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Abstract

Model-driven engineering (MDE) techniques are in-
creasingly being used to address many of the devel-
opment and operational lifecycle concerns of large-
scale component-based systems. One such concern
lacking significant research deals with the validation
of quality-of-service (QoS) properties of component-
based systems throughout their development lifecy-
cle instead of waiting until system integration time,
which is very late and can be detrimental to project
schedules and costs. This paper describes our novel
MDE-based solution to address this challenge. At
the core of our solution approach are (1) a set of
domain-specific modeling languages that allow us to
mimic component “business logic,” and (2) a gener-
ative programming framework that synthesizes em-
pirical benchmarking code for system emulation and
continuous QoS evaluation.

keywords: model-driven system engineer-
ing,continuous QoS validation, code generation.

1 Introduction

Model-driven engineering (MDE) [27] techniques are
increasingly being used to address many of the de-
velopment and operational lifecycle complexities of
large-scale component-based systems. Advances in
MDE techniques for component-based systems to

∗This work was supported by Raytheon IRAD

date have focused primarily on (a) structural issues
of system development, such as component assem-
bly, packaging, configuration and deployment (e.g.,
the CoSMIC tool chain [7]), and (b) functional and
behavioral issues, such as model checking for func-
tional correctness (e.g., Bogor [26] and Cadena [12])
or runtime validation of performance (i.e., running
simulations at design time or empirical benchmarks
at integration time to validate performance).

Although MDE tools continue to raise the level
of abstraction of component-based software systems
and address many of their complexities, there remains
a major gap in evaluating system quality of service
(QoS), e.g., performance and reliability, at different
phases of development, which would enable design
flaws to be rectified earlier in the development lifecy-
cle. This impediment is due primarily to the “serial-
ized phasing” [27] nature of the development lifecy-
cle wherein the system is developed in layers (e.g.,
first the components at the infrastructure layer(s)
and then the application layer(s)). System QoS vali-
dation, therefore, can proceed only when all the sys-
tem components are available and deployed in the
runtime infrastructure. Moreover, waiting too late
in the development lifecycle to resolve any perfor-
mance problems can be too costly to resolve. It is
clear that system engineers need proper tools to help
address QoS validation not only at integration and
production time but at development time before per-
formance problems become too “hard” to locate and
resolve.
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A promising solution to address the challenge of
evaluating QoS at all stages of development entails
accurately emulating system components for QoS val-
idation while the “real” components are still being de-
veloped. This paper describes our novel MDE-based
solution to address the challenges of serialized phas-
ing and QoS validation across the development life-
cycle. First, we demonstrate how the problem of seri-
alized phasing can be overcome by emulating compo-
nent “business logic” using domain-specific modeling
languages (DSMLs) [8]. The behavior in our DSML
is captured using the formalisms of I/O automata [18]
and can be parametrized with executable operations
(i.e., workload). Generative programming tools [4]
associated with the DSMLs can synthesize empirical
benchmarking code for system emulation and QoS
evaluation. The QoS evaluation is carried out us-
ing the QoS benchmarking framework for component-
based systems called the Component Workload Emu-
lator (CoWorkEr) Utilization Test Suite (CUTS) [14].

Paper Organization. The remainder of this pa-
per is organized as follows: Section 2 introduces a
case study we use to describe the challenges in realiz-
ing a solution for continuous QoS evaluation; Sec-
tion 3 describes the structure and functionality of
our DSMLs for emulating component behavior and
workload; Section 4 explains how we integrated our
DSMLs with an existing structural DSML to facil-
itate code generation for QoS evaluation; Section 5
compares our work with related research; and Sec-
tion 6 presents concluding remarks.

2 Challenges in Overcoming
the Serialized-phasing Bar-
rier

This section describes the challenges in developing a
solution that addresses the need for continuous QoS
evaluation of component-based systems developed us-
ing serialized phasing processes. We use a case study
to highlight these challenges.

