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Abstract. Traversals of heterogeneous object structures are the most
common operations in schema-first applications where the three key is-
sues are (1) separation of traversal specifications from type-specific ac-
tions, (2) expressiveness and reusability of traversal specifications, and
(3) supporting structure-shy traversal specifications that require min-
imal adaptation in the face of schema evolution. This paper presents
Language for Embedded quEry and traverSAl (LEESA), which pro-
vides a generative programming approach to address the above issues.
LEESA is an object structure traversal language embedded in C++.
Using C++ templates, LEESA combines the expressiveness of XPath’s
axes-oriented traversal notation with the genericity and programmabil-
ity of Strategic Programming. LEESA uses the object structure meta-
information to statically optimize the traversals and check their compat-
ibility against the schema. Moreover, a key usability issue of domain-
specific error reporting in embedded DSL languages has been addressed
in LEESA through a novel application of Concepts, which is an upcoming
C++ standard (C++0x) feature. We present a quantitative evaluation
of LEESA illustrating how it can significantly reduce the development
efforts of schema-first applications.

1 Introduction

Compound data processing is commonly required in applications, such as pro-
gram transformation, XML document processing, model interpretation and trans-
formation. The data to be processed is often represented in memory as a het-
erogeneously typed hierarchical object structure in the form of either a tree
(e.g., XML document) or a graph (e.g., models). The necessary type informa-
tion that governs such object structures is encoded in a schema. For example,
XML schema [1] specifications are used to capture the vocabulary of an XML
document. Similarly, metamodels [2] serve as schema for domain-specific models.
We categorize such applications as schema-first applications because at the core
of their development lie one or more schemas.

The most widespread technique in contemporary object-oriented languages
to organize these schema-first applications is a combination of the Composite and
? This work was supported in part by NSF CAREER award 0845789



Visitor [3] design patterns where the composites represent the object structure
and visitors traverse it. Along with traversals, iteration, selection, accumulation,
sorting, and transformation are other common operations performed on these
object structures. In this paper, we deal with the most general form of object
structures, i.e., object graphs, unless stated otherwise.

Unfortunately, in many programming paradigms, object structure traversals
are often implemented in a way such that the traversal logic and type-specific
computations get entangled. Tangling in the functional programming paradigm
has been identified in [4]. In object-oriented programming, when different traver-
sals are needed for different visitors, the responsibility of traversal is imposed on
the visitor class coupled with the type-specific computations. Such a tight cou-
pling of traversal and type-specific computations adversely affects the reusability
of the visitors and traversals equally.

To overcome the pitfalls of the Visitor pattern, domain-specific languages
(DSL) that are specialized for the traversals of object structures have been pro-
posed [5,6]. These DSLs separate traversals from the type-specific computations
using external representations of traversal rules and use a separate code gener-
ator to transform these rules into a conventional imperative language program.
This two step process of obtaining executable traversals from external traversal
specifications, however, has not enjoyed widespread use. Among the most im-
portant reasons [7–10] hindering its adoption are (1) high upfront cost of the
language and tool development, (2) their extension and maintenance overhead,
and (3) the difficulty in integrating them with existing code-bases. For example,
development of language tools such as a code generator requires the develop-
ment of at least a lexical analyzer, parser, back-end code synthesizer and a
pretty printer. Moreover, Mernik et al. [7] claim that language extension is hard
to realize because most language processors are not designed with extension in
mind. Finally, smooth integration with existing code-bases requires an ability of
not only choosing a subset of available features but also incremental addition of
those features in the existing code-base. External traversal DSLs, however, lack
support for incremental addition as they tend to generate code in bulk rather
than small segments that can be integrated at a finer granularity. Therefore, pro-
grammers often face a all-or-nothing predicament, which limits their adoption.
Pure embedding is a promising approach to address these limitations of external
DSLs.

Other prominent research on traversal DSLs have focused on Strategic Pro-
gramming (SP) [4, 11, 12] and Adaptive Programming (AP) [13, 14] paradigms,
which support advanced separation of traversal concerns from type-specific ac-
tions. SP is a language-independent generic programming technique that pro-
vides a design method for programmer-definable, reusable, generic traversal
schemes. AP, on the other hand, uses static meta-information to optimize traver-
sals and check their conformance with the schema. Both the paradigms allow
“structure-shy” programming to support traversal specifications that are loosely
coupled to the object structure. We believe that the benefits of SP and AP are
critical to the success of a traversal DSL. Therefore, an approach that combines



them in the context of a pure embedded DSL while addressing the integration
challenge will have the highest potential for widespread adoption.

To address the limitations in the current state-of-the-art, in this paper we
present a generative programming [15] -based approach to developing a pure
embedded DSL for specifying traversals over object graphs governed by a schema.
We present an expression-based [8] pure embedded DSL in C++ called Language
for Embedded quEry and traverSAl (LEESA), which leverages C++ templates
and operator overloading to provide an intuitive notation for writing traversals.
LEESA makes the following novel contributions:

– It provides a notation for traversal along several object structure axes, such
as child, parent, sibling, descendant, and ancestor, which are akin to the XML
programming idioms in XPath [16] – an XML query language. LEESA addi-
tionally allows composition of type-specific behavior over the axes-oriented
traversals without tangling them together.

– It is a novel incarnation of SP using C++ templates, which provides a com-
binator style to develop programmer-definable, reusable, generic traversals
akin to the classic SP language Stratego [17]. The novelty of LEESA’s incar-
nation of SP stems from its use of static meta-information to implement not
only the regular behavior of (some) primitive SP combinators but also their
customizations to prevent traversals into unnecessary substructures. As a
result, efficient descendant axis traversals are possible while simultaneously
maintaining the schema-conformance aspect of AP.

– One of the most vexing issues in embedded implementations of DSLs is
the lack of mechanisms for intuitive domain-specific error reporting. LEESA
addresses this issue by combining C++ template metaprogramming [18] with
concept checking [19, 20] in novel ways to provide intuitive error messages
in terms of concept violations when incompatible traversals are composed at
compile-time.

– Finally, its embedded approach allows incremental integration of the above
capabilities into the existing code-base. During our evaluation of LEESA’s
capabilities, small segments of verbose traversal code were replaced by suc-
cinct LEESA expressions in a step by step fashion. We are not aware of any
external C++ code generator that allows integration at comparable granu-
larity and ease.

