
Evaluating Transport Protocols for Real-time Event Stream
Processing Middleware and Applications?

Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale

Institute for Software Integrated Systems, Dept. of EECS,
Vanderbilt University, Nashville, TN, USA 37203

{jhoffert,schmidt,gokhale}@dre.vanderbilt.edu

www.dre.vanderbilt.edu

Abstract. Real-time event stream processing (RT-ESP) applications must
synchronize continuous data streams despite fluctuations in resource avail-
ability. Satisfying these needs of RT-ESP applications requires predictable
QoS from the underlying publish/subscribe (pub/sub) middleware. If a
transport protocol is not capable of meeting the QoS requirements within
a dynamic environment, the middleware must be flexible enough to tune
the existing transport protocol or switch to a transport protocol better
suited to the changing operating conditions.
Realizing such adaptive RT-ESP pub/sub middleware requires a thorough
understanding of how different transport protocols behave under differ-
ent operating conditions. This paper makes three contributions to work
on achieving that understanding. First, we define ReLate2, which is an
evaluation metric that combines packet latency and reliability to evalu-
ate transport protocol performance. Second, we use the ReLate2 metric
to quantify the performance of various transport protocols integrated with
the OMG’s Data Distribution Service (DDS) QoS-enabled pub/sub mid-
dleware standard using our FLEXible Middleware And Transports (FLEX-
MAT) prototype for experiments that capture performance data. Third,
we use ReLate2 to pinpoint configurations involving sending rate, network
loss, and number of receivers that show the pros and cons of the protocols.

Key words: Pub/Sub Middleware, Data Distribution Service, Transport
Protocols, Metrics

1 Introduction

Emerging trends and challenges. Real-time Event Stream Processing (RT-
ESP) applications support mission-critical systems (such as collaboration of
weather monitoring radars to predict life-threatening weather [4]) by managing
and coordinating multiple streams of event data that have (possibly distinct)
timeliness requirements. Streams of event data may originate from sensors (e.g.,
surveillance cameras, temperature probes), as well as other types of monitors (e.g.,
online stock trade feeds). These continuously generated data streams differ from
streaming the contents of a data file (such as a fixed-size movie) since the end of
RT-ESP data is not known a priori. In general, streamed file data demand less
stringent delivery and deadline requirements, instead emphasizing a continuous
flow of data to an application.
? This work is supported in part by the AFRL/IF Pollux project and NSF TRUST.

RT-ESP applications require (1) timeliness of the event stream data and (2)
reliability so that sufficient data are received to make the result usable. Moreover,
RT-ESP applications encompass multiple senders and receivers, e.g., multiple con-
tinuous data streams can be produced and multiple receivers can consume the data
streams. With the growing complexity of RT-ESP application requirements (e.g.,
large number of senders/receivers, variety of event types, event filtering, QoS, and
platform heterogeneity), developers are increasingly leveraging pub/sub middle-
ware to help manage the complexity and increase productivity [18, 8].

To address the complex requirements of RT-ESP applications, the underlying
pub/sub middleware must support a flexible communication infrastructure. This
flexibility requirement is manifest in several ways, including the following:

• Large-scale RT-ESP applications require flexible communication infrastruc-
ture due to the complexity inherent in the scale involved. As the number and
type of event data streams continue to increase, the communication infrastruc-
ture must be able to coordinate these streams so that publishers and subscribers
are connected appropriately. Flexible communication infrastructure must adapt
to fluctuating demands for various event streams and environment changes to
maintain acceptable levels of service.

• Certain types of large-scale RT-ESP applications require a flexible commu-
nication infrastructure due to their dynamic and ad hoc nature. These application
environments incur fluctuations in resource availability as they include mobile
assets with intermittent connectivity and underprovisioned or temporary assets
from emergency responders. Examples of ad hoc large-scale RT-ESP applications
include tactical information grids, in situ weather monitoring for impending hur-
ricanes, and emergency response networks in the aftermath of regional disasters.