2.1 A Distributed Stockbroker Appli-
cation Case Study

We use a representative example drawn from the
financial domain [28] as a case study to illustrate
the serialized phasing problem and how our research
artifacts described in this paper enable us to pro-
vide continuous QoS validation [13]. Our case study
is called the Distributed Stockbroker Application
(DSA), which is an online web application for viewing
stock information.

Figure 1 shows a high-level representation of the
DSA and its communication flows between compo-
nents. The DSA is composed of six different compo-
nents. The Naming Service component allows client
applications to locate the Gateway Component for
the application. The location (i.e., the binding IP ad-
dress and port number) of the naming service compo-
nent is therefore persistent. The Gateway Component
serves as the entrance to the stock application, which
all clients must pass through. The Gateway Com-
ponent accepts the username and password of the
user and sends it to the Identity Manager component.
The Identity Manager component is responsible for
verifying the username and password, and initializing
the correct QoS policies based on user type. Once the
access is granted to the client, it is given direct access
to a Stock Component. The Stock Component is cre-
ated on-demand and initialized with the correct QoS
specified by the Identity Manager. The Stock Compo-
nent interacts with a MySQL database that contains
the stock information. Lastly, all components in the
system – both application and infrastructure – log
their activities to a Logging Component.

The DSA has two user classes: Basic and Gold.
Gold users are persons who use the service frequently,
whereas Basic users use the service infrequently. Ta-
ble 1 provides the projected usage pattern and de-
sired response times (i.e., QoS) of each user for the
DSA. Due to the serialized-phasing development pro-
cess, the underlying infrastructure of the DSA (i.e.,
all the components illustrated in Figure 1) may com-
plete their development at different times. Evaluat-
ing system design decisions on the target architecture
to locate deployments (i.e., placement of components
on hosts) and configurations (i.e., setting of compo-
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nent attributes) that meet the expected QoS there-
fore has to wait until all the “real” components are
available.

Figure 1: High-level structural composition of the
Distributed Stock Application.

Usage Patterns by User Type
Type Percentage Response Time (msec)

Basic (Client A) 65% 300
Gold (Client B) 35% 150

Table 1: Predicted usage pattern of the Distributed
Stock Application based on user type.

The application components of DSA are imple-
mented as Lightweight CORBA Component Model
(CCM) [24] components. The target architecture
comprises three hosts for deploying all its compo-
nents. Lastly, the software platform version is Fedora
Core 4 using ACE+TAO+CIAO 5.1 middleware plat-
form available at www.dre.vanderbilt.edu.

2.2 Impediments to Overcoming the
Serialized-phasing Barrier

To achieve the vision of continuous QoS validation in
the presence of serialized phasing, such as in the case
of the DSA case study, the proposed solution must
address the following challenges:

• Challenge 1: Emulating business logic –
The emulated components must resemble their
the counterparts in both supported interfaces
and behavior. Moreover, the emulation environ-
ment should allow seamless replacement of faux
components with real components as they be-
come available. In the context of the DSA, em-

ulated components should be used to evaluate
QoS at early stages of development, and as the
“real” components are completed they should re-
place the emulated components to achieve more
accurate QoS metrics.

• Challenge 2: Realistic mapping of emu-
lated behavior – The behavior specification
should operate at a high-level of abstraction (i.e.,
at the application level) and map to realistic op-
erations (e.g., memory allocations and dealloca-
tions, file operations, or database transactions).
For example, in the DSA the high-level database
behavior should “realistically” query a database
for stock information.

• Challenge 3: Technology independence –
The behavior specification should not be tightly
coupled to a programming language, middleware
platform, hardware technology, and MDE tool.
In the context of the DSA, if we wanted to evalu-
ate the system on CCM or Microsoft .NET [20],
or use multiple modeling tools [17, 30], then we
should be able to reuse the same concepts and
models.

The remainder of this paper describes our solution
to resolve these challenges.