The remainder of the paper is organized as follows. Section 2 describes
LEESA’s notation for object structure traversal and its support for strate-
gic programming; Section 3 presents how we have realized the capabilities of
LEESA; Section 4 describes how concept checking is used in novel ways to pro-
vide domain-specific error diagnostics; Section 5 evaluates the effectiveness of
LEESA; Section 6 and Section 7 present related work and conclusions, respec-
tively.



2 The LEESA Language Design.

In this section we formally describe the syntax of LEESA and its underlying
semantic model in terms of axes traversals. To better explain its syntax and
semantics, we use a running example of a domain-specific modeling language for
hierarchical finite state machine (HFSM) described next.

2.1 Hierarchical Finite State Machine (HFSM) Language: A
Case-study

Figure 1 shows a metamodel of a HFSM language using a UML-like notation.
Our HFSM metamodel consists of StateMachines with zero or more States hav-
ing directional edges between them called Transitions. States can be marked as
a “start state” using a boolean attribute. States may contain other states, tran-
sitions, and optionally a Time element. A Transition represents an association
between two states, where the source state is in the srcTransition role and the
destination state is in the dstTransition role with respect to a Transition as
shown in Figure 1. Time is an indivisible modeling element (hence the stereotype
�Atom�), which represents a user-definable delay in seconds. If it is absent,
a default delay of 1 second is assumed. Delay represents the composition role
of a Time object within a State object. All other composition relationships do
not have any user-defined composition roles but rather a default role is assumed.
The Root is a singleton that represents the root level model.

Fig. 1: Meta-model of Hierarchical Finite State Machine (HFSM) language (left)
and a simple HFSM model (right)

To manipulate the instances of the HFSM language, C++ language bindings
were obtained using a code generator. The generated code consists of five C++
classes: Root, StateMachine, State, Transition, and Time that capture the
vocabulary and the relationships shown in the above metamodel. We use these
classes throughout the paper to specify traversals listings.



2.2 An Axes-Oriented Notation for Object Structure Traversal

Designing an intuitive domain-specific notation for a DSL is central to achiev-
ing productivity improvements as domain-specific notations are closer to the
problem domain in question than the notation offered by general-purpose pro-
gramming languages. The notation should be able to express the key abstractions
and operations in the domain succinctly so that the DSL programs become more
readable and maintainable than the programs written in general-purpose pro-
gramming languages. For object structure traversal, the key abstractions are the
objects and their typed collections while the basic operations performed are the
navigation of associations and execution of type-specific actions.

When designing a notation for an embedded DSL, an important constraint
imposed by the host language is to remain within the limits of the programmer-
definable operator syntax offered by the host language. Quite often, trade-offs
must be made to seek a balance between the expressiveness of the embedded
notation against what is possible in a host language.

Statement : Type { (Operator Type) | (LRShift visitor-object) |

(LRShift Action) | (>> Members) |

(>> | >>= Association) }+

Type : class-name ’(’ ’)’

Operator : LRShift | >>= | <<=

LRShift : >> | <<

Action : "Select" | "Sort" | "Unique" | "ForEach" | (and more ...)

Association : "Association" ’(’ class-name :: role-name ’)’

Members : "MembersOf" ’(’ Type { ’,’ Statement }+ ’)’

Listing 1: Grammar of LEESA expressions

Listing 1 shows LEESA’s syntax represented in the form of a grammar. State-
ment marks the beginning of a LEESA expression, which usually contains a series
of types, actions, and visitor objects separated by operators. The first type in
a LEESA statement determines the type of object where the traversal should
begin. The four operators (�, �, �=, �=) are used to choose between chil-
dren and parent axes and variations thereof. This traversal notation of LEESA
resembles XPath’s query syntax, however, unlike XPath, the LEESA expressions
can be decorated with visitor objects, which modularize the type-specific actions
away from the traversals.

The association production in Listing 1 represents traversal along user-defined
association roles (captured in the metamodel) whereas members represent traver-
sal along sibling axis. Actions are generic functions used to process the results of
intermediate traversals. The parameters accepted by these actions, which are im-
plemented as C++ function templates, are not shown. Instead, only the string
literals sufficient for illustration are shown. Finally, instances of programmer-
defined visitor classes can be added in the place of visitor-object that simply



dispatch the type-specific actions. It conveniently allows accumulation of infor-
mation during traversal without tangling the type-specific computations and the
traversal specifications.

We now present concrete examples of LEESA expressions with their seman-
tics in the context of the HFSM language case-study in Section 2.1.

Axes LEESA expressions and their semantics

(A) Child Root() � StateMachine() � v � State() � v
(breadth Visit all state machines followed by all their immediate children states.

first)

(B) Child Root() �= StateMachine() � v �= State() � v
(depth Visit a state machine and all its immediate children states.
first) Repeat this for the remaining state machines.

(C) Parent Time() � v � State() � v � StateMachine() � v
(breadth Visit a given set of time objects followed by their immediate parent states

first) followed by their immediate parent state machines.

(D) Parent Time() � v �= State() � v �= StateMachine() � v
(depth For a given set of time objects, visit a Time object followed by visit its
first) parent state followed by visit its parent state machine. Repeat this for

the remaining time objects.

Table 1: Child and parent axes traversal using LEESA (v can be replaced by an
instance of a programmer-defined visitor class.)

Child and Parent Axes. Child and parent axes traversals are one of the
most common operations performed on object structures. LEESA provides a
succinct and expressive syntax in terms of “�” and “�” operators for child
and parent axes traversals, respectively. Two variations, breadth-first and depth-
first, of both the axes are also supported. Presence of the “=” operator after
the above operators turns a breadth-first strategy into a depth-first.1 Table 1
shows four LEESA traversal expressions using child and parent axes notations.
Figure 2 illustrates the graphical outlines corresponding to the examples shown
in Table 1.

