly) as well. Hence, MoPED can be used to model de-
pendability requirements for target component infrastructures
that support all the mandatory features, and optionally ports
and assembly. The abstract CQML QoS elements form the core
of the unified dependability modeling capabilities of MoPED’s
DSML. Moreover, these abstract QoS elements serve as the
points of extension, expressed using subtype relationship in
the QoS modeling framework.

Concrete models for availability and security attributes are
defined in CQML as extensions of the QoS modeling frame-
work. Availability requirements, such as number of replicas,
are captured using a FailOverUnit, whereas security access
control requirements are captured using PortSecurityQoS, As-
semblySecurityQoS, ComponentSecurityQoS, and MethodSe-
curityQoS. Section III-B describes the availability and security
semantics that these concrete models capture. The subtype
relationship allows the FailOverUnit and other security models
to reuse generic syntactic and semantic constraints defined on
their parent abstract QoS types, giving rise to a consistent and
unified dependability modeling environment.

B. Modeling Security and Availability Requirements Simulta-
neously

Experience has shown that integrating security features
into a fault-tolerant system and vice versa should not be an
after thought. It is much more complicated than pre-planning
desired dependability and security features during a project’s
specification phase.

1) Challenge: Lack of unified modeling support.: Depend-
ability comprises multiple attributes, such as availability and
security, that must all be assured simultaneously for proper
system operation. Modeling individual dependability attributes
independently and reasoning about them in isolation can yield

systems that do not meet their QoS objectives when deployed.
It is therefore important model and reason about dependability
capabilities simultaneously.

A challenge in developing integrated modeling support
stems from the fact that dependability measures are often
tangled with each other and cross-cut with the primary func-
tional dimension of system decomposition. Formal approaches
addressing this challenge have limited success in protocol
analysis [22] and dependability evaluation [16] due to the
difficulty in using formal approaches without strong tool
support. Below we describe how MoPED simplifies unified
dependability modeling by means of intuitive abstractions and
tool supported guidance to modelers.

2) Resolution: Unified dependability modeling using
MoPED.: Based on the QoS modeling framework of CQML,
MoPED’s DSML provides concrete QoS models that capture
availability and security requirements of a component-based
system at different levels of granularity, such as components,
connections, methods and optionally ports and assemblies.
Constraints written in the Object Constraint Language (OCL)
help designers avoid modeling conflicting availability and
security design decisions.

(1) Modeling availability requirements. Unlike the tradi-
tional client/server model of designing distributed systems,
component-based systems often have more than one com-
ponent arranged in a workflow-like pattern (assembly) to
realize critical application functionality. To simultaneously
meet the predictability and availability requirements of the
end-to-end application workflows, group-failover [23] protocol
has been developed. In the event of a failure, group-failover
protocol allows the clients to failover to a replica assembly
to maintain the state consistency and timeliness of application
data. Therefore, the granularity of protection for component-
based systems is a group of components (assembly), which
could be part of a single process or spread across multiple
processes on multiple machines.

Fig. 3. Availability Requirements Modeling Using MoPED

A FailOverUnit is the key availability modeling abstrac-
tion supported in MoPED that controls the granularity of
protection. One or more components and assemblies can be



associated with a FailOverUnit. For example, as shown in
Figure 1, our case study has two critical components of an
intranet application namely, Employee Payroll and Business
Accounting. If one component fails, the assembly needs to
fail over to its replica.

In the MoPED’s design environment, the modeling of
FailOverUnit is done in the QoS view, which avoid tangling
of availability concerns with the composition concerns at
modeling time. Moreover, a FailOverUnit does not require
modeling of replicas; only the desired number of replicas (i.e.,
the replication degree) need be provided. Depending upon the
replication degree, MoPED tool chain generates the necessary
number of replicas of the assembly and all its constituent
components automatically. While doing so, it also automat-
ically generates complex connection topology interconnecting
the generated components, which is dictated by the replication
degree of the primary component and replication degree of
components that it interacts with. A detailed discussion of
the model transformation algorithms that generate the replica
component topologies and complex interconnections between
them are described in [24], [26].