3 Domain-specific Modeling
Languages for Continuous
QoS Validation

Addressing the challenges of continuous QoS evalua-
tion in the face of serialized phasing requires mech-
anisms to mimic application component behavior.
This section describes our R&D on two domain-
specific modeling languages (DSMLs) [8] called the
Component Behavior Modeling Language (CBML)
and Workload Modeling Language (CBML). CBML
is a DSML for capturing the behavior of a component
and WML is a DSML for parameterizing the behav-
ior with “realistic” application-level operations. The
remainder of this section discusses both languages in
detail explaining how these help resolve Challenges 1
and 2 discussed in Section 2.2 in the context of the
case study described in Section 2.1.
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3.1 The Component Behavior Model-
ing Language

Any mechanism that mimics component behavior
must incorporate the design principles and semantics
of component architectures. In such architectures,
systems are composed of components that react to
method invocations and events received on their in-
put ports. This “reaction” causes a sequence of activ-
ities that can be defined by a series of states and tran-
sitions. Although the range of activities performed
in the course of a component’s execution can vary
broadly, they can be divided into two distinct opera-
tional classes: internal and communication.

Internal operations are those not observable from
outside a component (e.g., memory allocations/-
deallocations and database transactions executed by
the database component in the DSA case study).
Communication operations are representative of
sending/receiving an event to/from another compo-
nent (e.g., input and output events transmitted be-
tween each of the components in the DSA case study).

When trying to emulate a component’s behavior
(i.e., addressing Challenge 1 in Section 2.2), it is de-
sirable to capture it as close as possible to its real
counterpart using combinations of internal and com-
munication operations. It is also desirable to repre-
sent the behavior based on a formal mathematical
foundation because it will (1) facilitate transforma-
tion of existing models between different formal be-
havioral languages (e.g., timed-automata [1], State-
Charts [10] and PetriNets [25]), and (2) assist in prov-
ing any formal properties of the system (e.g., correct-
ness and stability). Likewise, it will also facilitate
reverse transformations (i.e., from models in other
languages to models of this language). We believe
that lack of formal semantics can limit the capabili-
ties and scope of such a behavior modeling language.
At the same time, it should not be dependent on any
programming language and software/hardware plat-
form, and be as general purpose as possible.

Based on the desired functionality for modeling
component behavior, we have developed the Compo-
nent Behavior Modeling Language (CBML). CBML
is a DSML based on the mathematical formalism of
input/output (I/O) automata [18] (details of I/O au-

tomata are beyond the scope of this paper). We
chose I/O automata as its basis because, analogous to
component behavior, I/O automata is ideal for asyn-
chronous and reactive systems. We developed CBML
in the Generic Modeling Environment (GME) [17],
which is a metamodeling environment that allows
the creation of DSMLs and its models. CBML,
however, is not coupled to GME since it can be
ported to any MDE tool that supports metamodel
specification (e.g., Generic Eclipse Modeling System
(GEMS) [30]). Developers use CBML to capture
component behavior at a high-level of abstraction
and use model interpreters to generate configuration
and source files for backend emulation and simulation
tools. Our current efforts focus primarily on gener-
ating source files for emulation tools (see Section 4).

3.1.1 Structure of CBML

As explained in Section 3.1, we developed CBML
based on the mathematical formalism called I/O au-
tomata [18]. We defined CBML so that it has the
necessary subset of elements from I/O automata (il-
lustrated in Figure 2) that will preserve its formal
semantics. Users of CBML do not need prior knowl-
edge of I/O automata in order to use CBML.

Figure 2: Primary elements for constructing behavior
models in CBML.

Figure 3 shows the realization of the CBML arti-
facts illustrated in Figure 2 using the DSA database
component as an example. In CBML, all behavior
specification begins with an Input Action element.
Each Input Action in the behavior model is connected
to an initial State element. The remainder of the be-
havior specification is defined by a sequence of Action
to State transitions (similar to I/O automata). For
example, the behavior model for the database com-
ponent in Figure 3 illustrates that an input action
causes a query for stock information.