Several pub/sub middleware platforms have been developed to support large-
scale data-centric distributed systems, such as the Java Message Service, Web
Services Brokered Notification, and the CORBA Event Service. These platforms,
however, do not support fine-grained and robust QoS. Some large-scale distributed
system platforms, such as the Global Information Grid and Network-centric En-
terprise Services, require rapid response, reliability, bandwidth guarantees, scala-
bility, and fault-tolerance. Moreover, these systems are required to perform under
stressful conditions and over connections with less than ideal behavior, such as
latency and bandwidth variability, bursty loss, and routers quickly alternating
destinations (i.e., route flaps).

Solution approach→A FLEXible Middleware And Transports (FLEX-
MAT) Evaluation Framework. Developing such a flexible communication in-
frastructure is hard because it must have a detailed understanding of the capa-
bilities that the underlying transport protocols provide. The infrastructure must
also understand how these protocols behave under different operating conditions
stemming from both the application-imposed workload changes, as well as system
dynamics, such as failures and network congestion. Building on this understanding,
QoS-enabled pub/sub middleware can help alleviate the complexity of managing
multiple event streams and maintaining real-time QoS for multiple event streams
in highly dynamic environments.

This paper describes the design and capabilities of the FLEXible and Inte-
grated Middleware and Transport Evaluation Framework (FLEXMAT) to address
these requirements. To evaluate the impact of various transport protocols that

can lead to the realization of a QoS-enabled pub/sub middleware we developed
ReLate2, which is a composite metric for FLEXMAT that considers both reliabil-
ity and latency. This paper uses ReLate2 to evaluate the reliability and latency
of transmitted data for various experimental configurations involving parameters
such as sending rate, network loss, and number of receivers.

To facilitate the empirical benchmarking environment, and collection of the
Relate2 metrics, FLEXMAT integrates and enhances the following capabilities:

• The Adaptive Network Transports (ANT) framework, which provides infras-
tructure for composing transport protocols that builds upon properties provided
by the scalable reliable multicast-based Ricochet transport protocol [12]. Rico-
chet enables trade-offs between latency and reliability, which are needed qualities
for pub/sub middleware supporting RT-ESP applications. Ricochet also supports
modification of parameters to affect latency, reliability, and bandwidth usage.

• OpenDDS (www.opendds.org), which is an open-source implementation of
the OMG Data Distribution Service (DDS) standard that enables applications to
communicate by publishing information they have and subscribing to information
they need in a timely manner. OpenDDS provides support for various transport
protocols, including TCP, UDP, IP multicast, and a reliable multicast protocol.
OpenDDS also provides a pluggable transport framework that allows integration
of custom transport protocols within OpenDDS.

We apply the ReLate2 metric across various commonly used and custom
FLEXMAT transport protocols. We then empirically quantify the results and
analyze the pros/cons of various transport protocol configurations in the context
of FLEXMAT. By capturing the insights gained from this effort, our goal is to
enhance the development and validation of QoS-enabled pub/sub middleware.

Paper organization. The remainder of this paper is organized as follows:
Section 2 describes a representative RT-ESP application to motivate the chal-
lenges that FLEXMAT is designed to address; Section 3 examines the structure
and functionality of FLEXMAT and the ReLate2 metric we created to evaluate
FLEXMAT and its adaptive transport protocol framework; Section 4 analyzes
the results of experiments conducted by applying the ReLate2 metric to FLEX-
MAT; Section 5 compares FLEXMAT with related work; and Section 6 presents
concluding remarks.

2 Motivating the Need for FLEXMAT

This section describes a representative RT-ESP application to motivate the chal-
lenges that FLEXMAT addresses.
2.1 Search and Rescue (SAR) Operations for Disaster Recovery
To highlight the challenges of providing timely and reliable event stream processing
for RT-ESP applications, our FLEXMAT work is motivated in the context of
supporting search and rescue (SAR) operations. These operations help locate and
extract survivors in a large metropolitan area after a regional catastrophe, such
as a hurricane, earthquake, or tornado. SAR operations can use unmanned aerial
vehicles (UAVs), existing operational monitoring infrastructure (e.g., building or
traffic light mounted cameras intended for security or traffic monitoring), and
(temporary) datacenters to receive, process, and transmit event stream data from
various sensors and monitors to emergency vehicles that can be dispatched to
areas where survivors are identified.