(2) Modeling security requirements. Since security is an
essential aspect of a dependable component-based system, it
must be configured and enforced at different levels of the
system granularity, such as organizational domain, its sub-
domains, application assemblies, components, and remotely
invocable methods in components. Support for security QoS
modeling in MoPED focuses on two attributes of security:
confidentiality and integrity. MoPED provides a role-based
access policy (RBAP) model to define role-based access
control (RBAC) for enterprise systems and to provide secure
transport protocol configurations for data integrity. MoPED’s
RBAP model is inspired from the OMG’s RBAP Metamodel
RFP [21]. Security domains and sub-domains are also sup-
ported to simplify management of security policies spanning
enterprise-wide systems, such as our case study.

Fig. 4. Security Access Control Modeling Using MoPED

MoPED’s RBAP model provides a central place to model
access control policies for an enterprise. It specifies associ-
ations between users and their roles, roles and their domain
level rights, and resources in a security domain along with
the required permissions to access them. It is used to define
the rules that dictate which roles (possessing distinct rights)

are able to access the different resources, such as application
assemblies, components, and ports within the system.

MoPED’s security QoS modeling supports fine granularity
of component-based systems as it is built as an extension
to MoPED’s core QoS modeling framework. ComponentSe-
curityQoS is used to model RBAP over the components and
attributes. Similarly, AssemblySecurityQoS is used to model
RBAP over an entire application assembly or subassembly.
It ensures consistent security policies across entire workflow
of constituent components as an end-to-end measure. Connec-
tionSecurityQoS, conversely, models secure transport protocol
configuration for inter-component interactions.

Security QoS abstractions associate required access rights
to the various key abstractions (e.g., components, ports) of the
component-based system, as well as define rules that control
the access rights of the various roles to these system elements.
For example, the Administrator role has the responsibility of
managing the office business process application servers that
consist of the Business Accounting and Employee Payroll com-
ponents. These rules are encapsulated as the system security
policies shown in the Figure 4. MoPED automatically gener-
ates correct deployment metadata related to defined mappings,
permissions and security policies using existing OASIS [17]
standardized formats for supporting various runtime mecha-
nisms for implementation of RBAC.

(3) Integrated reasoning of availability and security require-
ments. The key contribution of MoPED’s dependability QoS
support is the unification of the RBAP model and secure
transport protocol configurations with availability require-
ments modeling. Security QoS leverages MoPED’s constraint-
checking mechanisms to detect design-time errors in security
configurations. MoPED also validates the decisions taken by
security modeling against the decisions taken by availability
modeling.

The inherent challenge in integrating availability and se-
curity stems from the fact that they are often tangled with
each other and higher level analysis is necessary to resolve
the conflicts between them at design-time. MoPED’s design
environment uses constraints written using OCL to check
every design decision taken by the QoS modelers. MoPED
checks the availability and security QoS requirements in the
model against OCL constraints to detect possible conflicts.
The possible conflicts are of two types: violation of security
policies due to an availability decision or vice versa. Their
bidirectional interdependencies are shown in the following two
examples:
• Detecting security QoS violations. MoPED prevents
designers from placing any replica of a component in
a different security subdomain than that of the primary
component because access policies across subdomains are
usually quite different. Deploying replicas in a different
subdomain could lead to unavailability of a service upon
failure due to difference in the security privileges across
two different subdomains. For example, the replicas of
the Business Accounting component cannot be deployed



Listing 1 Using OCL to Detect Conflicts in Dependability Modeling
-- OnError: "Deployment hosts of replicas must belong to the same security subdomain."
context c: Component -- For each component in the model.
let fou = c.connectedFCOs(FailOverUnit) in -- Find FailOverUnit associated with c, if any.
let replicas = getReplicaSet(c,fou.replicaCount()) in -- Get set of replicas and primary

replicas->forAll(i,j : Component | -- For each pair of the replicas
let nodeA = i.connectedFCOs(Host) in -- Find deployment host for i
let nodeB = j.connectedFCOs(Host) in -- Find deployment host for j nodeA.SecurityDomain.name().trim()

= nodeB.SecurityDomain.name().trim()) -- Name of security domain must be the same

in the Sensors security subdomain, which has much
more restricted access compared to the Business security
subdomain.
The MoPED design environment detects such security
violations using OCL constraints and provides guidance
in the form of an error message to fix them. An example
OCL constraint with comments and the guidance message
is shown in Listing 1. Similarly, MoPED verifies that
components that communicate across security subdo-
mains have the necessary access rights to do so.
• Consistent duplication of access control decisions.