To specify the end of a behavior sequence, a Fin-
ish connection (i.e., the dashed line) is used to con-
nect the final State to the starting Input Action. We
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Figure 3: Example CBML behavior model in GME.

require this connection because we allow sharing of
behavior sequences to simplify modeling (illustrated
in Figure 4). For example, the DSA has two type
of users who have the same behavior. It is possible
to model each person’s input to the database com-
ponent (or any component) separately but share the
same behavior as illustrated in Figure 4. The explicit
finish connections therefore help resolve ambiguity
when determining where each user type’s behavior
terminates.

Figure 4: Example of sharing behavior in CBML.

Specifying output actions in CBML

I/O automata defines behavior as an input action
that causes a series of “internal” operations and re-
sults in a set of output actions, if any. To be consis-
tent with I/O automata semantics, we allow behavior
specifications to include output operations, however,
output actions have the same modeling semantics as
I/O automata internal operations (e.g., CBML Ac-
tion element). We made this design choice because,
similar to CBML action elements, output actions can
also have a series of action-to-state transitions after
completing a single output action.

Figure 5 illustrates an example behavior model
with output actions, which are represented by the two
rightmost squares with the triangle, for the database
component in the DSA. After the component com-
pletes its query to the database for stock information,
it sends the information back to the requester, and
sends a status message to the logging component.

Figure 5: Example CBML behavior model with out-
put actions.

Preconditions, postconditions, and variables
in CBML

CBML allows a user to define variables in behavior
models to stay consistent with the I/O automata se-
mantics. The purpose of a variable is to preserve
information that represents the current state of the
system or component. As illustrated in Figure 6, a
variable is represented by the element with the star
image. Users use variables in their behavior model by
referencing them in the preconditions and postcondi-
tions of the transition (i.e., connection from a state
to an action), and effect (i.e., connection from an ac-
tion to a state) connections, respectively. This allows
developers to create more “realistic” behavior mod-
els, such as counting the number of users of each type
executing queries on the database and/or guarding a
workload until the system reaches a certain state.

Figure 6: Example CBML behavior model with vari-
ables.

Domain-specific extensions in CBML

Some input events that are critical in the domain of
component-based systems (e.g., lifecycle events such
as activation and passivation or monitoring notifica-
tion events such as degradation of QoS) are not first
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class entities in I/O automata. I/O automata does
not distinguish between these kinds of events because
it is a general-purpose language that is not tied to any
particular domain (e.g., component-based systems).
We therefore extended I/O automata (without affect-
ing its formal semantics) in CBML to capture this
aspect of component behavior more expressively as
discussed below and illustrated in Figure 7:

• Environment Events – represent input ac-
tions to a component that are triggered by the
hosting system rather than another component
(e.g., lifecycle events from the hosting container
or fault-tolerance notifications to serialize the
state of a component).
• Periodic Events – represent input actions from

the hosting environment that occur periodically
(e.g., setting/receiving a timeout event to peri-
odically transmit status updates). We also al-
low a probability to be associated with periodic
events to provide non-deterministic behavior.

Figure 7: CBML’s domain-specific extensions to I/O
automata

In the context of the DSA, when the database com-
ponent is activated it creates an initial connection to
the database (illustrated in Figure 7). Likewise, we
can use periodic events to model the behavior of each
user type by associating each one with correct prob-
ability (e.g., 0.35 and 0.65 for Gold and Basic type,
respectively) and sequencing it with an output event
within a “user” component (also illustrated in Fig-
ure 7).

Usability extensions in CBML

One of the main goals of defining behavior at a high-
level of abstraction is simplicity and ease of use. If
the size of the behavior model is “huge” and CBML
adheres strictly to its current representation of I/O
automata, its ease of use is compromised because one
of the major drawbacks of many automata languages
is scalability [10]. To address this issue we defined the
following usability extensions, which do not affect the
underlying I/O automata semantics:

• Composite Action – is a modeling element
that contains other actions. It allows develop-
ers to create groups of action-to-state sequences
that can help reduce the amount of clutter in the
model. A composite action has the same mod-
eling semantics as a regular action, however, we
defined a constraint that requires composite ac-
tions to contain only a single input action. This
is necessary because composite actions encapsu-
late a single, reusable behavior workflow, and
not multiple behavior workflows.