Breadth-first and depth-first variations of the axes traversal strategies are of
particular interest here because of the ease of control over traversal provided by
them. The breadth-first strategy, if applied successively (as in examples (a) and
(c) in Table 1), visits all the instances of the specified type in a group before
moving on to the next group of objects along an axis. Essentially, this strategy
simulates multiple looping constructs in a sequence. The depth-first strategy, on
the other hand, selects a single object of the specified type at a time, descends
into it, executes the remaining traversal expression in the context of that single
object, and repeats the same with the next object, if any. Therefore, successive
application of the depth-first strategy (as in examples (b) and (d) in Table 1),

1 In C++, “�=” and “�=” are bitwise shift left & assign and shift right & assign
operators, respectively.



Fig. 2: Outlines of child/parent axes traversals (Squares are statemachines, circles
are states, triangles are time objects, and shaded shapes are visited.)

traverses the edges of the object tree unlike the breadth-first strategy. Essentially,
the depth-first strategy simulates nested looping constructs.

LEESA uses the Visitor [3] design pattern to organize the type-specific be-
havior while restricting traversals to the LEESA expressions only. To invoke
type-specific computations, LEESA expressions can be decorated with instances
of programmer-defined visitor classes as shown in Table 1. If a visitor object v
is written after type T, LEESA invokes v.Visit(t) function on every collected
object t of type T. LEESA expressions can be used not only for visitor dispatch
but also for obtaining a collection of the objects of the type that appears last in
the expression. Such a collection of objects can be processed using conventional
C++. For instance, example (a) in Table 1 returns a set of States whereas
example (c) returns a set of StateMachines.

Descendant and Ancestor Axes. LEESA supports descendant and ancestor
axes traversal seamlessly in conjunction with child/parent axes traversals. For
instance, Listing 2 shows a LEESA expression to obtain a set of Time objects
that are recursively contained inside a StateMachine. This expression supports
a form of structure-shy traversal in the sense that it does not explicitly specify
the intermediate structural elements between the StateMachine and Time.

Root() >> StateMachine() >> DescendantsOf(StateMachine(), Time())

Listing 2: A LEESA expression showing descendant axis traversal

Two important issues arise in the design and implementation of the structure-
shy traversal support described above. First, how are the objects of the target
type located efficiently in a hierarchical object structure? and second, at what
stage of development the programmer is notified of impossible traversal speci-
fications? In the first case, for instance, it is inefficient to search for objects of



the target type in composites that do not contain them. Whereas in the second
case, it is erroneous to specify a target type that is not reachable from the start
type. Section 3.3 and Section 4 present solutions to the efficiency and the error
reporting issues, respectively.

Sibling Axis. Composition of multiple types of objects in a composite object is
commonly observed in practice. For example, the HFSM language has a compos-
ite called StateMachine that consists of two types of children that are siblings
of each other: State and Transition. Support for object structure traversal in
LEESA would not be complete unless support is provided for visiting multiple
types of siblings in a programmer-defined order.

ProgrammerDefinedVisitor v;

Root() >> StateMachine() >> MembersOf(StateMachine(), State() >> v,

Transition() >> v)

Listing 3: A LEESA expression for traversing siblings: States and Transitions

Listing 3 shows an example of how LEESA supports sibling traversal. The
sample expression visits all the States in a StateMachine before all the Transit-
ions. The types of visited siblings and their order is programmer-definable. The
MembersOf notation is designed to improve readability as its first parameter is
the common parent type (i.e., StateMachine) followed by a comma separated
list of LEESA subexpressions for visiting the children in the given order. It ef-
fectively replaces multiple for loops written in a sequence where each for loop
corresponds to a type of sibling.

Association Axis. LEESA supports traversals along two different kinds of
user-defined associations. First, named composition roles, which use user-defined
roles while traversing composition instead of the default composition role. For
instance, in our HFSM modeling language, Time objects are composed using
the delay composition role inside States. Second, named associations between
different types of objects that turn tree-like object structures into graphs. For ex-
ample, Transition is a user-defined association possible between any two States
in the HFSM language described in Section 2.1. Moreover, srcTransition and
dstTransition are two possible roles a State can be in with respect to a
Transition.

LEESA provides a notation to traverse an association using the name of the
association class (i.e., class-name in Listing 1) and the desired role (i.e., role-
name in Listing 1). Listing 4 shows two independent LEESA expressions that
traverse two different user-defined associations. The first expression returns a set
of Time objects that are composed immediately inside the top-level States. The
expression traverses the delay composition role defined between states and time



objects. This feature allows differentiation (and selection) of children objects that
are of the same type but associated with their parent with different composition
roles.

Root() >> StateMachine() >> State() >> Association(State::delay) ...(1)

Root() >> StateMachine() >> Transition()

>> Association(Transition::dstTransition) ...(2)

Listing 4: Traversing user-defined associations using LEESA.

The second expression returns all the top-level states that have at least one
incoming transition. Such a set can be conceptually visualized as a set of states
that are at the destination end of a transition. The second expression in List-
ing 4 up to Transition() yields a set of transitions that are the immediate
children of StateMachines. The remaining expression to the right of it traverses
the user-defined association dstTransition and returns States that are in the
destination role with respect to every Transition in the previously obtained
set.

In the above association-based traversals, the operator “�” does not imply
child axis traversal but instead represents continuation of the LEESA expression
in a breadth-first manner. As described before, breadth-first strategy simulates
loops in sequence. Use of “�=” turns the breadth-first strategy over association
axis into a depth-first strategy, which simulates nested loops. Expressions with
associations can also be combined with visitor objects if role-specific actions are
to be dispatched.

2.3 Programmer-defined Processing of Intermediate Results Using
Actions

Writing traversals over object structures often requires processing the inter-
mediate results before the rest of the traversal is executed (e.g., filtering ob-
jects that do not satisfy a programmer-defined predicate, or sorting objects
using programmer-defined comparison functions). LEESA provides a set of ac-
tions that process the intermediate results produced by the earlier part of the
traversal expression. These actions are in fact higher-order functions that take
programmer-defined predicates or comparison functions as parameters and apply
them on a collection of objects.

int comparator (State, State) { ... } // A C++ comparator function

bool predicate (Time) { ... } // A C++ predicate function

Root() >> StateMachine() >> State() >> Sort(State(), comparator)

>> Time() >> Select(Time(), predicate)

Listing 5: A LEESA expression with actions to process intermediate results



Listing 5 shows a LEESA expression that uses two predefined actions: Sort
and Select. The Sort function, as the name suggests, sorts a collection using a
programmer-defined comparator. Select filters out objects that do not satisfy
the programmer-defined predicate. The result of the traversal in Listing 5 is
a set of Time objects, however, the intermediate results are processed by the
actions before traversing composition relationships further. Sort and Select
are examples of higher-order functions that accept conventional functions as
parameters as well as stateful objects that behave like functions, commonly
known as functors.

