
Model-driven Performance Estimation, Deployment, and
Resource Management for Cloud-hosted Services ∗

Faruk Caglar, Kyoungho An, Shashank Shekhar and Aniruddha Gokhale
Vanderbilt University, ISIS and EECS

Nashville, TN, USA
{faruk.caglar,kyoungho.an,shashank.shekhar,a.gokhale}@vanderbilt.edu

ABSTRACT
There is a growing trend towards migrating applications and
services to the cloud. This trend has led to the emergence
of different cloud service providers (CSPs), in turn leading
to different cost models offered by these CSPs to lease their
resources, variabilities in the granularity and specification
of resources provided, and heterogeneous APIs offered by
the CSPs to the users to program resource requests and de-
ployment for their cloud-hosted services. These challenges
make it hard for customers of the cloud to seamlessly transi-
tion their services to the cloud or migrate between different
CSPs. To address these challenges, this paper presents a
solution based on model-driven engineering (MDE). Specifi-
cally, we describe the design of the domain-specific modeling
languages in our MDE framework and the associated gen-
erative mechanisms that address the challenges related to
estimating performance and cost to host the services in the
cloud, automated deployment and resource management.

Categories and Subject Descriptors
I.6.3 [Computing Methodologies]: Simulation and Mod-
eling—Applications, Tools

General Terms
Design, Performance

Keywords
model-driven analysis, deployment, cloud computing

1. INTRODUCTION
Cloud computing [1] offers scalability, extensibility, elastic-
ity, flexibility, and cost savings to the customers of cloud

∗This work was supported in part by NSF CNS CAREER
award 0845789. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

service providers, which is the reason it is increasingly be-
coming an attractive technology to host different types of
applications and services. Even mission-critical and real-
time applications are moving to the cloud. Although these
trends demonstrate the promise that cloud computing holds
for the future, multiple unresolved challenges must be over-
come before it becomes easy for users to access the services
of the cloud. These challenges can roughly be classified into
three categories: Programming and Deployment Heterogene-
ity, Resource Management, and Performance and Cost Es-
timation.

• Programming and Deployment Heterogeneity: Cloud
Service Providers (CSPs), such as Amazon EC2, GoGrid,
RackSpace, and Microsoft Azure provide different APIs to
their customers to manage their resources on the cloud. This
API heterogeneity imposes a steep learning curve for cloud
customers while also limiting their ability to seamlessly mi-
grate their services between the CSPs. Some recent efforts
to deal with API heterogeneity include DeltaCloud [5], lib-
cloud [6], and jclouds [7]. Some of these libraries are pro-
gramming language-dependent such as jclouds and libcloud
which could be utilized by a Java-based and Python-based
applications respectively. Another tool, JetS3t [8], is ap-
plicable to Amazon S3, CloudFront, and Google Storage.
While, these efforts are promising, we believe these tech-
nologies help address only the API heterogeneity issue.

A closely related issue is that of deployment of services to
the cloud, which is often carried out programmatically using
the APIs. Consequently, the above limitations exist in this
case also. To overcome some of the deployment concerns,
CSPs often provide a web-based management console. Un-
fortunately, these user interfaces are very specific to the CSP
and hence do not resolve the original problem.

• Resource Management: Depending on the service host-
ing model, the responsibility of resource management (i.e.,
determining the properties of the virtual machine and au-
toscaling as the demand changes) remains the responsibility
of the cloud customer. Effective decisions on autoscaling of
resources is a runtime property and is dictated by the op-
erating environment of the CSP, the workload, and degree
of resource sharing – which is a prominent feature of pub-
lic clouds. These decisions must be programmed using the
APIs, which is already shown to be challenging.

• Performance and Cost Estimation: Cloud comput-



ing comes with a cost; the accounting is based on a utility
model. Making decisions on how many cloud resources to
use to host a service, and when and how much to autoscale
is a significant challenge for the cloud customers. Under-
standing what will the impact of these decisions be on both
the expected performance delivered to the service and cost
incurred by the customer is even harder.