The access control security policies defined for a pri-
mary component and secure transport configuration for
connections should be consistently replicated for their
replicas too. MoPED analyzes security QoS attributes and
automatically duplicates the associated policies. Without
an automated support for consistent security policy dupli-
cation, it is tedious and error-prone for security modelers
to ensure that all replicas have consistent access control
decisions.

The interdependencies and conflicts between availability
and security resolved at design-time prevents dependability
issues in the later stages of system lifecycle, such as testing
and production.

IV. ANALYZING DEPENDABILITY TRADE-OFFS FOR
MAINTAINING PREDICTABILITY

In this section we describe how MoPED can be used to
analyze the schedulability of the system models and how
availability and security trade-offs can be made. We use the
scenario described in Section II to illustrate how MoPED
reasons about timeliness and generates metadata that are
used by a back-end real-time schedulability analysis tool. We
chose the real-time QoS aspect as the primary aspect and
compute the effects of dependability requirements on it for
analysis. It allows temporal correctness to be integrated during
development, rather than the more typical practice to testing
timeliness at the end of development. It avoids the costly
problems that can arise when timing faults are found later
during testing or, still worst, after deployment.

We have currently integrated with the Times [1] schedulabil-
ity and model checking functionality through the RTAnalysis
interpreter. In order to correctly determine the schedulability of
the system it is important to convey the behavioral semantics
of the system components. We leverage the behavior modeling
capability provided by an input/output automata-based lan-
guage called Component Behavioral Modeling Language [9].

We use it to produce high-fidelity mapping of component
behavior into timed automata–the underlying formalism used
by the Times tool. Alternatively, the behavior could be fed into
the interpreter through other formalisms, such as UML state
charts and/or activity diagrams.

The RTAnalysis interpreter obtains the data necessary for
schedulability analysis from both: CQML’s RealTimeConfigu-
ration models and the behavior model of components. It re-
quires the task priorities, execution times, task behavior types
(periodic, sporadic or controlled), and deadline to generate
input for the Times tool, from which the tool derives worst-
case response times (WCRTs). We depend on the modeler to
provide the above mentioned information.

Schedulability under Dependability Requirements. We
now describe how we performed schedulability analysis of
the Enterprise case study considering both the availability and
security requirements. Quite often, the DRE systems that have
simultaneous dependability requirements, trade offs have to
be made in the quality levels of different QoS aspects of the
system.

Fig. 5. Effects of Multi-QoS Interweaving in Enterprise Case Study

In the dependability models of MoPED, the frequency
of heart-beat beacon determines the quality of the fault-
monitoring infrastructure with respect to the fault detection
rate. In order to improve the fault detection rate, an increase
in the heart-beat frequency, might have an adverse effect
on the schedulability of the critical path. The reason being,
with the increase in the fault-monitoring frequency, there
is a corresponding increase in the number of instances of
the corresponding periodic tasks to be scheduled within the
deadline.



The RTAnalysis interpreter responds to the periodic compu-
tation events and produces an updated timed automata of the
system behavior as shown in Figure 5. The behavioral seman-
tics map to new process automata containing new tasks and
states for the Business Accounting component. Like-
wise, while weaving the security QoS aspect in Security
Monitor and Server Camera Controller compo-
nents, the additional CPU overhead of encryption/decryption
must be incorporated at the port level boundaries of above
components. The RTAnalysis interpreter adds an encryption
task right before leaving the Security Monitor automa-
ton and a decryption task right after entering the Server
Camera Controller automaton.