LEESA supports about a dozen different actions (e.g., Unique, ForEach) and
more actions can be defined by the programmers and incorporated into LEESA
expressions if needed. The efforts needed to add a new action are proportional to
adding a new class template and a global overloaded operator function template.

2.4 Generic, Recursive, and Reusable Traversals Using Strategic
Programming

Although LEESA’s axes traversal operators (�, �, �=, �=) are reusable
for writing traversals across different schemas, they force the programmers to
commit to the vocabulary of the schema and therefore the traversal expressions
(as whole) cannot be reused. Moreover, LEESA’s axes traversal notation dis-
cussed so far lacked support for recursive traversal, which is important for a
wide spectrum of domain-specific modeling languages that support hierarchical
constructs. For example, our case study of HFSM modeling language requires
recursive traversal to visit deeply nested states.

A desirable solution should not only support recursive traversals but also
enable higher-level reuse of traversal schemes while providing complete control
over traversal. Traversal schemes are higher level control patterns (e.g., top-
down, bottom-up, depth-first, etc.) for traversal over heterogeneously typed ob-
ject structures. Strategic Programming (SP) [4, 11, 12] is a well known generic
programming idiom based on programmer-definable (recursive or otherwise)
traversal abstractions that allow separation of type-specific actions from reusable
traversal schemes. SP also provides a design method for developing reusable
traversal functionality based on so called strategies. Therefore, based on the ob-
servation that LEESA shares this goal with that of SP, we adopted the SP design
method and created a new incarnation of SP on top of LEESA’s axes traversal
notation. Next, we describe how LEESA leverages the SP design method to meet
its goal of supporting generic, recursive, and reusable traversals. For a detailed
description of the foundations of SP, we suggest reading [4,11,12] to the readers.

LEESA’s incarnation of the SP design method is based on a small set of
combinators that can be used to construct new combinators from the given
ones. By combinators we mean reusable C++ class templates capturing basic
functionality that can be composed in different ways to obtain new functionality.
The basic combinators supported in LEESA are summarized in Table 2. This
set of combinators is inspired by the strategy primitives of the term rewriting
language Stratego [17].



Primitive Description
combinators

Identity Returns its input datum without change.
Fail Always throws an exception indicating a failure.
Sequence<S1,S2> Invokes strategies S1 and S2 in sequence on its input datum.
Choice<S1,S2> Invokes strategy S2 on its input datum only if the invocation of S1

fails.
All<S> Invokes strategy S on all the immediate children of its input datum.
One<S> Stops invocation of strategy S after its first success on one of the

children of its input datum.

Table 2: The set of basic class template combinators

FullTD<Strategy> = Sequence<Strategy, All<FullTD> >

FullBU<Strategy> = Sequence<All<FullBU>, Strategy>

Listing 6: Pseudo-definitions of the class templates of the predefined traversal
schemes (Strategy = Any primitive combinator or combination thereof, TD = top-
down, BU = bottom-up)

All and One are one-layer traversal combinators, which can be used to obtain
full traversal control, including recursion. Although none of the basic combina-
tors are recursive, higher-level traversal schemes built using the basic combi-
nators can be recursive. For instance, Listing 6 shows a subset of predefined
higher-level traversal schemes in LEESA that are recursive. The (pseudo-) defi-
nition of FullTD (full top-down) means that the parameter Strategy is applied
at the root of the incoming datum and then it applies itself recursively to all the
immediate children of the root, which can be of heterogeneous types. Figure 3
shows a graphical illustration of FullTD and FullBU (full bottom-up) traversal
schemes. Section 3.3 describes the actual C++ implementation of the primitives
and the recursive schemes in detail.

Fig. 3: Graphical illustration of FullTD and FullBU traversal schemes. (Squares,
circles, and triangles represent objects of different types)

Listing 7 shows how FullTD recursive traversal scheme can be used to perform
full top-down traversal starting from a StateMachine. Note that the heteroge-
neously typed substructures (State, Transition, and Time) of the StateMachine



Root() >> StateMachine() >> FullTD(StateMachine(), VisitStrategy(v));

Listing 7: Combining axes traversal with strategic programming in LEESA. (v
can be replaced by a programmer-defined visitor.)

are not mentioned in the expression. However, they are incorporated in the
traversal automatically using the static meta-information in the metamodel.
This is achieved by externalizing the static meta-information in a form that
is understood by the C++ compiler and in turn the LEESA expressions. Later
in Section 3.2 we describe a process of externalizing the static meta-information
from the metamodel (schema) and in Section 3.3 we show how it is used for
substructure traversal.

Finally, the VisitStrategy in Listing 7 is a predefined LEESA strategy that
can not only be configured with programmer-defined visitor objects but can also
be replaced by other programmer-defined strategies. We envision that LEESA’s
VisitStrategy will be used predominantly because it supports the hierarchical
visitor pattern [21] to keep track of depth during traversal. This pattern is based
on a pair of type-specific actions: Visit and Leave. The prior one is invoked while
entering a non-leaf node and the latter one is invoked while leaving it. To keep
track of depth, the visitor typically maintains an internal stack where the Visit
function does a “push” operation and Leave function does a “pop”.

2.5 Schema Compatibility Checking

Every syntactically correct traversal expression in LEESA is statically checked
against the schema for type errors and any violations are reported back to the
programmer. Broadly, LEESA supports four kinds of checks based on the types
and actions participating in the expression. First, only the types representing
the vocabulary of the schema are allowed in a LEESA expression. The visitor in-
stances are an exception to this rule. Second, impossible traversal specifications
are rejected where there is no way of reaching the elements of a specified type
along the axis used in the expression. For example, the child-axis operators (�,
�=) require (immediate) parent/child relationship between the participating
types whereas DescendantsOf requires a transitive closure of the child relation-
ship. Third, the argument type of the intermediate results processing actions
must match to that of the result returned by the previous expression. Finally,
the result type of the action must be a type from the schema if the expression is
continued further. Section 4 describes in detail how we have implemented schema
compatibility checking using C++ Concepts.

