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ABSTRACT
Data-driven Artificial Intelligence (AI)/Machine Learning (ML)-
based models of CPS (also called Digital Twins) are becoming im-
portant in the design and control of modern CPS. CPS are a unique
class of intelligent system, where the governing process models for
the system (or its parts) are available to inform decision making.
The governing physics or chemistry models provide an additional
source of information, potentially improving the accuracy of CPS
modeling, but also increasing the complexity of the information
fusion process. The resource constraints of CPS, however, makes
it hard to perform the information fusion within the CPS itself.
Moreover, building a large, monolithic model of the complete CPS
is also infeasible due to model size and training complexity. The
hierarchical and compositional structure of CPS calls for distributed
model training and composition. Resource constraints and real-time
control needs call for rapid and low-cost training of models, which
makes surrogate modeling a promising approach. However, when
surrogate models are composed, their approximate nature may lead
to larger errors. Further, data-driven models are prone to adver-
sarial attacks, whose impacts may be even more pronounced in a
federated model. This position paper highlights the key research
challenges in this realm and need for new research.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Computing methodologies→Modeling
and simulation; Machine learning; • Mathematics of comput-
ing → Probability and statistics.
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1 INTRODUCTION
Cyber Physical Systems (CPS) are large-scale, networked systems
with interconnected subsystems each of which may operate at
different time scales and have different real-timeliness and depend-
ability requirements. As the complexity and scale of CPS continue
to grow and their deployment environments become increasingly
challenging for humans to intervene for maintenance and upgrades,
these CPS must be designed with self healing and self management
attributes.

The first generation CPS were predominantly networked embed-
ded systems, where traditional real-time scheduling and feedback
control techniques were extended to address the needs of these
CPS. However, with the adoption of Internet of Things (IoT) in
CPS and the ensuing challenges stemming from the presence of
Big Data, heterogeneity in resources and their constraints, the in-
creased complexity of the subsystems, and fluctuating dynamics
of these CPS in terms of workloads and resource availabilities, it is
no longer feasible to design such CPS with a priori-defined control
strategies. Any offline designed solution may at most serve to ini-
tially seed the system when it is deployed, but the strategies must
adapt autonomously based on changing dynamics.

Data-driven Artificial Intelligence (AI)/Machine Learning (ML)-
based models of CPS (also called Digital Twins [6, 8, 13, 15, 22])
are therefore becoming increasingly important in designing and
controlling modern CPS as evident from emerging research litera-
ture [12, 17]. CPS are a unique class of intelligent systems, where,
in contrast to natural language or image or video processing sys-
tems, the governing process models for the system (or its parts)
are available to inform decision making. The governing physics
or chemistry models provide an additional source of information,
potentially improving the accuracy of building models of CPS, but
also increasing the complexity of the information fusion process.

However, since CPS systems are often resource-constrained due
to their embedded artifacts and demand real-time guarantees in
their control loops, it is hard to perform the information fusion
within the CPS itself. Moreover, building a large, monolithic model
of the complete CPS is also infeasible for a variety of reasons. First,
the size and complexity of such large models may require a cloud-
based storage and training/execution on cloud-based servers both
of which may be expensive and incur long and variable delays,
which is detrimental to the real-time needs of the control loops.
Second, since CPS are formed as a composition of many subsystems,
each subsystem may need to be controlled at different time scales
and may use different protocols and communication infrastructure
making it infeasible for a single, large model to serve as the con-
troller of many different subsystems all at once. Third, CPS are
highly dynamic systems which may cause concept drift [24], i.e.,
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degradation in accuracy, of the learned model due to significant
deviations in the type of data used to train the models thereby
requiring model re-learning or continual learning [23] . However,
a continual learning process for the entirety of the CPS may be
extremely expensive and incur extremely long time-scales, which
may not be acceptable for the safe and correct operation of the
deployed CPS. Finally, the loss in accuracy may propagate across
the models when they are composed, or one or more models may
be subject to adversarial attacks [10, 26] both of which may pose
serious consequences for the effective control of the CPS.