Addressing these challenges requires a framework that holis-
tically focuses on the core set of problems by providing in-
tuitive abstractions to the cloud customer to enable vari-
ous CSP-agnostic “what-if” analyses while automating the
deployment and resource management. To that end we
have developed a solution based on model-driven engineer-
ing (MDE). The key artifacts of our MDE solution includes
domain-specific modeling languages (DSMLs) and genera-
tive technologies.

In [2] we outlined the vision behind this work. In this paper,
we focus on describing the framework including the DSMLs
and their metamodels, the model interpreters, and middle-
ware capabilities developed for simulation and automated
deployment. Specifically, this paper makes the following
contributions to address the challenges outlined above:

• Performance, Cost and Resource estimation – we
describe a DSML that allows a cloud customer to describe
their service and resource needs. Generative capabilities as-
sociated with the DSML generate scripts to drive a simu-
lator for a CSP. Feedback from executing these simulations
provide customers an idea about performance and cost esti-
mates. Using a DSML shields the customer from having to
learn a simulator and its interface.

• Overcoming heterogeneity – the same models devel-
oped in the first step are then used to synthesize deployment
scripts for the underlying CSP thereby shielding the user
from having to manually write scripts using low-level APIs,
and promoting easy migration between the CSPs.

The rest of the paper is organized as follows: Section 2 de-
scribes the MDE process to analysis and deployment; Sec-
tion 3 describes related work; and finally Section 4 provides
concluding remarks and outlines future work.

2. A HOLISTIC MODEL-DRIVEN FRAME-
WORK FOR CLOUD HOSTING

Our MDE solution is described in three parts. First, we
outline the use of modeling in our solution. Second, we show
how the modeling capabilities are used in the context of a
simulator to conduct what-if analysis used in performance
and cost estimation for the different kinds of resources used
to host the service. Third, we show how the modeling tools
can help automate the deployment of the services to cloud
platforms shielding the user from the heterogeneity in cloud
providers.

2.1 Overview of the Modeling Process
Our MDE solution comprises two DSMLs and associated
tools: a DSML for simulator-based analysis capability used
to estimate the performance and price for hosting a service
in the cloud, and a DSML for automating its deployment

across a range of CSPs.

We have used the Generic Modeling Environment (GME) [9],
which is a language workbench.

2.2 Model-based Cloud Simulation
Estimating the performance of deployed services in the cloud
is not straightforward because of different and often varying
number of resources, such as hardware and network that ex-
ist in cloud data centers, which are required by the hosted
services. Additionally, the impact on performance by re-
source scheduling and allocation polices of the cloud plat-
form may differ. Finally, varying and dynamic workloads
and QoS requirements of services make it harder to evaluate
performance of these services on the cloud platforms.

To overcome these challenges, CloudSim [4] provides a sim-
ulation environment of the cloud infrastructures and ser-
vices. Developers can test the performance of their ser-
vices deployed in heterogeneous cloud infrastructures, such
as Amazon EC2 and Microsoft Azure via a simulation en-
vironment provided by CloudSim as well as determine the
cost of cloud hosting. CloudSim provides diverse model-
ing and simulation features for cloud infrastructures: large
scale cloud data centers, virtualized server hosts with cus-
tomizable policies for provisioning host resources to virtual
machines, energy-aware computational resources, and data
center network topologies.

Even though CloudSim offers a cloud computing simulation
environment, it is not easy for users to use it without in-
curring a learning curve that includes understanding the
CloudSim APIs available in the Java programming language.
Given the plethora of choices and heterogeneity with cloud
platforms, it is a significantly comprehensive and involved
task of having to program the CloudSim simulator. More-
over, it is difficult to integrate the simulation tool with other
tools, such as deployment tools and data center network sim-
ulation tools.

We have used GME to address these interfacing and integra-
tion challenges and develop a DSML and generative capabil-
ities for the domain of cloud simulation for performance and
cost estimation for resource allocations specified by the user.
Figure 1 illustrates the metamodel, which is at the heart of
the DSML for cloud simulation. The purpose of the different
colors in the metamodels is to distinguish entities from each
other for the reader. The metamodel primarily comprises
first class entities, such as DataCenter, DataCenterBroker,
virtual machine (VM), and Cloudlet. Although most of
these elements are generic cloud artifacts, the Cloudlet is
specific to the CloudSim simulator.