• Log Action – is an attribute of an Action el-
ement that determines if the action should be
logged. The semantics of “logged” are dependent
on how the model is interpreted. For example,
a modeler might choose to log “network send”
actions and not “memory allocation” actions.

• Repetitions – is an attribute of an Action ele-
ment that specifies how many times to repeat the
operation. This prevents the same action from
having to be specified multiple times in order to
achieve repetition. It is clear that setting this
value to zero implies the action is disabled. This
allows developers to seamlessly bypass an action
temporarily without actually removing it.

To address the usability concerns in the modeling
aspect, we also developed a GME add-on that assists
users in creating models rapidly by auto-generating
required elements (e.g., states) and connections de-
pending upon the context. Although this feature is
GME-specific, most MDE tools provide support for
implementing features that help improve user expe-
rience [29].
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3.2 The Workload Modeling Lan-
guage

The Component Behavior Modeling Language
(CBML) described in Section 3.1 gives developers
the ability to model behavior via generic actions and
properties. For analysis techniques, such as simula-
tion, CBML is enough to capture the behavior of the
component (e.g., its actions, states, and respective
transitions), which can be interpreted to define con-
figuration files for simulation tools. For emulation
purposes, however, these actions do not exemplify
the “business logic” of components because it does
not capture the workload of reusable objects within
a component (e.g., objects and their methods). More-
over, when defining the workload of components us-
ing CBML, it is “hard” to specify realistic workloads
that map to executable operations for an emulated
component. To address this challenge (i.e., Challenge
2 in Section 2.2) we developed the Workload Model-
ing Language (WML).

WML is a middleware and hardware platform-
independent and programming language-
independent DSML that allows developers to
define workload generators that contains actions
to represent realistic operations (e.g., memory
allocations/deallocations and database transactions)
at a high-level of abstraction. Model interpreters
associated with WML parse the constructed models
and use generative programming techniques to map
the abstract representation to executable operations
in the target programming language and platform
(see Section 4).

We implemented WML in GME, but similar to
CBML, it can be ported to any MDE tool that sup-
ports metamodel specification. The remainder of this
section discusses WML in detail.

3.2.1 Structure of WML

WML is a DSML that allows developers to cre-
ate workload generators (called “workers”) with exe-
cutable actions for emulation. Figure 8 illustrates the
compositional overview of WML. We designed WML
using a hierarchical structure that resembles common
object-oriented programming packaging techniques

to be consistent with conventional component tech-
nologies.

Figure 8: High-level compositional overview of WML.

The outermost containment elements in WML
are library elements. Library elements represent
reusable containers (e.g., modules) for grouping com-
mon workers. The library elements are composed
of multiple files, which represent a concrete loca-
tion on disk that defines its contained workers (recall
that workers are workload generators). File elements
can contain packaging elements that act as a scoping
mechanism so that workers can have the same name
and appear in the same file (similar to C++ names-
paces or Java packages). Workers contain executable
actions that represent its “business logic” operations
(or workloads). Lastly, actions can contain optional
properties that define configurable parameters (e.g.,
input arguments) for the action executed by the par-
ent.

3.2.2 Parameterizing CBML with executable
operations

When WML is integrated with CBML, it enables de-
velopers to model the component behavior using ex-
ecutable operations. From a modeling perspective,
workers in WML have the same modeling seman-
tics as variables in CBML, and worker actions in
WML have the same modeling semantics as actions
in CBML. This design feature allows us to integrate
WML with CBML.