3 The Implementation of LEESA

In this section we present LEESA’s layered software architecture, the software
process of obtaining the static meta-information from the schema, and how we
have implemented the strategic traversal combinators in LEESA.



3.1 The Layered Architecture of LEESA

Figure 4 shows LEESA’s layered architecture. At the bottom is the in-memory
object structure, which could be a tree or a graph. An object-oriented data access
layer is a layer of abstraction over the object structure, which provides schema-
specific, type-safe interfaces for iteratively accessing the elements in the object
structure. Often, a code generator is used to generate language bindings (usu-
ally a set of classes) that model the vocabulary. Several different types of code
generators such as XML schema compilers [22] and domain-specific modeling
tool-suites [23] are available that generate schema-specific object-oriented data
access layer from the static meta-information.

Fig. 4: Layered View of LEESA’s Architecture (Shading of blocks shown for aes-
thetic reasons only.)

To support generic traversals, the schema-specific object-oriented data access
layer must be adapted to make it suitable to work with the generic implementa-
tion of LEESA’s C++ templates. The parameterizable data access layer is a thin
generic wrapper that achieves this. It treats the classes that model the vocabu-
lary as type parameters and hides the schema-specific interfaces of the classes.
This layer exposes a small generic interface, say, getChildren, to obtain the chil-
dren of a specific type from a composite object and say, getParent, to obtain
the parent of an object. For example, using C++ templates, obtaining children
of type T of an object of type U could be implemented2 as U.getChildren<T>(),
where U and T could be any two classes modeling the vocabulary that have par-
ent/child relationship. This layer can also be generated automatically from the
object structure schema.

Expression Templates [24] is the key idea behind embedding LEESA’s traver-
sal expressions in C++. Using operator overloading, expression templates en-
able lazy evaluation of C++ expressions, which is otherwise not supported na-
tively in C++. Lazy evaluation allows expressions – rather than their results –
2 A widely supported, standard C++ feature called “template explicit specialization”

could be used.



to be passed as arguments to functions to extract results lazily when needed.
LEESA overloads the �, �, �=, and �= operators using the design method
of expression templates to give embedded traversal expressions a look and feel
of XPath’s axes-oriented traversal specifications. Moreover, LEESA expressions
can be passed to other generic functions as arguments to extract results lazily.
LEESA’s expression templates map the traversal expressions embedded in a
C++ program onto the parameterizable data access layer. They raise the level
of abstraction by hiding away the iterative process of accessing objects and in-
stead focus only on the relevant types in the vocabulary and different strategies
(breadth-first and depth-first) of traversal. LEESA’s expression templates are
independent of the underlying vocabulary. Schema-specific traversals are ob-
tained by instantiating them with schema-specific classes. For more details on
LEESA’s expression templates, including an example, the readers are directed
to our previous work [25].

Finally, LEESA programmers use the axes traversal expressions and strate-
gic traversal combinators and schemes to write their traversals as described in
Section 2. The axes traversal expressions are based on LEESA’s expression tem-
plates. The strategic traversal combinators use an externalized representation of
the static meta-information for their generic implementation. Below we describe
the process of externalizing the static meta-information.

3.2 Externalizing Static Meta-information.

Figure 5 shows the software process of developing a schema-first application us-
ing LEESA. The object-oriented data access layer, parameterizable data access
layer, and the static meta-information are generated from the schema using a
code generator. Conventional [22,23] code generators for language-specific bind-
ings generate the object-oriented data access layer only, but for this paper we
extended the Universal Data Model (UDM) [23] – a tool-suite for developing
domain-specific modeling languages (DSML) – to generate the parameterizable
data access layer and the static meta-information. The cost of extending UDM is
amortized over the number of schema-first applications developed using LEESA.
While the static meta-information is used for generic implementations of the
primitive strategic combinators, C++ Concepts [19, 20] shown in Figure 5 are
used to check the compatibility of LEESA expressions with the schema and re-
port the errors back to the programmer at compile-time. C++ Concepts allow
the error messages to be succinct and intuitive. Such a diagnosis capability is
of high practical importance as it catches programmer mistakes much earlier in
the development lifecycle by providing an additional layer of safety.

The Boost C++ template metaprogramming library (MPL) [18] has been
used as a vehicle to represent the static meta-information in LEESA. It provides
easy to use, readable, and portable mechanisms for implementing metaprograms
in C++. MPL has become a de-facto standard for metaprogramming in C++
with a collection of extensible compile-time algorithms, typelists, and metafunc-
tions. Typelists encapsulate zero or more C++ types (programmer-defined or



Fig. 5: The software process of developing a schema-first application using
LEESA. (Ovals are tools whereas shaded rectangular blocks represent generated code)

otherwise) in a way that can be manipulated at compile-time using MPL meta-
functions.

Using Boost MPL to Externalize the Static Meta-information. The
static meta-information (partial) of the HFSM metamodel (Section 2.1) captured
using Boost MPL typelists is shown below.

class StateMachine {
typedef mpl::vector < State, Transition > Children;

};
class State {

typedef mpl::vector < State, Transition, Time > Children;
};
class Transition { // Same as class Time

typedef mpl::vector < > Children // empty
};
mpl::contains <StateMachine::Children, State>::value //...(1) true
mpl::front <State::Children>::type //...(2) class State
mpl::pop_front <State::Children>::type //...(3) mpl::vector<Transition, Time>

Each class has an associated type called Children, which is a MPL typelist
implemented using mpl::vector. The typelist contains a list of types that are
children of its host type. A MPL metafunction called mpl::contains has been
used to check existence of a type in a MPL typelist. For example, the statement
indicated by (1) above checks whether typelist StateMachine::Children con-
tains type State in it or not. It results in a compile-time constant true value.
Metafunctions mpl::front and mpl::pop front, indicated by (2) and (3), are
semantically equivalent to “car” and “cdr” list manipulation functions in Lisp.
While mpl::front returns the first type in the typelist, mpl::pop front removes
the first type and returns the remaining typelist.



We leverage this metaprogramming support provided by MPL to represent
children, parent, and descendant axes meta-information in C++. We have ex-
tended the UDM tool-suite to generate Boost MPL typelists that capture the
static meta-information of these axes.