The metamodel components in the DSML and their respon-
sibilities are as follows:

• DataCenter: defines CSPs such as Amazon EC2, Win-
dows Azure, or private data centers. It is simply a
resource provider where host machines are virtualized.
This component aims to provide information for all the
data center components such as host, VM, and stor-
age. It contains default attributes, but the attributes



Figure 1: Metamodel for Estimating Cloud-based Service Performance and Cost, and Cloud Resource Usage

such as specification of physical servers, VM allocation
policy, and pricing information can also be configured
through components (e.g. Cost and Host) by users.

• DataCenterCharacteristics: contains DataCenter com-
ponent and defines characteristics of the data center
and the storage components. It stores the properties
of a datacenter such as architecture, OS, and cost of
using a specified resource.

• VM: is used to define requested VMs from clients. At-
tributes of a VM include ID, millions of instructions
per second (MIPS), memory, image size, number of
CPUs, bandwidth, size, and virtual machine manager
type.

• Host: represents a physical host in a data center. Mem-
ory, storage, bandwidth, and number of CPUs are some
of the attributes that could be defined.

• Cloudlet: defines the application services deployed in
clouds. CPU, memory, and bandwidth utilization mod-
els are some of the attributes it stores. Based on this
template, the number of the Cloudlets can be config-
ured by users.

• DatacenterBroker: acts as a bridge between cloud data
centers and cloud users. Therefore, the VMs and the
Cloudlets defined by cloud users are connected to the
Datacenter via the DatacenterBroker component.

• Cost: aims to simulate the cost information when the
service model is deployed and executed in the datacen-
ter defined in the simulation. It stores cost per mem-
ory, cost per second, cost per bandwidth, and cost per
storage attributes, and provides them to the DataCen-
terCharacteristics component

• Storage: our proof of concept application does not re-
quire cloud storage, so we integrated the simplified ver-
sion of it only for the benefit of future enhancements.

Figure 2: Model Example

A simple example model of cloud simulation using the DSML
is shown in Figure 2. In the figure, DSML components to
simulate a cloud environment, such as a VM template, a
Cloudlets template, a DatacenterBroker, and a Datacenter
are defined. The VM template contains default attributes,
such as CPU, RAM, network bandwidth, and the hypervisor
(e.g. Xen, KVM, and HyperV). The default attributes can
be modified according to users’ environment. Users can also
change the number of VMs defined by the VM template.
The Cloudlet template, which defines cloud-based applica-
tion services such as content delivery, social networking, and
business workflow [4], also has configurable attributes such



Figure 3: The Metamodel for Automated Deployment in the Cloud

as pre-assigned instruction length and data transfer over-
head.

The overall process of the example model is that the defined
VMs and Cloudlets are submitted to the DatacenterBro-
ker, which is mediated by the DatacenterBroker, which in
turn makes requests for deploying VMs and cloud applica-
tion services to the Datacenter on behalf of a user. After
the configuration of the example CloudSim model is com-
pleted, the example model is transformed into Java-based
CloudSim codes to simulate the cloud environment. Once
the generated code is executed, cost and performance are
simulated by CloudSim application.

2.3 Model-based Automated Deployment in the
Cloud

The second modeling capability in our MDE approach en-
ables automated deployment to the cloud, which is needed to
overcome the challenges resulting from heterogeneity in CSP
APIs and deployment policies. The metamodel of the de-
ployment model in our DSML is depicted in Figure 3, which
consists of Print, Sleep, Upload, Download, RunApp, Termi-
nate, CreateInstance, WaitforStartup, Connect, Entity, and
Keyfile model components, which are used during the mod-
eling process.

The metamodel was partitioned into three viewpoints (called
Aspects in GME), which show or hide the design details,
named as AllKeywords, DisplayKeywords, and ActionKey-
words. The connections between components are also de-
fined in the metamodel, such as CreateInstance component
could connect to WaitforStartup component, and the com-
ponents of ActionKeywords and DisplayKeywords aspects.
The aws_access_key_id, host, and port are some of the at-
tributes associated with the Connect component. The rest
of the attributes associated with each component are also
defined in the metamodel.

The metamodel components in the DSML and their respon-
sibilities are as follows:

• Print: prints a message specified on the screen. This
command aims to provide information to the cloud
user during the deployment.