This new model can be analyzed by the Times tool to
determine whether the system is still schedulable i.e., meets its
real-time deadlines. Thus the interpreter automates the process
of determining the effect on system schedulability due to
interweaving of other QoS aspects such as fault-tolerance and
security. The results from the analysis can be used to fine
tune the system’s QoS aspect configuration, for example, the
heart-beat beacon frequency and/or key length.

V. EVALUATING MOPED

This section describes our evaluation of MoPED. We show
how modeling dependability requirements using MoPED alle-
viates the tedious and error-prone effort of manually writing
platform specific metadata.

Fig. 6. The MoPED model of the Office Enterprise case study

A. Evaluating Reduction in Manual Efforts

To evaluate the modeling effort, we used the Platform-
independent Component Modeling Language (PICML) [3] to
model the functionality of the office enterprise and hazard
sensing system in the case study and Lightweight CORBA
Component Model (LwCCM) as our component-based im-
plementation platform. PICML is a GME-based DSML that
simplifies the composition of component-based systems.

Figure 6 shows 8 components and 10 connections in the
case study system. For every component without any QoS
attributes, the LwCCM descriptor format requires 17 lines of
XML code, whereas for a connection it requires 14 lines of

XML code. Without any dependability configuration proper-
ties, a model of our case study would require 8 * 17 + 14 *
10 = 276 lines of XML code. However, the size of descriptors
grows rapidly as the number of dependability configuration
properties increases.

Table I shows an increase in the generated lines of metadata
as a result of associating exactly one QoS model among
FailOverUnit, ComponentSecurityQoS, and ConnectionSe-
curityQoS to a component with a single connection. This
table summarizes the smallest possible change in the size of
metadata when a single modeling element is annotated with
QoS. The figures in Table I are used as a scale to show the
growth in the size of metadata for the case study model shown
in Figure 6. Table II shows the number of lines of generated
XML metadata for our model of the case study. The MoPED
tool chain generates as many as 1,098 lines of additional
metadata,

Without the automated support of MoPED, modelers would
need to manually update metadata with availability, security,
and network QoS requirements, which is tedious and error-
prone. The MoPED tool chain automatically generates consis-
tent metadata taking into account all three QoS requirements
simultaneously, thereby simplifying modeling significantly.

VI. RELATED WORK

Many techniques have been devised for model-based
provisioning of computer system dependability. Previous
research for dependability modeling and analysis, such
as [6], [8], [27], [5], are based on OMG’s Model Driven
Architecture [18] (MDA) and use UML profiles to capture
system dependability architectures. Model-to-Model (M2M)
transformations are used for step-wise refinement of platform-
independent models into platform-specific models (e.g., Java
code skeletons) or in to formal analysis models such as
Fault Trees, Markov models, and Stochastic Petri-Nets (SPN).
Finally, existing formal analysis tools are used to perform
reliability analysis.

Lack of domain-specific semantics makes the above ap-
proaches difficult to use and understand. Moreover, the above
UML profiles consider only one dimension of dependability at
a time, limiting their applicability in the integrated availabil-
ity/security approach. Our approach in MoPED is based on
domain specific modeling, which provides high-level intuitive
modeling abstractions to capture requirements. Moreover, re-
quirements of availability and security can be simultaneously
captured using unified QoS modeling framework of MoPED.

The OMG has adopted UML profile [19] for schedulabil-
ity, performance and time specification and a more general
profile [20] for modeling QoS. These UML profiles provide
a way to specify the QoS ontology with QoS characteristics
with support for attaching QoS requirements to the core UML
diagrams. A common feature between these standard UML
profiles and the modeling language of MoPED is the first class
support for QoS concerns and a QoS modeling framework built
around it. Our QoS modeling framework differs from that of



Metadata artifacts FailOverUnit Component Connection
(replication Security Security
degree = 1) QoS QoS

New components 17 0 0
New connections 14 0 0

Component properties 0 11 0
Connection properties 0 0 11

TABLE I
Increase in the Number of Lines of Descriptors of a Single Component with a Single Connection

Metadata artifacts FailOverUnit FailOverUnit
(replica = 1) (replica = 3)

New components 4 12
New component lines (* 17) 68 204

New connections 15 45
New connection lines (* 14) 210 630

SecurityQoS SecurityQoS
Component property lines (* 11) 44 132
Connection property lines (* 11) 44 132

Total number of lines 366 1098

TABLE II
Increase in the Number of Lines of Descriptors for the Model of the Case Study

the standard QoS profiles because it is tailored to the domain
of component-based systems.