Figure 1 shows an example SAR scenario where infrared scans along with
GPS coordinates are provided by UAVs and video feeds are provided by existing
infrastructure cameras. These infrared scans and video feeds are then sent to a

UAV providing infrared scan stream

Infrastructure camera providing video stream

Ad-hoc

datacenter
Rescue helicopter

Disaster

victims

Fig. 1. Search and Rescue Motivating Example

datacenter, where they are processed by fusion applications to detect survivors.
Once survivors are detected the application will develop a three dimensional view
and highly accurate position information so that rescue operations can commence.

A key requirement of the data fusion applications within the datacenter is
tight timing bounds on correlated event streams such as the infrared scans coming
from UAVs and video coming from cameras mounted atop traffic lights. The event
streams need to match up closely so the survivor detection application can produce
accurate results. If an infrared data stream is out of sync with a video data stream
the survivor detection application can generate a false negative and fail to initiate
needed rescue operations. Likewise, without timely data coordination the survivor
detection software can generate a false positive expending scarce resources such
as rescue workers, rescue vehicles, and data center coordinators unnecessarily.
2.2 Key Challenges in Supporting Search and Rescue Operations
Meeting the requirements of SAR operations outlined in Section 2.1 is hard due
to the inherent complexity of synchronizing multiple event data streams. These
requirements are exacerbated since SAR operations often run in tumultuous en-
vironments where resource availability can change abruptly. These changes can
restrict the availability of resources (e.g., data stream dropouts and subnetwork
failure due to ongoing environment upheaval) as well as increase them (e.g., net-
work resources being added due to the stabilization of the regional situation). The
remainder of this section describes four challenges that FLEXMAT addresses to
support the communication requirements of the SAR operations presented above.
Challenge 1: Maintaining Data Timeliness and Reliability SAR opera-
tions must receive sufficient data reliability and timeliness so that multiple data
streams can be fused appropriately. For example, the SAR operation example de-
scribed above highlights the exploitation of data streams (such as infrared scan
and video streams) by several applications simultaneously in a datacenter. Figure 2
shows how fire detection applications and power grid assessment applications can
use infrared scans to detect fires and working HVAC systems respectively. Like-
wise, Figure 3 shows how security monitoring and structural damage applications
can use video stream data to detect looting and unsafe buildings respectively.
Section 3.1 describes how FLEXMAT addresses this challenge by incorporating
transport protocols that balance reliability and low latency.

UAVs providing infrared scans

Ad-hoc datacenter

SAR operations

Power grid

assessment

Fire

Detection

Fig. 2. Uses of Infrared Scans during Disaster Recovery

Ad-hoc

datacenter

SAR operations

Looting

detection

Structural

assessment

Cameras providing video

Fig. 3. Uses of Video Stream during Disaster Recovery

Challenge 2: Managing Subscription of Event Data Streams Dynami-
cally SAR operations must seamlessly incorporate and remove particular event
data streams dynamically as needed. Ideally, an application for SAR operations
should be shielded from the details of when other applications begin to use com-
mon event data streams. Moreover, applications should be able to switch to higher
fidelity streams as they become available. Section 3.1 describes how we address this
challenge by using anonymous QoS-enabled pub/sub middleware that seamlessly
manages subscription and publication of data streams as needed.
Challenge 3: Providing Predictable Performance in Dynamic Environ-
ment Configurations In scenarios where there is much variability and instabil-
ity in the environment, such as with regional disasters, the performance of SAR
operations must be known a priori. SAR operations tested only under a single
environment configuration may not perform as needed when introduced to a new
environment. The operations could unexpectedly shut down at a time when they
are needed most due to changes in the environment. Section 4.2 describes how we
determine application performance behavior for dynamic environments.
Challenge 4: Adapting to Dynamic Environments SAR operations not only
must understand their behavior in various environment configurations, they must
also adjust as the environment changes. If SAR operations cannot adjust then
they will fail to perform adequately given a shift in resources. If resources are
lost or withdrawn, the SAR operations must be configured to accommodate fewer
resources while maintaining a minimum level of service. If resources are added, the
operations should use them to provide higher fidelity or more expansive coverage.
Section 3.1 describes how we are incorporating adaptable transport protocols that
can be adjusted for reliability, latency, and/or network bandwidth usage.