Figure 9 illustrates the behavior model of the
database component from Figure 6 in Section 3.1.1
that has been parameterized with WML actions. The
top portion of the image illustrates the WML compo-
sition for a database worker. In the bottom portion
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Figure 9: Example CBML model parameterized with
WML actions.

of the image, the actor (i.e., db handle) is a variable
that references the database worker. The action is
a modeling instance of the worker action in the top
portion of the image whose name must match the
name of its parent worker variable. We made this
design requirement because it (1) helps resolve ambi-
guity when determining what action belongs to what
parent since it is possible to include the same worker
variable type multiple times in a behavior model, and
(2) reduces modeling clutter as opposed to explicitly
creating a directed connection between a parent and
its action.

4 Technology Independent Ap-
proach to Continuous QoS
Validation

In Section 3 we described two behavioral DSMLs:
CBML and WML that illustrated how integrating
both languages allowed us to emulate the behavior
(Challenge 1 of Section 2.2) and mapping the be-
havior to realistic operations (Challenge 2 of Sec-
tion 2.2). Although WML allowed us to parameterize
the generic actions in CBML with executable oper-
ations, these models are insufficient to generate em-
ulation code directly without knowing the structural
composition of the system and its components since
the latter determines the end-to-end workflows whose

QoS validation is more interesting and important to
system developers.

We therefore integrated CBML and WML with the
Platform Independent Component Model Language
(PICML) [2] because the latter captures the struc-
tural aspects of a system and its components, which
is necessary when generating source code for compo-
nents that resemble the real counterparts. Moreover,
since both PICML and CBML/WML provide plat-
form and programming language independent model-
ing capabilities, their integration and model interpre-
tations provide a technology independent approach
to continuous QoS evaluation (Challenge 3 in Sec-
tion 2.2).

Although we chose PICML as the structural DSML
to integrate CBML and WML, the concepts pre-
sented in Section 4.1 can be applied to any structural
DSML provided that it clearly differentiates between
input and output ports of a component. The remain-
der of this section discusses integration of CBML and
WML with existing languages (e.g., PICML in CoS-
MIC), and how our approach to generating emulated
logic for components that mimics their real capabil-
ities is decoupled from the underlying platform and
programming language technology.

4.1 Integrating Behavioral and Struc-
tural DSMLs

Domain-specific modeling languages (DSMLs), such
as PICML, allow developers to model different ports
of a component (e.g., facet/receptacles and event
sources/sinks). The facets/event sinks represent in-
puts to a component, while receptacles/event sources
represent outputs from a component. Structural
DSMLs, however, capture structural input/output
(I/O) elements without any correlating behavior (i.e.,
there is no clean representation to associate the I/O
elements of structural models with the I/O actions
in behavioral models). We therefore defined a set of
“connector elements” that enable developers to con-
nect the I/O elements in the structural model with
their corresponding I/O elements in the behavioral
model.Figure 10 illustrates how structural DSMLs (e.g.,
PICML) which define components that have I/O
ports and behavioral DSMLs (e.g., CBML and WML)
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Figure 10: Conceptual model of integrating behav-
ioral and structural DSMLs.

that have I/O actions can be integrated by having the
structural DSML “contain” the behavioral DSML. In
particular, we require a component to contain the
behavior. Additionally, we define a modeling connec-
tion between the input port and input action, but re-
quire that the name of the output action match the
name of the corresponding output port. We made
this design decision because explicitly defining a con-
nection between an output action and port will clut-
ter the model since there is a many-to-one mapping
between an output action and an output port.

To further illustrate this concept, Figure 11 shows
how the integration of the DSMLs is realized. The
outer rectangle of Figure 11 illustrates the PICML
model of the database component. The inner rect-
angle highlights the same database component with
CBML and WML from Figure 9 integrated into
PICML, thus allowing us to model the same behavior
exemplified in Section 3 with its respective structure
(e.g., interface and attributes).