Early efforts on integrating security with availability and
reliability were toward developing a unified terminology [10]
to describe systems using an extended meaning of definitions
of dependability attributes. A systemic conceptual model is
suggested in which various aspects of security and dependabil-
ity are discussed. Based on the unified terminology, several
techniques for performing dependability evaluation can be
applied in the security domain.

Nicol et al. [16] presents an excellent survey of existing
model-based techniques for evaluating system dependability,
and summarize how they are being extended to evaluate system
security. In that respect, our work is complementary to the
above more formal approaches. MoPED can be extended to
capture formal semantics and transform them into analysis
models using the MoPED tool chain. After validating system’s
QoS specification models using analysis tools, MoPED can be
used to automatically transform the decisions into platform-
specific deployment and configuration metadata, significantly
reducing the manual efforts.

VII. CONCLUDING REMARKS

This paper described our approach to modeling key at-
tributes of dependable systems (availability and security) via a
unified QoS modeling framework. We presented our approach
in the context of a model-driven tool chain called MoPED that
provides intuitive, domain-specific modeling abstractions to
capture availability, security QoS requirements of component-
based systems. MoPED helps designers resolve potential con-
flicts between availability and security requirements.

We evaluated the capabilities of MoPED using a represen-
tative case study of an enterprise office and hazard sensing
system that has simultaneous availability, security require-

ments. Our evaluation of MoPED indicates that it prevents
designers from making mistakes in the QoS configuration and
significantly simplifies system deployment by automating the
generation of platform-specific metadata that faithfully reflects
the dependability QoS decisions.

REFERENCES

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. TIMES:
A Tool for Schedulability Analysis and Code Generation of Real-Time
Systems. In K. G. Larsen and P. Niebert, editors, Formal Modeling and
Analysis of Timed Systems: First International Workshop, FORMATS
2003, Marseille, France, September 6-7, 2003. Revised Papers, volume
2791 of Lecture Notes in Computer Science, pages 60–72. Springer,
2003.

[2] A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of
dependability, 2001.

[3] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and
D. C. Schmidt. A Platform-Independent Component Modeling Language
for Distributed Real-Time and Embedded Systems. In RTAS ’05:
Proceedings of the 11th IEEE Real Time on Embedded Technology
and Applications Symposium, pages 190–199, Los Alamitos, CA, USA,
2005.

[4] D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From
uml models to access control infrastructures. ACM Trans. Softw. Eng.
Methodol., 15(1):39–91, 2006.

[5] A. Bondavalli, I. Mura, and I. Majzik. Automatic dependability analysis
for supporting design decisions in uml. In HASE ’99: The 4th
IEEE International Symposium on High-Assurance Systems Engineer-
ing, page 64, Washington, DC, USA, 1999. IEEE Computer Society.

[6] A. Capozucca, B. Gallina, N. Guelfi, P. Pelliccione, and A. Romanovsky.
CORRECT - Developing Fault-Tolerant Distributed Systems. ERCIM
News, 64(1), 2006.

[7] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Reading, Massachusetts,
2000.

[8] G.Rodrigues. A Model Driven Approach for Software Systems Reli-
ability. In In the proceedings of the 26th ICSE/Doctoral Symposium,
May 2004 - Edinburgh, Scotland. ACM Press, May 2004.

[9] J. H. Hill, S. Tambe, and A. Gokhale. Model-driven Engineering
for Development-time QoS Validation of Component-based Software
Systems. In Proceedings of 14th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS
07), pages 307–316, Tucson, AZ, Mar 2007.