3 The Structure and Functionality of FLEXMAT and
ReLate2

This section presents an overview of FLEXMAT, including the OpenDDS and
ANT transport protocols it uses. We then describe the ReLate2 metric created to
evaluate the performance of FLEXMAT in various environment configurations to
support RT-ESP application requirements for data reliability and timeliness.
3.1 Design of FLEXMAT and Its Transport Protocols
FLEXMAT integrates and enhances QoS-enabled pub/sub middleware with adap-
tive transport protocols to provide the flexibility needed by RT-ESP applications.
FLEXMAT helps resolve Challenge 2 in Section 2.2 by providing anonymous pub-
lication and subscription via the OMG Data Distribution Service (see Sidebar 1 for
a brief summary of DDS). FLEXMAT is based on the OpenDDS implementation
of DDS and incorporates several standard and custom transport protocols.

We chose OpenDDS as FLEXMAT’s DDS implementation due to its (1) open
source availability, which facilities modification and experimentation, and (2) sup-
port for a pluggable transport framework that allows RT-ESP application develop-
ers to create custom transport protocols for sending/receiving data. OpenDDS’s
pluggable transport framework uses patterns (e.g., Strategy [7] and Component
Configurator [6]) to provide flexibility and delegate responsibility to the protocol
only when applicable.

Sidebar 1: Overview of DDS

The OMG Data Distribution Service (DDS) specifies standards-based anony-
mous QoS-enabled pub/sub middleware for exchanging data in event-based
distributed systems. It provides a global data store in which publishers and
subscribers write and read data, respectively. DDS provides flexibility and mod-
ular structure by decoupling: (1) location, via anonymous publish/subscribe,
(2) redundancy, by allowing any numbers of readers and writers, (3) time, by
providing asynchronous, time-independent data distribution, and (4) platform,
by supporting a platform-independent model that can be mapped to different
platform-specific models.

The DDS architecture consists of two layers: (1) the data-centric pub/sub
(DCPS) layer that provides APIs to exchange topic data based on specified
QoS policies and (2) the data local reconstruction layer (DLRL) that makes
topic data appear local. This paper focuses on DCPS since it is more broadly
supported than the DLRL.

The DCPS entities in DDS include Topics, which describe the type of data
to be written or read; Data Readers, which subscribe to the values or instances
of particular topics; and Data Writers, which publish values or instances for
particular topics. Various properties of these entities can be configured using
combinations of the 22 QoS policies. Moreover, Publishers manage groups of
data writers and Subscribers manage groups of data readers.

OpenDDS currently provides several transport protocols. Other protocols for
the FLEXMAT prototype are custom protocols (described below) that we inte-
grated with OpenDDS using its pluggable transport framework.

OpenDDS Transport Protocols. By default, OpenDDS provides four trans-
port protocols in its transport protocol framework: TCP, UDP, IP multicast (IP
Mcast), and a NAK-based reliable multicast (RMcast) protocol, as shown in Fig-
ure 4. OpenDDS TCP is a reliable unicast protocol, whereas UDP is an unreliable
unicast protocol. IP Mcast can send data to multiple receivers.