3.3 The Implementation of Strategic Traversal Schemes.

template <class Strategy>
class All {

Strategy strategy_;
public:

All (Strategy s) : strategy_(s) { } // Constructor
template <class T>
void apply (T arg) { // Every strategy implements this member template function.

// If T::Children typelist is empty, calls (B) otherwise calls (A)
children(arg, typename T::Children());

}
private:

template <class T, class Children>
void children(T arg, Children) { // ............ (A)

typedef typename mpl::front<Children>::type Head; // ...(1)
typedef typename mpl::pop_front<Children>::type Tail; // ...(2)
for_each c in arg.getChildren<Head>() // ...(3)

strategy_.apply(c);
children(arg, Tail()); // ...(4)

}
template <class T>
void children(T, mpl::vector<> /* empty typelist */) { } // ............ (B)

};
--------------------------------------------------------------------------------------------
template <class S1, class S2> template <class Strategy>
class SEQ { class FullTD {

S1 s1_; S2 s2_; Strategy st_;
public: public:

SEQ(S1 s1, S2 s2) FullTD(Strategy s) : st_(s) {}
: s1_(s1), s2_(s2) {} template <class T>

template <class T> void apply (T arg) {
void apply (T arg) { All<FullTD> all(*this);

s1_.apply(arg); SEQ<Strategy, All<FullTD> > seq(st_, all);
s2_.apply(arg); seq.apply(arg);

} }
}; };

Listing 8: C++ implementations of All and SEQ (Sequence) primitive combina-
tors and the FullTD recursive traversal scheme

In LEESA’s implementation of SP, All and One are generative one-layer
combinators because their use requires mentioning the type of only the start
element where the strategy application begins. The children and descendant (in
case of recursive traversal schemes) types of the start type are automatically
incorporated into the traversal using the externalized static meta-information
and the LEESA’s metaprograms that iterate over it.

Listing 8 shows the C++ implementation of the All and Sequence primitive
combinators and the FullTD recursive traversal scheme in LEESA. All is a class
template that accepts Strategy as a type parameter, which could be instanti-
ations of other combinators or other instantiations of All itself. Execution of



All begins at the apply function, which delegates execution to another mem-
ber template function called children. All::children is instantiated as many
times as there are children of type T. From the T::Children typelist, repeated
instantiation of the children member template function are obtained using the
metaprogram indicated by statements (1), (2), and (4) in Listing 8.

Similar to list processing in functional languages, statement (1) yields the first
type (Head) in the typelist whereas statement (2) yields the remaining typelist
(Tail). Statement (4) is a compile-time recursive call to itself but with Tail as
its second parameter. This compile-time recursion terminates only when Tail
becomes empty after successive application of mpl::pop front metafunction.
When Tail is an empty typelist, children function marked by (B) is invoked
terminating the compile-time recursion. Figure 6 shows graphical illustration of
this recursive instantiation process. Multiple recursive instantiations of function
children are shown in the order they are created with progressively smaller and
smaller typelist as its second parameter. Finally, the statement marked as (3) is
using the parameterizable data access interface T::getChildren, which returns
all the Head type children of arg.

Fig. 6: Compile-time recursive instantiations of the children function starting
at All<Strategy>::apply<State>(arg) when arg is of type State.

Efficient Descendant Axis Traversal. Compile-time customizations of the
primitive combinator All and in turn FullTD traversal scheme are used for
efficient implementation of the descendant axis traversal. LEESA can prevent
traversals into unnecessary substructures by controlling the types that are visited
during recursive traversal of FullTD and FullBU schemes. LEESA customizes the
behavior of the All primitive combinator using the descendant types information
that is obtained from the schema. The T::Children typelist in the All::apply
function is manipulated using C++ template metaprogramming such that the
schema types that have no way of reaching the objects of the target type are
eliminated before invoking the All::children function. This is achieved using
compile-time boolean queries over the list of descendant types implemented us-
ing MPL’s metafunction mpl::contains as described in Section 3.2. All these
metaprograms are completely encapsulated inside the C++ class templates that
implement recursive traversal schemes and are not exposed to the programmers.



While static meta-information can be used for efficient traversal, the same
meta-information can be used to check the LEESA expressions for their com-
patibility with the schema. We describe that next.

4 Domain-specific Error Reporting using C++ Concepts

In DSL literature [7, 8], embedded DSLs have been criticized for their lack of
support for domain-specific error reporting. The importance of intuitive error
messages should not be underestimated as it directly affects the programmer’s
effectiveness in locating and correcting errors in a DSL program. This issue is
all the more important for embedded DSLs since their compiler is the same as
the host language compiler, and hence the error reports are often in terms of
the host language artifacts instead of domain-specific artifacts that are relevant
to the problem. Moreover, for embedded DSLs in C++ that are implemented
using templates, the problem is further exacerbated because templates lack early
modular (separate) type-checking.

4.1 Early Type-checking of C++ Templates using Concepts

C++ Concepts [19] have been proposed in the latest C++ programming lan-
guage standard, C++0x [26], to address the problem of late type-checking of
templates during compilation. Concepts express the syntactic and semantic be-
havior of types and constrain the type parameters in a C++ template, which
are otherwise unconstrained. Concepts allow separate type-checking of template
definitions from their uses, which makes templates easier to use and easier to
compile. The set of constraints on one or more types are referred to as Concepts.
Concepts describe not only the functions and operators that the types must sup-
port but also other accessible types called associated types. The types that satisfy
the requirements of a concept are said to model that concept. When a concept
constrained C++ template is instantiated with a type that does not model the
concept, an error message indicating the failure of the concept and the type that
violates it are shown at the call site in the source code. An experimental support
for C++ Concepts has been implemented in the ConceptGCC [27] compiler3.