Addressing these challenges calls for handling most of the model
(re)learning and execution activities closer to or within the CPS
– a paradigm referred to as edge computing [19]. Models that can
still be afforded to be learned over longer time scales and which
are based on aggregate information can be trained using traditional
cloud resources. For those models that must be trained at the edge,
due to the constraints on resources in the CPS and contention for
these resources by the different subsystems, learning a model of
the CPS in its entirety and that too using exhaustive set of training
data samples is not feasible.

Accordingly, two solution approaches used in combination hold
the most promise. First, surrogate modeling [5] as an alternative
to expensive and exhaustively trained models can rapidly train
models of the systems at lower cost. The surrogate models for
CPS can be trained using the process models. Second, distributed
(re)learning [3] of surrogate models at the individual subsystem
level and composing them to formmodels of the larger CPS can scale
the modeling activity, and promote reuse via transfer learning [18].

Although distributed (re)learning of surrogate models of CPS and
their composition is an attractive approach, it is fraught with many
technical challenges. This position paper provides an exposition
of such research challenges and the research needed to realize
the vision of edge-based, distributed surrogate model design and
composition for CPS. The rest of the paper focuses on detailing
these research challenges and solution needs.

2 RESEARCH NEEDS FOR COMPOSABLE,
DATA-DRIVEN CPS

We present details of the research challenges. To better appreciate
these challenges, we first present a motivating case study.

2.1 Motivating Case Study
Consider a large manufacturer, such as an auto maker, who must
ensure the efficiency and reliability of its CPS enterprise compris-
ing a large number of assets including the many different geo-
graphically distributed manufacturing and assembly plants, its
showrooms and service centers, its deployed fleet, suppliers of
parts, and the overall supply chain. These assets, which range from
closed to open systems, may be owned and managed by the enter-
prise itself (e.g., the assembly plants), some independently owned
(e.g., value added resellers and part manufacturers), some operated
by franchises/family-owned businesses (e.g., showrooms and ser-
vice centers), and some operated by public/private operators (e.g.,
state/federal transportation systems that manage roads, trucking
companies that operate car transporters or carry parts to assembly

plants or service centers, weather agencies that inform potential
disruptions on routes, etc).

Each such asset produces significant amounts of data in different
volumes and velocities. The enterprise must exploit this data in
managing and controling its assets by developing models or digital
twins, which means that data analytics is key to advancing the
state of art. However, building a single, large enterprise-wide model
or digital twin is hard and infeasible due to the scale of the CPS, the
different functionalities and responsibilities of the individual assets,
the different time scales at which these assets operate and must be
controlled and managed, difficulty in ensuring a temporally consis-
tent snapshot of the overall system operation, the ineffectiveness of
controlling the dispersed, heterogeneous and often independently
owned/managed assets from a centralized location, and the sub-
stantial scale of compute resources needed to train and execute
such a digital twin.

These attributes call for the composition of models/digital twins.
However, even at the level of each asset, the amount of data may be
significant and the real-time control needs of these assets will re-
quire faster training of these models using novel machine learning-
based approaches, which could be surrogate models. Developing
such composable surrogate models will require distributed infras-
tructure ranging from in-house resources within each asset, which
could even be Internet of Things (IoT) resources that we collectively
refer to as edge computing resources all the way to traditional cloud
computing resources.

Since the trained models cannot permanently remain accurate
due to emergent properties of the CPS, different models may need
retraining, and hence detecting the drift in models and retrain-
ing them must be done autonomously. Finally, since models are
composed hierarchically across the different assets to define the
enterprise model, and since these assets range from being closed to
open, each asset can be vulnerable to different kinds of attacks, no-
tably adversarial attacks, which are security issues concerning the
correctness of the trained models, and hence ensuring appropriate
defense mechanisms to guard against such attacks is critical.

2.2 Research Challenges
We now present the key research challenges that we have identified
and situate these in a generic architecture shown in Figure 1.