Pluggable Transport

FrameworkUDP IP Mcast

TCP

Fig. 4. OpenDDS and its Transport Protocol Framework

While TCP, UDP, and IP Mcast are standard protocols, RMcast warrants
more description. It is a negative acknowledgment (NAK) protocol that provides
reliability. For example, the sender sends four data packets, but the third data
packet is not received by the receiver. The receiver realizes this packet has not
been received when the fourth data packet is received. At this point the receiver
sends a NAK to the sender and the sender retransmits the missing data packet.
The receiver sends a unicast message to the sender for loss notification and the
sender retransmits the missing data packet to the receiver.

In addition to providing reliability, the RMcast protocol orders data packets.
When the protocol for a receiver detects a packet out of order it waits for the
missing packet before passing the data up to the middleware. The receiver must
buffer any packets that have been received but have not yet been sent to the mid-
dleware. RMcast helps resolve Challenge 1 in Section 2.2 by providing reliability
and timeliness for certain environment configurations.
Adaptive Network Transport Protocols. The ANT transport protocol frame-
work supports various transport protocol properties, including multicast, packet
tracking, NAK-based reliability, ACK-based reliability, flow control, group mem-
bership, and membership fault detection. These properties can be composed dy-
namically at run-time to achieve greater flexibility and support adaptation.

The ANT framework originally was developed from the Ricochet [12] trans-
port protocol. Ricochet uses a bi-modal multicast protocol and a novel type of
forward error correction (FEC) called lateral error correction (LEC) to provide
QoS and scalability guarantees. Ricochet supports (1) time-critical multicast for
high data rates with strong probabilistic delivery guarantees and (2) low-latency
error detection along with low-latency error recovery.

We included ANT’s Ricochet transport protocol, ANT’s NAKcast protocol,
which is a NAK-based multicast protocol, and ANT’s baseline transport protocol
in FLEXMAT. The ANT Baseline protocol mirrors the functionality of IP Mcast
as described in Section 3.1. Using ANT’s baseline protocol helps quantify the over-
head imposed by the ANT framework since similar functionality can be achieved
using the OpenDDS IP Mcast pluggable transport protocol.

Forward Error Correction (FEC). Ricochet is based on the concepts of
FEC protocols. FEC protocols are designed with reliability in mind. They antic-
ipate data loss and proactively send redundant information to recover from this
loss. Sender-based FEC protocols have the sender send redundant information, as
shown in Figure 5. In contrast, receiver-based FEC (a.k.a. Lateral Error Correc-
tion (LEC)) have receivers send each other redundant information as shown in
Figure 6. The Ricochet protocol we employ in FLEXMAT is an example of an
LEC protocol.

R = 5, C = 1

Key: = error correction info= data message

sender

receiver

receiver

receiver

Fig. 5. FEC Reliable Multicast Proto-
col - Sender-based

R= 5, C = 3

Key: = error correction info= data message

sender

receiver

receiver

receiver

Fig. 6. FEC Reliable Multicast Proto-
col - Receiver-based (LEC)

Lateral Error Correction (LEC). LEC protocols have the same tunable R
and C rate of fire parameters as sender-based FEC protocols. Unlike sender-based
FEC protocols, however, the recovery latency depends on the transmission rate of
receivers. As with gossip-based protocols, LEC protocols have receivers send out
to a subset of the total number of receivers to manage scalability and network
bandwidth. Moreover, the R and C parameters have slightly different semantics
for LEC protocols than for sender-based FEC protocols.

The R parameter determines the number of packets a receiver, rather than
the sender, should receive before it sends out a repair packet to other receivers.
The C parameter determines the number of receivers that will be sent a repair
packet from any single receiver. As described in Section 4.2, we hold the value of
C constant (i.e., the default value of 3) while modifying the R parameter.