[10] E. Jonsson. An integrated framework for security and dependability.
In NSPW ’98: Proceedings of the 1998 workshop on New security
paradigms, pages 22–29, New York, NY, USA, 1998. ACM.

[11] J. Jürjens. Umlsec: Extending uml for secure systems development.
In UML ’02: Proceedings of the 5th International Conference on
The Unified Modeling Language, pages 412–425, London, UK, 2002.
Springer-Verlag.

[12] Z. Kalbarczyk, R. K. Iyer, and L. Wang. Application fault tolerance
with armor middleware. IEEE Internet Computing, 9(2):28–37, 2005.

[13] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle,
and G. Karsai. Composing Domain-Specific Design Environments. IEEE
Computer, pages 44–51, November 2001.

[14] B. Littlewood and L. Strigini. Software reliability and dependability: a
roadmap. In ICSE ’00: Proceedings of the Conference on The Future
of Software Engineering, pages 175–188, New York, NY, USA, 2000.
ACM.

[15] P. Narasimhan, T. Dumitras, A. Paulos, S. Pertet, C. Reverte, J. Slem-
ber, and D. Srivastava. MEAD: Support for Real-time Fault-Tolerant
CORBA. Concurrency and Computation: Practice and Experience,
17(12):1527–1545, 2005.

[16] D. M. Nicol, W. H. Sanders, and K. S. Trivedi. Model-based evalua-
tion: From dependability to security. IEEE Trans. Dependable Secur.
Comput., 1(1):48–65, 2004.

[17] OASIS eXtensible Access Control Markup Language (XACML) TC.
eXtensible Access Control Markup Language TC v2.0 (XACML).
http://www.oasis-open.org, 2005.

[18] Object Management Group. Model Driven Architecture (MDA), OMG
Document ormsc/2001-07-01 edition, July 2001.

[19] Object Management Group. UML Profile for Schedulability, Perfor-
mance, and Time Specification, Final Adopted Specification ptc/02-03-
02 edition, Mar. 2002.

[20] Object Management Group. UML Profile for Modeling Quality of
Service and Fault Tolerance Characteristics and Mechanisms Joint
Revised Submission, OMG Document realtime/03-05-02 edition, May
2003.

[21] Object Management Group. Role Based Access Policy (RBAP) Meta-
model RFP. http://www.omg.org/cgi-bin/doc?bmi/2008-02-07, 2008.

[22] J. Peleska. Uniform workbench - formal methods and the development
of dependable systems.

[23] S. Tambe. Model-driven Fault-tolerance Provisioning for Component-
based Distributed, Real-time and Embedded Systems. PhD thesis,
Department of Electrical Engineering and Computer Science, Vanderbilt
University, Nashville, Oct. 2010.

[24] S. Tambe, J. Balasubramanian, A. Gokhale, and T. Damiano. MDDPro:
Model-Driven Dependability Provisioning in Enterprise Distributed
Real-Time and Embedded Systems. In Proceedings of the International
Service Availability Symposium (ISAS), Durham, New Hampshire, USA,
2007.

[25] S. Tambe, A. Dabholkar, and A. Gokhale. CQML: Aspect-oriented Mod-
eling for Modularization and Weaving QoS Concerns in Component-
based Systems. In Proceedings of the 16th IEEE International Con-
ference and Workshop on the Engineering of Computer Based Systems
(ECBS 09), pages 11–20, San Francisco, CA, Apr. 2009. IEEE Computer
Society.

[26] S. Tambe, A. Dabholkar, and A. Gokhale. Generative Techniques to
Specialize Middleware for Fault Tolerance. In Proceedings of the 12th

IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC 2009), Tokyo, Japan, Mar. 2009. IEEE Computer
Society.

[27] A. Zarras, P. Vassiliadis, and V. Issarny. Model-Driven Dependability
Analysis of Web Services. In Proc. of the Intl. Symp. on Dist. Objects
and Applications (DOA’04), Agia Napa, Cyprus, Oct. 2004.