Figure 1: Architecture Overview and Research Challenges

2.2.1 Learning surrogate models across the edge and cloud. High-
fidelity models for physical or chemical phenomena of interest are
often multi-disciplinary and multi-scale, and are computationally
expensive. Using such models for various types of analyses that
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require many repeated runs (such as “what-if” analysis, sensitiv-
ity analysis, uncertainty quantification, reliability analysis, model
calibration, system health diagnosis and prognosis, and design op-
timization) quickly becomes unaffordable. Computational speed is
even more crucial when real-time or on-line decision making to
enable optimal performance or operations of the system of interest
is the main goal. Therefore, construction of inexpensive, accurate,
and up-to-date surrogate models is central to improving the perfor-
mance of cyber physical systems.

Many different techniques exist in building surrogate models,
however, the challenge for CPS is to rapidly build surrogate models
for different subsystems of CPS trading off granularity of the trained
model versus its accuracy all while leveraging the limited resources
the CPS subsystems (i.e, the edge) for shorter time-scale needs
(i.e., lower fidelity models), and use the powerful cloud resources
for decisions that can be taken over longer time-scales (higher
fidelity models). A multi-fidelity approach, which aims to identify
the optimal combination of low-fidelity and high-fidelity physics
model runs to build the surrogatemodel, can be leveraged to achieve
the balance between training effort and accuracy.

The problem of building such models involves two key chal-
lenges: a) development of improved surrogate model building al-
gorithms (surrogate model form selection, training point selection
to maximize information gain, analysis of surrogate model accu-
racy, adaptive improvement of the surrogate model, accounting for
surrogate model error in prediction, etc.), and b) development of in-
telligent computational resource allocation algorithms for perform-
ing computations across the cloud and edge computing spectrum
for activities such as physics model runs to collect training data,
surrogate model training, and prediction with the surrogate model.

2.2.2 Composability of the surrogate models. Due to the multi-
disciplinary nature of real-world CPS, composition of multiple
process models or the corresponding surrogate models is inherent
to these systems. Accordingly, individual, trained surrogate models
of the different subsystems of CPS will need to be composed in
someway to realize the model of the overall CPS. However, research
on composition of data-driven AI/ML models is still in its infancy,
which requires new ideas and formalisms to compose models to
form larger models [11]. Most work that we found in the literature
has focused on composition in the realm of human brain models[9]
or in natural language processing (NLP) [11].

Yet, we believe that existing research in this space may help
connect-the-dots between their findings and applicability to CPS,
which provides new directions of research. For instance, although
the five test criteria proposed in [11] are specific to linguistics,
they appear generic enough to be researched in the context of CPS.
These include (a) systematicity, i.e., whether the composition can
recombine known parts and rules to form new sequences – for
CPS, this could entail determining if combining subsystems using
different network links and scheduling algorithms can give rise to
a different but operational CPS; (b) productivity, i.e., whether the
composition can predict beyond the length of the training data for
individual models – for CPS this could mean testing the composed
model for its ability to make predictions for emergent behaviors
stemming from subsystem composition or workload changes, (c)
substitutivity, i.e., whether the predictions of the composition

is robust to synonym substitution – in CPS we could switch one
scheduling algorithm with another and check for the composed
model’s robustness, (d) localism, i.e., whether the operations of
the composition are local or global – for CPS this would indicate
whether individual models execute on their own and their outcomes
aggregated or whether the composed model makes the prediction
at the global level, and (e) overgeneralization, i.e., whether the
composition favors specific rules or exceptions – for CPS this could
mean how the composed models handle concept drifts and what
would it take to retrain based on newer evidence [23].

2.2.3 Handling error propagation and concept drift in composed
models: Since surrogate models are approximate, errors can prop-
agate and accumulate when the models are composed. Thus, it
is critical to limit the error spread and improve the accuracy of
the composed model. Moreover, since one or more of the trained
models in the composition can incur different degrees of concept
drift, it is important to be able to pinpoint the set of drifted models
and determine which among them need to be re-learned without
impacting existing control logic.