The Ricochet protocol helps resolve Challenge 1 in Section 2.2 by providing
high probabilistic reliability and low latency error detection and recovery. Ricochet
also helps resolve Challenge 4 in Section 2.2 by supporting tunable parameters that
effect reliability, latency, and bandwidth usage. We designed the ANT framework
so that different transport protocols can be switched dynamically.
3.2 Evaluation Metric for Reliability and Latency
We now describe considerations for evaluating FLEXMAT’s latency and reliability.
We present guidelines for unacceptable percentages of packet loss for multimedia
applications. We also introduce the ReLate2 metric used to evaluate FLEXMAT
empirically in Section 4.

One way to evaluate the effect of transport protocols with respect to both
overall latency and reliability would be simply to compare the latency times of
protocols that provide reliability. Since some reliability would be provided these
protocols would presumably be preferred over protocols that provide no reliabil-
ity. The reliability provided by the reliable protocols in our experiments, however,

deliver different percentages of reliability. Moreover, depending upon the environ-
ment configuration the average data latency between protocols differs as well. To
compare results, the level of reliability must also be quantified.

For RT-ESP applications involving multimedia, such as our motivating exam-
ple of SAR operations in Section 2, over 10% loss is generally considered unac-
ceptable. Bai and Ito [1] limit acceptable MPEG video loss at 6% while stating
that a packet loss rate of more than 5% is unacceptable for Voice over IP (VoIP)
users [2]. Ngatman et al. [14] define consistent packet loss above 2% as unac-
ceptable for videoconferencing. We use these values as guidelines to develop the
ReLate2 metric that balances reliability and latency

The 10% loss unacceptability for multimedia is due to the interdependence
of packets. For example, MPEG frames are interdependent such that P frames
are dependent on previous I or P frames while B frames are dependent on both
preceding and succeeding I or P frames. The loss of an I or P frame therefore
results in unusable dependent P and B frames, even if these frames are delivered
reliably and in a timely manner.

We conservatively state that a 10% packet loss should result in an order of
magnitude increase in any metric value generated. We therefore developed our
ReLate2 metric to multiply the average latency by the percent packet loss as
follows:

ReLate2p =
∑r

i=1 li
r

× (
t− r

t
× 100 + 1)

where p is the protocol being evaluated,
r = number of updates received,
li = latency of update i,
and t = total number of updates sent.
We add 1 to the percent packet loss to normalize for any loss less than 1%

where the metric would otherwise yield a value lower than the average latency,
specifically the value 0 where all packets are delivered. This adjustment produces
a ReLate2 value equal to the average latency when there is no packet loss which
still accommodates meaningful comparisons for protocols that deliver all packets.
Section 4.2 uses the ReLate2 metric to determine the transport protocols that
best balance reliability and latency.
4 Experimental Setup, Results, and Analysis
The section presents the results of experiments we conducted to determine the
performance of FLEXMAT in a representative RT-ESP environment. The exper-
iments include FLEXMAT using multiple transport protocols with varying num-
bers of receivers, percentage data loss, and sending rates as would be expected
with SAR operations in a dynamic environment as described in Section 2.1.
4.1 Experimental Setup
We conducted our experiments using two network testbeds: (1) the Emulab net-
work emulation testbed and (2) the ISISlab network emulation testbed. Emulab
provides computing platforms and network resources that can be easily configured
with the desired computing platform, OS, network topology, and network traffic
shaping. ISISlab uses Emulab software and provides much of the same functional-
ity, but does not (yet) support traffic shaping. We used Emulab due to its ability to
shape network traffic and ISISlab due to the availability of computing platforms.

As outlined in Section 2, we are concerned with the distribution of data for SAR
datacenters, where network packets are dropped at end hosts [11]. The Emulab
network links for the receiving data readers were configured appropriately for
the specified percentage loss. The experiments in ISISlab were conducted with
modified source code to drop packets when received by data readers since ISISlab
does not yet support network traffic shaping.

The Emulab network traffic shaping was mainly needed when using TCP.
OpenDDS does not support programmatically dropping a percentage of packets
in end hosts for TCP. We therefore used network traffic shaping for TCP which
only Emulab provides.