• Sleep: stops the program flow and waits for an interval
specified. Generally, even though VMs are switched to
the running status from pending status after they are
created, physically they might not be available instan-
taneously and at the running status yet. Copying a
file onto the created VM will not succeed. Therefore,
this command is needed to wait for VMs to launch.
Additionally, it allows applications to run for a while
and retrieve their outputs.

• Entity: keeps the information of an entity which will
run a command or the file name to be uploaded or
downloaded. To upload or download a file, the file
name needs to be known. To execute a command on
a VM, what command will be executed needs to be
provided. Therefore, this information is supplied by
this command.

• Upload: contains entities such as text file, executable
file, or any other library files and uploads them onto
the VMs that it is connected to. This command is
used to copy the application’s set up and log files from
a local directory to another directory on a VM in the
cloud.

• Download: is used to download entities from the VMs
it is connected to. This command copies the log file of
an application from a directory on a VM in the cloud
to a local directory.

• RunApp: is used to execute the commands specified
by different entities against the VMs it is connected
to. After an application is deployed in the cloud, it is



required to launch it. This command simply runs the
application deployed in the cloud remotely.

• Terminate: stops all the VMs created by each Create-
Instance component. After the mission of the appli-
cation deployed in the cloud is accomplished, it might
no longer be needed to have all the VMs running, and
hence this command is used to terminate all the run-
ning VMs associated with an application.

• CreateInstance: creates a VM and runs it. Image id
and key name properties of the VM are specified by
its attributes. To deploy an application in the cloud,
a VM(s) is needed to be created first, which is respon-
sibility of this command.

• WaitforStartup: waits for all the VMs that it is con-
nected to be launched. It checks for their status and
lets the flow continue after all the instances are at the
“running” status. A VM has to be in the running sta-
tus to start the deployment process. Therefore, this
command is a kind of switch to initiate migration pro-
cess.

• Connect: creates a connection to the host and port
number specified. This command represents a connec-
tion object to the cloud.

• Keyfile: keeps the file name of the key file to make ssh
connection. To make ssh connection to a VM, the lo-
cal machine should authenticate first. This command
provides the name of the key file previously created for
authentication purposes.

In Figure 4, an example model of automated deployment
using the DSML in Figure 3 is depicted. The connections
back to CreateInstance component from Download, Upload,
and RunApp components are to indicate the target such
as Download component downloads the file specified in its
attribute from the VM that it is connected to. The de-
ployment script generation algorithm finds the Connect and
Keyfile components in the model first and then processes the
model recursively starting from the Connect component till
it reaches the Terminate component when the interpreter
is run. We used the Builder Object Network (BON2) in
GME to code the model interpretation, which generates the
deployment script in Python. For this model, the gener-
ated code deploys a network application, which comprises
(1) two server applications, (2) a client application, and (3)
a fault manager application, in the cloud. The overall pic-
ture and further details of each application being deployed
in the cloud is outside the scope of this paper, and hence
not described further. Each application is deployed onto a
separate VM, respectively.

The model interpreter for our example in Figure 4 generates
a deployment script which will execute the following steps:

1. A connection to the public or private cloud server which
is a public interface to the clients is created

2. Four VM instances are created and run

3. Waits for all the VMs to be advanced to the running
state

4. Prints “Waiting 30 sec” before copying files over to the
newly created instance(s)

5. Waits for 30 sec after all the VMs are at running state
before the Upload component is interpreted

6. Uploads entities specified under each Upload compo-
nent onto the VMs that they are associated with. (The
entities under each Upload components are Server.exe,
Server.exe, Client.exe, and FaultManager.exe, respec-
tively)

7. RunApp component executes the command in the enti-
ties under it against the VM that it is associated with.
Basically, these are the commands that need to be ex-
ecuted as part of launching the application deployed.