4.2 Code Generation for Emulation

This section describes our approach for achieving
code generation for emulation, which enables us to
conduct continuous QoS validation during system de-
velopment. Our current effort allows developers to
generate emulation code for the Component Work-
load Emulator (CoWorkEr) Utilization Test Suite
(CUTS), however, our code generation architecture
is not dependent on CUTS (e.g., Challenge 3 in Sec-
tion 2.2). Figure 12 illustrates a conceptual model of
our code generation architecture, which is composed

Figure 11: Realization of integrating CBML and
WML with PICML in CoSMIC.

from three technology independent, but language de-
pendent layers of abstraction:

Figure 12: Code generation architecture for emula-
tion.

• Emulation - This layer represents the applica-
tion layer’s “business logic”. The elements in
WML used to parameterize the CBML behav-
ior are mapped to this layer when model in-
terpreters parse the model. For example, the
query stock info action is generated at this layer
in C++ code.

• Templates - This layer acts as a bridge [6]
between the upper emulation layer and lower
benchmarking layer. This allows both layers to
evolve independently of each other. For example,
if we want to provide support for other bench-
marking frameworks we do not have to alter the
generated code because the templates will pro-
vide the mapping. Likewise, if we ported the
DSA to a different technology (or language) the
code generator can tailor the source code to plug
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into this layer given we support the target pro-
gramming language.
• Benchmarking - This layer represents the un-

derlying benchmarking framework (e.g., CUTS).
Methods in this layer are invoked by the tem-
plate layer above to capture workload metrics,
such as execution timing of a database query
by the database component, or response time of
each user type in the context of the DSA.

Lastly, the encapsulating object for each of the
three layers is the actual component hosted by the
target architecture, which is language and technol-
ogy dependent. The component is generated so that
is has the same structure as its “real” counterpart
(e.g., same interfaces and attributes). Figure 13 il-
lustrates the generated code for a portion of the
database component in the DSA. As illustrated in
Figure 13, the push BasicType Input method is the
realization of implementing the BasicType Input in-
put event port in CCM. Each line of source code rep-
resents the WML actions used to parameterize the
CBML behavior. The record is the template object
that allows the emulation operations to be adapted
for monitoring and analysis by the CUTS benchmark-
ing framework.

Figure 13: Excerpt of generated code from a PICML
model extended with CBML and WML.

Generation for Simulation. Although our ef-
forts currently focus on generating emulation code,
it is possible to create model interpreters that gen-
erate configuration files for simulation tools such as
UPPAAL [16]. This will allow developers to utilize

the features of a simulation tool such as validating
correctness, evaluating preconditions and postcondi-
tions, and checking for reachability [15]. Moreover, it
will alleviate the time and effort required to manually
produce these configuration files, which can be error
prone and tedious.

5 Related Work

Statecharts [10] gained widespread usage when they
were integrated with the STATEMATE [11] model-
ing tool, and since then a variant has became part of
UML (i.e., UML Statecharts) [5]. Similar to CBML,
statecharts can be used to describe behavior of large
complex systems. CBML extends Statecharts by
clearly separating component behavior from work-
loads using WML. The generative techniques asso-
ciated with variants of statecharts are targeted to-
wards simulation and runtime verification [15, 21].
Our generative techniques can be extended to sim-
ulation and runtime verification tools [16] as well,
however, it extends UML statecharts efforts [22] be-
cause it facilitates seamless replacement of the em-
ulated components (i.e., components generated from
behavior models) with the real components as they
become available. Furthermore, our generative tech-
niques and concepts are not tied to a specific technol-
ogy or tool, whereas the technique presented in [22]
et al., is bound to a specific tool.

The Abstract State Machine Language (AsmL) [9]
developed at Microsoft Research is an executable
specification language based on the theory of Ab-
stract State Machines. AsmL is useful when develop-
ers need precise, non-ambiguous methods to specify a
system, either software or hardware. AsmL, however,
is not a graphical modeling language like CBML and
WML. Furthermore, users of CBML and WML oper-
ate at a high-level and do not require in-depth knowl-
edge of the underlying formalism, whereas AsmL re-
quires developers to have some understanding of ab-
stract state machines and programming formalisms,
which can restrict its applicability (e.g., for system
testers who have no knowledge of complex formalisms
or programming).