Using the Emulab environment and the ReLate2 metric defined in Section 3.2,
we next determined the protocols that balanced latency and reliability well,
namely RMcast, ANT NAKcast, and ANT Ricochet. Since we could program-
matically control the loss of network packets at the receiving end hosts with these
protocols, we then used ISISlab due to its availability of nodes to conduct more
detailed experiments involving these protocols. We obtained up to 27 nodes fairly
easily using ISISlab, whereas this number of nodes was hard to get with Emulab
since it is often oversubscribed.

Our experiments using Emulab and ISISlab used the following traffic genera-
tion configuration utilizing OpenDDS version 1.2.1: (1) one DDS data writer wrote
data, variable number of DDS data readers read data, (2) the data writer and each
data reader ran on its own computing platform, and (3) the data writer sent 12
bytes of data 20,000 times at a specified sending rate. We ran 5 experiments for
each configuration, e.g., 5 receiving data writers, 50 Hz sending rate, 2% end host
packet loss. We used Ricochet’s default C value of 3 for both Emulab and ISISlab
experiments.

Emulab configuration. For Emulab, the data update rates were 25 Hz and
50Hz for general comparison of all the protocols. We varied the number of receivers
from 3 up to 10. We used Ricochet’s default R value of 8. As defined in Section 3.1,
the R value is the number of packets received before sending out recovery data.

We used the Emulab pc850 hardware platform, which includes an 850 MHz
processor and 256 MB of RAM. We ran the Fedora Core 6 operating system with
real-time extensions on this hardware platform, using experiments consisting of
between 5 and 12 pc850 nodes. The nodes were all configured in a LAN configu-
ration. We utilized the traffic shaping feature of Emulab to run experiments with
network loss percentages between 0 and 3 percent. Table 1 outlines the points of
variability for the Emulab experiments.

Point of Variability Values
Number of receiving data
writers

3 - 10

Frequency of sending data 25 Hz, 50
Hz

Percent end-host network loss 0 to 3 %

Table 1. Emulab Variables

Point of Variability Values
Number of receiving
data writers

3 - 25

Frequency of sending
data

10 Hz, 25 Hz, 50
Hz, 100 Hz

Percent network loss 0 to 5 %

Table 2. ISISlab Variables

ISISlab configuration. We used ISISlab for experiments involving transport
protocols where we could programmatically affect the loss of packets in the end
hosts. By modifying the source code, we could discard packets based on the de-
sired percentage. In particular, we focused the ISISlab experiments on the ANT

NAKcast and Ricochet protocols since from the initial experiments these protocols
showed the ability to balance latency and reliability. At times, OpenDDS RMcast
showed the ability to balance reliability and low latency. Since its behavior was
erratic, however, we excluded it from the detailed experiments. Table 2 outlines
the points of variability for the ISISlab experiments.

ISISlab provides a single type of hardware platform: the pc8832 hardware plat-
form with a dual 2.8 GHz processor and 2 GB of RAM. We used the same Fedora
Core 6 OS with real-time extensions as for Emulab. We ran experiments using
between 5 and 27 computing nodes which map to between 3 and 25 data readers
respectively. All nodes were configured in a LAN as was done for Emulab. We ran
experiments using Ricochet’s R value of 8 and 4, as explained in Section 4.2.
4.2 Results and Analysis of Experiments
This section presents and analyzes the results from our experiments, which resolves
Challenge 3 in Section 2.2 by characterizing the performance of the transport
protocols for various environment configurations.
The Baseline Emulab Experiments. The initial set of experiments for the
FLEXMAT prototype included all the OpenDDS protocols as enumerated in Sec-
tion 3.1. These experiments used Emulab as described in Section 4.1. Our baseline
experiments used 3 data readers, 0% loss, and 25 and 50 Hz update rates. As ex-
pected, all protocols delivered all data to all data readers, i.e., 3 receivers * 20,000
updates = 60,000 updates.