4.2 Schema Compatibility Checking Using Concepts and
Metaprogramming

We have defined several C++ Concepts in LEESA that must be satisfied by
different types participating in a LEESA expression. These Concepts are related
primarily to child, parent, descendant, and ancestor axes traversals and the
invocation of actions for intermediate results processing. For example, each type
in a child axis traversal expression must model a ParentChildConcept with
respect to its preceding type. An implementation of the ParentChildConcept
is shown below.
3 Library level support for concept checking is available [20] for pre-C++0x compilers.



concept ParentChildConcept <typename Parent, typename Child> {

typename Children = typename Parent::Children;

typename IsChild = typename mpl::contains<Children, Child>::type;

requires std::SameType<IsChild, true_type>;

};

The concept is parameterized with two types and essentially requires that the
Child type be present in the list of children of the Parent type. This is achieved
by (1) obtaining the result of the application of MPL metafunction contains
on Parent’s associated type Children and (2) enforcing the type of the result
to be the same as true type, which signifies success. If the Concept does not
hold, a short error message is produced stating the failure of the Concept and
the types that violate it. The error is reported at the first occurrence of the
type that violates it regardless of the length of the expression. As the length of
the erroneous LEESA expression grows, the error output grows linearly due to
increasing size of the recursively constructed type using expression templates.
However, the reason and location are always stated distinctly in the form of
concept violation.

For example, consider a LEESA expression, “StateMachine() � Time()”,
which is incorrect with respect to the metamodel of the HFSM modeling language
because Time is not an immediate child of StateMachine and therefore, does
not satisfy the ParentChildConcept described before. Below, we have shown
the actual error message produced by the ConceptGCC [27] compiler, which is
only four lines long, and clearly states the reason and the location (both on the
fourth line) of the error.

t.cc: In function ’int main()’:

t.cc:99: error: no match for ’operator>>’ in ’StateMachine() >> Time()’

t.cc:85: note: candidates are: R LEESA::operator>>(const L&, const R&)

[with L = StateMachine, R = Time] <requirements>

t.cc:99: note: no concept map for requirement

’LEESA::ParentChildConcept<StateMachine, Time>’

5 Evaluation

In this section, we present quantitative results on LEESA’s effectiveness in re-
ducing efforts while programming traversals compared to the third generation
object-oriented languages.

Experimental setup. We conducted the experiments using our open-source
domain-specific modeling tool-suite: CoSMIC.4 CoSMIC is a collection of domain-
specific modeling languages (DSML), interpreters, code generators, and model-
to-model transformations developed using Generic Modeling Environment (GME)

4 http://wwww.dre.vanderbilt.edu/cosmic



[28], which is a meta-programmable tool for developing DSMLs. CoSMIC’s DSMLs
are used for developing distributed applications based on component-based mid-
dleware. For instance, the Platform Independent Component Modeling Language
(PICML) [29] is one of the largest DSMLs in CoSMIC for modeling key artifacts
in all the life-cycle phases of a component-based application, such as interface
specification, component implementation, hierarchical composition of compo-
nents, and deployment. A PICML model may contain up to 300 different types
of objects. Also, PICML has over a dozen model interpreters that generate XML
descriptors pertaining to different application life-cycle stages. All these inter-
preters are implemented in C++ using UDM as the underlying object-oriented
data access layer.

Traversal Pattern Axis Occurrences Original #lines #Lines using
(average) LEESA (average)

A single loop iterating Child 11 8.45 1.45
over a list of objects Association 6 7.50 1.33

5 sequential loops Sibling 3 41.33 6
iterating over siblings

2 Nested loops Child 2 16 1

Traversal-only visit Child 3 11 0
functions

Leaf-node accumulation Descendant 2 43.5 4.5
using depth-first

Total traversal code - All 414 53
(absolute) (absolute)

Table 3: Reduction in code size (# of lines) due to the replacement of common
traversal patterns by LEESA expressions.

Methodology. The objective of our evaluation methodology is to show
the reduction in programming efforts needed to implement commonly observed
traversal patterns using LEESA over traditional iterative constructs.

To enable this comparison, we refactored and reimplemented the traversal
related parts of PICML’s deployment descriptor generator using LEESA. This
generator exercises the widest variety of traversal patterns applicable to PICML.
It amounts to little over 2,000 lines5 of C++ source code (LOC) out of which 414
(about 21%) LOC perform traversals. It is organized using the Visitor [3] pattern
where the accept methods in the object structure classes are non-iterating and
the entire traversal logic along with the type-specific actions are encapsulated in-
side a monolithic visitor class. Table 3 shows the traversal patterns we identified
in the generator. We replaced these patterns with their equivalent constructs in
LEESA. This procedure required some refactoring of the original code.

Analysis of results. Table 3 shows a significant reduction in the code size
due to LEESA’s succinct traversal notation. As expected, the highest reduc-
5 The number of lines of source code is measured excluding comments and blank lines.



tion (by ratio) in code size was observed when two ad-hoc implementations of
depth-first search (e.g., searching nested components in a hierarchical compo-
nent assembly) were replaced by LEESA’s adaptive expressions traversing the
descendant axis. However, the highest number of reduction in terms of the abso-
lute LOC (114 lines) was observed in the frequently occurring traversal pattern
of a single loop. Cumulatively, leveraging LEESA resulted in 87.2% reduction in
traversal code in the deployment descriptor generator. We expect similar results
in other applications of LEESA.

Incremental Adoption of LEESA. It is worth noting here that due to its
pure embedded approach, applying LEESA in the existing model traversal pro-
grams is considerably simpler than external DSLs that generate code in bulk.
Incremental refactoring of the original code-base was possible by replacing one
traversal pattern at a time while being confident that the replacement is not
changing the behavior in any unexpected ways. Such incremental refactoring
using external traversal DSLs that use a code generator would be extremely
hard, if not impossible. Our pure embedded DSL approach in LEESA allows
us to distance ourselves from such all-or-nothing predicament, which could po-
tentially be a serious practical limitation. We expect that a large number of
existing C++ applications that use XML data-binding [22] can start benefiting
from LEESA using this incremental approach provided their XML schema com-
pilers are extended to generate the parameterizable data access layer and the
meta-information.

6 Related Work

In this section we place LEESA in the context of a sampling of the most relevant
research efforts in the area of object structure traversal.

XPath 2.0 [16] is a structure-shy XML query language that allows node selec-
tion in a XML document using downward (children, descendant), upward (par-
ent, ancestor), and sideways (sibling) axes. In general, XPath supports more pow-
erful node selection expressions than LEESA using its untyped unconstrained
(i.e. axis::* ) axes. XPath’s formal semantics describe how XML schema could
be used for static type analysis to detect certain type errors and to perform
optimizations. However, contemporary XPath programming APIs for C++ use
string encoded expressions, which are not checked against the schema at compile-
time. Moreover, unlike XPath, type-specific behavior can be composed over the
axes-oriented traversals using LEESA.