For any surrogate model, there are two main sources of error: a)
the inability of the surrogate model (S𝑖 ) to accurately approximate
the governing process model (P𝑖 ), and b) the inability of the pro-
cess model (P𝑖 ) to accurately describe the real-world phenomenon.
The error introduced due to the first reason can be alleviated by
adding training points from previously under-represented regions
(also known as adversarial input) of the input space. For a cyber
physical system, one approach to continual improvement could
be by training the surrogate model in parallel with the system
operations. That is, while the system is operating (and while the
𝑗-th version of a surrogate model (S𝑖 ( 𝑗 ) ) is being used to perform
system optimization/control), execute the process model (P𝑖 ) to
obtain additional training data corresponding to adversarial inputs,
re-train the surrogate model (S𝑖 ), and update the version from 𝑗 to
𝑗 + 1 when the error has reduced sufficiently. The error introduced
due to the second reason can possibly be alleviated by refining the
process model (P𝑖 ), or by incorporating model discrepancy in the
model estimate.

Despite the above-proposed ideas, surrogate models are often
inadequate to describe the data or the process model. Several cases
may arise in this context, e.g., the case where the process model is
available but complex to run, or the case where the process model
is represented extensionally by data only. Irrespective, this results
in two different problems that need resolution. The first one is
lack of data to train the surrogate model, the second is the form of
the surrogate model which might be inadequate. In the latter case,
adding data points is ineffective and a different hypothesis space
should instead be required.

2.2.4 Handling adversarial attacks: Data-driven techniques, par-
ticularly deep learning, have made deep strides in addressing a
variety of CPS issues like health management and prognostics, e.g.,
power disturbance classification [25] and remaining useful life pre-
diction [16], or in smart power grids where data from smart power
meters is used by the deep neural network to forecast load and
thereby inform effective power distribution [20]. However, recent
research [2] shows that current machine learning algorithms pro-
posed for such use cases can be vulnerable to adversarial attacks,
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which are small but specially designed modifications to normal data
inputs that can adversely affect the quality of the machine-learned
predictor [4]. For instance, with increasing IoT sensors in many
CPS applications, an attacker could intercept and maliciously mod-
ify sensor readings to conduct such adversarial attacks, leading to
critical damage caused due to inaccurate control decisions by the
data-driven model. Surrogate models are no exception to this rule;
in fact given their approximate nature, we surmise that they may
be even more susceptible to such attacks.

The impact of adversarial attacks in deep learning [4, 21] has
given rise to many concerns [7]. Prior research [26] has shown the
threats to current machine learning systems. Most prior work in
the field of adversarial machine learning has focused on classifica-
tion tasks [1]. As regression tasks, such as power load forecasting,
temperature forecast, remaining useful life prediction, crime predic-
tion, traffic prediction, accident prediction and many others, start
playing an increasingly important role in CPS use cases, the topic
of adversarial regression is attracting research attention and is in
need for solutions to defend against adversarial attacks.

CPS systems can vary from being mostly closed (e.g., an aircraft)
to semi open (e.g., connected vehicles or a data center) to mostly
open (e.g., IoT-based systems or global supply chain). Consequently,
each category of CPSmay be vulnerable to different kinds of attacks.
Here, we focus on data-driven models that can be prone to adver-
sarial attacks [10, 26] and hence must be protected against such
attacks otherwise the control algorithms will behave incorrectly.

2.2.5 Dynamic resource management. Crosscutting the above re-
search thrusts is the need to dynamically allocate and share re-
sources across the spectrum of resources comprising the edge to
the cloud for all the model (re)learning, composition, adversarial
defense, and model inference tasks.

Deep learning model training is a resource and time intensive
activity. One approach to speeding up training is to modify the
internals of the training process. Modular Networks [14] views a
deep neural network as being made up of a set of modules, and
instead of activating eachmodule in every layer per training sample,
only a subset of the modules per layer are chosen stochastically by a
controller, and the resulting output from the subset is concatenated
or summed up and passed on to the subsequent layer.

While such a technique can certainly speed up modeling of indi-
vidual subsystems of a CPS, composition of such models and their
effectiveness still remains an unresolved issue including knowing
when and how many resources are needed. Moreover, the work
has been applied to image classification and language modeling
examples but not concretely to solve any CPS problem.

Inferencing for large deep neural networks is expensive too, how-
ever, the use of surrogate models can help alleviate this challenge.

3 CONCLUSIONS
This position papers laid out key challenges and possible research
directions in realizing robust CPS that are composed of data-driven,
surrogate models of individual subsystems of the CPS.
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