8. Prints Waiting 1 min to get output files

9. Prints “Please terminate the main server” 1 min later:
kill -9 process ID

10. Waits for 180 sec after all the applications are executed
before the Download component is interpreted.

11. Downloads entities specified under each Download com-
ponent onto the VMs that they are associated with.
(The entities under each Download component are Server.txt,
Server.txt, Mainclient.txt, and FaultManager.txt re-
spectively)

12. Waits for 10 sec after all the files are downloaded from
the VMs

13. Finally terminates all the VMs created

3. RELATED WORK
The work presented in [11] provides a model-based proxy
for unified Infrastructure as a Service (IaaS) management.
The purpose is to manage services provided by any cloud
platform from a common interface. Amazon Elastic Com-
pute Cloud (EC2) service is the only cloud platform sup-
ported by that work. The work in that paper differs from
this research in that it does not provide price simulation and
automated deployment. However, similar concepts of hav-
ing model-based structure and providing unified proxy are
present in both works. Our approach intends to be cloud
platform-agnostic and through its generative mechanism be
able to operate with the platform.

Unlike Deltacloud [5] and Libcloud [6], however, our work
in this paper comprises the price simulation, automated de-
ployment, and limited support on VM management tasks.
In contrast, they already provide a single API with multiple
cloud platforms with no model-based interaction.

EMUSIM is another simulation environment which supports
the modeling, evaluation, and validation of performance of
Cloud computing applications. It is built on top of Cloudsim
that we have used in our research [3].

Uni4Cloud [10] is an approach promising (1) automated de-
ployment independent of cloud service-providers and (2) de-
ployment of an application components over multiple clouds.
They propose modeling, deployment, and management of
applications in multicloud platforms and facilitate the Open
Virtualization Format (OVF) format to deploy an applica-
tion to different clouds. Our work has synergies with this
related work in the context of being applicable to multiple



Figure 4: An Example Model of Model-based Auto-
mated Deployment in the cloud

cloud platforms. In contrast, however, our work provides
price and performance simulation in advance of deployment.

4. CONCLUSIONS AND FUTURE WORK
This paper presented the results of investigations on the
DSMLs and generative capabilities that yield the model-
based simulation and automated deployment in the cloud.
Cost and performance results for a given model are simu-
lated, and automated deployment scripts are generated by
the MDE tooling. This helps shield the users from possible
complex price calculations, uncertainties, and the low-level
API details.

The current MDE capabilities can be extended further to
handle more complex analysis problems for the users when
they must handle more complex, multi-objective optimiza-
tion functions to transition to the cloud. Similar objectives
exist for codifying deployment and resource management ap-
proaches within modeling frameworks. This research will
finally yield to a complete MDE tooling and model-based
middleware supporting all the cloud service-provider APIs
and many cloud simulation tools. Our aim is to move in
the direction of making these two DSMLs as mature and
industry-strength languages.

5. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, et al. A View of Cloud Computing.
Communications of the ACM, 53(4):50–58, 2010.

[2] F. Caglar, K. An, A. Gokhale, and T. Levendovszky.
Transitioning to the cloud?: a model-driven analysis
and automated deployment capability for cloud
services. In Proceedings of the 1st International
Workshop on Model-Driven Engineering for High
Performance and CLoud computing, page 8. ACM,
2012.

[3] Calheiros, R. N., Netto, M. A.S., C. A. De Rose, and
R. Buyya. EMUSIM: An Integrated Emulation and
Simulation Environment for Modeling, Evaluation,
and Validation of performance of Cloud Computing
Applications. Software: Practice and Experience,
pages 00–00, 2012.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
F. D. Rose, and R. Buyya. CloudSim: A Toolkit for
Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource
Provisioning Algorithms. Software: Practice and
Experience, 41(1):23–50, jan 2011.

[5] deltacloud.org. Deltacloud. deltacloud.org, 2012.

[6] incubator.apache.org. Libcloud.
incubator.apache.org/libcloud/, 2012.

[7] jclouds.incubator.apache.org. jclouds.
jclouds.incubator.apache.org/, 2013.

[8] jets3t.s3.amazonaws.com. JetS3t.
jets3t.s3.amazonaws.com, 2013.

[9] Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai. Composing
Domain-Specific Design Environments. Computer,
34(11):44–51, 2001.

[10] A. Sampaio and N. MendonÃğa. Uni4Cloud: An
Approach based on Open Standards for Deployment
and Management of Multi-cloud Applications. 2011.

[11] S. Yan, B. S. Lee, and S. Singhal. A Model-Based
Proxy for Unified IaaS Management. 2010.