Adaptive Programming (AP) [13, 14] specifies structure-shy traversals in
terms of milestone classes composed using predicates, such as from, to, through,
and bypass. It uses static meta-information to optimize traversals as well as to
check their compatibility against the schema. While LEESA focuses on accumu-
lation of nodes using its axes-oriented notation and programmability of traversals
using its strategic combinator style, AP focuses on collection of unique paths in



the object graph specified using the above mentioned predicates. The use of visi-
tors in LEESA to modularize type-specific actions is similar in spirit to the code
wrappers in AP.

Strategic Programming (SP) [4, 17], which began as a term rewriting [17]
language has evolved into a language-interparadigmatic style of programming
traversals and has been incarnated in several other contexts, such as func-
tional [12], object-oriented [11], and embedded [10]. The strategic traversal ex-
pressions in LEESA are based on a new embedded incarnation of SP in an
imperative language, C++. Unlike [10], however, no compiler extension is neces-
sary. Also, all the expressions are statically checked against the schema, unlike
visitor combinators [11].

Scrap++ [30] presents a C++ templates-based approach for implementing
Haskell’s “Scrap Your Boilerplate” (SYB) design pattern, which is remarkably
similar to SP. Scrap++’s approach depends on recursive traversal combinators,
a one-layer traversal, and a type extension of the basic computations. However,
LEESA’s approach is different in many significant ways. First, unlike LEESA, the
objective of Scrap++ is to mimic Haskell’s SYB and therefore does not provide
an intuitive axes traversal notation. Second, LEESA presents a software process
for generating schema-specific meta-information that is used during compilation
for generating traversals as well as compatibility checking. Third, SYB lacks
parental and sibling contexts. Finally, no technique is provided in Scrap++ to
produce intuitive error messages.

Lämmel et al. [31] present a way of realizing adaptive programming predicates
(e.g., from, to, through, and bypass) by composing SP primitive combinators and
traversal schemes. Due to a lack of static type information, their simulation of
AP in terms of SP lacks important aspects of AP, such as static checking and
avoiding unnecessary traversal into substructures. LEESA, on the other hand,
uses the externalized meta-information to not only statically check the traversals
but also makes them efficient.

Static meta-information has also been exploited by Cunha et al. [32] in the
transformation of structure-shy XPath and SP programs for statically optimizing
them. Both the approaches eliminate unnecessary traversals into substructures,
however, no transformation is necessary in the case of LEESA. Instead, the
behaviors of All and One primitive combinators are customized at compile-
time to improve efficiency. Moreover, LEESA’s structure-shy traversals support
mutually recursive types, unlike [32].

Lämmel [33] sketches an encoding of XPath-like axes (downward, upward,
and sideways) using strategic function combinators in the SYB style. LEESA
is similar to this work because both the approaches suggest an improvement of
XPath-like set of axes with support for strategic, recursive traversal abstrac-
tions and provide a way of performing schema-conformance checking. The key
differences are the improved efficiency of the descendant axis traversal in case of
LEESA, its domain-specific error reporting capability, and its use of an impera-
tive, object-oriented language as opposed to Haskell, which is a pure functional
language.



Gray et al. [6] and Ovlinger et al. [5] present an approach in which traver-
sal specifications are written in a specialized language separate from the basic
computations. A code generator is used to transform the traversal specifications
into imperative code based on the Visitor pattern. This approach is, however,
heavyweight compared to the embedded approach because it incurs high cost of
the development and maintenance of the language processor.

Language Integrated Query (LINQ) [34] is a Microsoft .NET technology that
supports SQL-like queries natively in a program to search, project and filter data
in arrays, XML, relational databases, and other third-party data sources. “LINQ
to XSD” promises to add much needed typed XML programming support over
its predecessor “LINQ to XML.” LINQ, however, does not support strategic
combinator style like LEESA. The Object Constraint Language (OCL) [35] is
a declarative language for describing well-formedness constraints and traversals
over object structures represented using UML class graphs. OCL, however, does
not support side-effects (i.e., object structure transformations are not possible).

Czarnecki et al. [8] compare staged interpreter techniques in MetaOCaml
with the template-based techniques in Template Haskell and C++ to implement
embedded DSLs. Two approaches – type-driven and expression-driven – of imple-
menting an embedded DSL in C++ are presented. Within this context, our pre-
vious work [25] presents LEESA’s expression-driven pure embedding approach.
Spirit6 and Blitz++7 are two other prominent examples of expression-driven em-
bedded DSLs in C++ for recursive descent parsing and scientific computing, re-
spectively. Although LEESA shares the implementation technique of expression
templates with them, strategic and XPath-like axes-oriented traversals cannot
be developed using Spirit or Blitz++.

7 Conclusion

In this paper we presented a case for pure embedding in C++ as an effective way
of implementing a DSL particularly in the domain of object structure traver-
sal where mature implementations of iterative data access layer abound. While
many of the existing embedded DSLs perform poorly with respect to domain-
specific error reporting, our novel approach of fusing together C++ Concepts
and compile-time type manipulation using template metaprogramming allows
us to report impossible traversals by terminating compilation with short and in-
tuitive error messages. We believe this technique is applicable to other embedded
DSLs in C++ irrespective of their domain.

To show the feasibility of our approach, we developed Language for Embedded
quEry and traverSAl (LEESA), which is a pure embedded DSL in C++ for
object structure traversal. LEESA improves the modularity of the traversal pro-
grams by separating the knowledge of the object structure from the type-specific
computations. LEESA adopts the strategic combinator style to provide a li-
brary of generic reusable traversal schemes. With an eye on “structure shyness”,
6 http://spirit.sourceforge.net
7 http://www.oonumerics.org/blitz



LEESA supports XPath-like traversal axes to focus only on the relevant types
of richly structured data to shield the programs from the effects of schema evo-
lution. Our contribution lies in combining these powerful traversal techniques
without sacrificing efficiency and schema-conformance checking.

LEESA is available for download in open-source at http://www.dre.vanderbilt.

edu/cosmic.

Acknowledgment. We are grateful to Endre Magyari for his implementation sup-
port to enhance the UDM code generator. We also thank the DSL’09 program com-
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