Executable UML (xUML) [19] and the Action Lan-
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guage [23] are both for defining workload that can
map to the desired target architecture. WML is or-
thogonal to both xUML and the Action Language
efforts, however, WML operates at higher level of
abstraction. xUML and the Action Language re-
quire developers write abstract implementation code,
which requires knowledge of programming seman-
tics, whereas WML leverages pre-existing objects and
methods (i.e. workload generators) that are not de-
fined by the user for code generation.

WinFX Workflow [3] is a modeling language de-
veloped by Microsoft et al., which is a part of the
Windows Workflow Foundation. Similar to CBML,
WinFX allows developers to express workflows but
it is coupled with workload. WinFX also facilitates
code generation, but is confined to the Microsoft
.NET framework whereas our generative program-
ming technique is technology and tool independent
and can be applied to multiple middleware platforms
including Microsoft .NET.

6 Concluding Remarks

This paper described a model-driven generative pro-
gramming approach to address the challenges of eval-
uating component-based system QoS throughout the
development lifecycle instead of delaying it to integra-
tion time. Our approach defined two modeling lan-
guages, namely CBML and WML, that capture the
behavior of application components at a high-level.
We then integrated these DSMLs with PICML, which
models structural properties of applications. Lastly,
we used model interpreters to map the behavior spec-
ifications to executable operations that leverage ex-
isting emulation frameworks, such as CUTS.

This approach allows for continuous integration
and QoS validation of the system because as more is
learned about the components, the behavior can be
refined and regenerated for emulation. Likewise, as
the real application components are ready, they can
replace the emulated components and their impact on
system QoS can be observed. We expect the results of
real versus emulated components to match provided
the behavioral models of the emulated components
approximate the real component behavior closely.

6.1 Lessons Learned

Model-driven Engineering comprising the use of
DSMLs and generative programming provides an ef-
fective solution to address the challenges facing devel-
opment lifecycles of next generation, large-scale soft-
ware systems. Several challenges were encountered
during the development of CBML and WML and sev-
eral challenges remain to be resolved. Our experience
developing and using the MDE framework described
in this paper suggests the following benefits:

• Using a DSML based on a mathematical for-
malism to define behavior of components helps
in specifying unambiguous behavior when gener-
ating code and configuration files for emulation
and simulation.

• Separating the workload, behavior, and struc-
tural models allows all to evolve independently of
each other. Moreover, it encourages the same be-
havior model to be supported in multiple struc-
tural models to increase portability, flexibility,
and usability.

• Using generative programming with templates
that are parameterized by actions from behav-
ioral models allows the DSML to easily be
adapted to different environments of execution
(e.g, benchmarking environments or real-world
deployment).

6.2 Future Work

Although our approach of integrating a behavior and
workload modeling language with a structural lan-
guage has many benefits and addresses many chal-
lenges of the “serialized-phasing” process, there is
also room for improvement and future work:

• Despite the ability to capture behavior of a com-
ponent and its state, data flow of a compo-
nent can only be defined based on state vari-
ables. In real world, properties of input actions
(e.g., event values) can affect the flow of exe-
cution in a real component. We therefore need
to extend CBML with a simple programming
language that will allow developers to use such
properties when defining behavior.

11



• As the “real” components become available and
replace the emulated components, it is ideal to
capture workload metrics of the real component.
We therefore need to extend the current capabil-
ities of both modeling languages and code gen-
erators to handle evaluation of real components
(i.e., benchmarking them using ”realistic” input
data).
• The workload generators (i.e., workers) in WML

resemble class objects in object-oriented pro-
gramming languages. We therefore need to ex-
tend the capabilities of WML such that exist-
ing class objects in the target programming lan-
guage can be used in WML models. Moreover,
these extensions will enable “real” implementa-
tion code to be generated directly from models.

By providing these extensions to our MDE ap-
proach, we will be able to continue addressing many
of the challenges component-based system developers
experience when they face time-to-market and prod-
uct quality pressures.
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