As shown in Figures 7 and 8, the latency at times was lowest with protocols
that do not provide any reliability, i.e., OpenDDS UDP, OpenDDS IP Mcast, and
ANT Baseline). The OpenDDS RMcast and ANT Ricochet protocols were the
only ones that never produced the lowest overall average latency. As expected,
average latency times decreased as the sending rate increased from 25 Hz to 50
Hz.

Fig. 7. Emulab: 3 readers, 0% loss,
25Hz

Fig. 8. Emulab: 3 readers, 0% loss,
50Hz

The next set of experiments added 1% network packet loss for the receiving
end hosts. We do not include figures for the 50 Hz update rate as the data are
comparable to that seen with a sending rate of 25 Hz. As shown in Figure 9, there
is a clear delineation between the protocols that provide reliability and those that
do not.

TCP received all updates sent, whereas ANT NAKcast and ANT Ricochet
received a high percentage of updates with ANT NAKcast receiving all updates
except for one experiment run where it received 59,999 out of the 60,000 updates.

Both configurations of ANT Ricochet delivered a consistently high percentage of
updates between 99.95% and 99.99%. UDP, IP Mcast, and ANT Baseline group
together in the figure with low reliability.

We were unable to configure OpenDDS IP Mcast to use Emulab’s network
traffic shaping. Instead we calculated the amount of packet loss that is comparable
to the other unreliable transports, i.e., 1% loss. We are confident this calculation
does not invalidate the values seen and used for OpenDDS IP Mcast as the values
for ANT’s version of IP Mcast, i.e., ANT Baseline, produces similar results.

Figure 10 shows the erratic behavior of RMcast. At times RMcast received
all updates and other times it received the lowest number of updates of all the
protocols. We therefore removed RMcast from further consideration.

Fig. 9. Emulab: 3 readers, 1% loss,
25Hz, no RMcast

Fig. 10. Emulab: 3 readers, 1% loss,
25Hz

Figure 11 highlights the latency overhead incurred by TCP. This latency is
due to TCP’s use of positive acknowledgments. Moreover, TCP’s latency overhead
increases as the amount of loss increases. All other protocols are fairly comparable
with respect to latency for this environment configuration.

Figure 12 shows the ReLate2 values for all the protocols considered. We see that
using ReLate2 splits the protocols that support both reliability and low latency
from those that do not. The separation of the protocols using ReLate2 is more
pronounced with higher levels of network loss.

Fig. 11. Emulab: 3 readers, 1% loss,
25Hz

Fig. 12. Emulab: 3 readers, 1% loss,
25Hz

We now analyze the results of the Emulab experiments, which involved all the
transport protocols presented in Section 3.1. We utilize the ReLate2 metrics de-

fined in Section 3.2 to evaluate the results from the initial Emulab experiments.
The results show that ANT NAKcast and ANT Ricochet always produced the low-
est ReLate2 values even for multiple configurations of the protocols, i.e., NAKcast
timeout values of 0.05 and 0.025 and Ricochet R values of 4 and 8. The proto-
cols that support reliability but unbounded latency and the protocols that support
low latency but no reliability are clearly separated from the protocols that support
both low latency and reliability.

Moreover, the ReLate2 value is equal to the average latency when there is no
loss, as is the case for TCP and the majority of cases for NAKcast. When NAKcast
does not receive all updates, it is only missing some of the very last updates which
could not be detected since no packets were received after them. The data and
figures show that the ReLate2 metric is useful for evaluating protocols that balance
reliability and latency.
The NAKcast and Ricochet Experiments. Our next set of experiments fo-
cused on the protocols that are best suited for balancing reliability and latency
based on the ReLate2 metric (i.e., ANT NAKcast and ANT Ricochet). We focus
on these protocols for comparison to gain a better understanding of trade-offs be-
tween them. We provide experimental results and analyze the results. We note that
if RMcast’s behavior would stabilize it would also be a protocol worth evaluating
for reliability and low latency.

In particular, for comparison we focused on specific configurations of NAKcast
and Ricochet, i.e., NAKcast with a timeout period of 0.05 seconds and Ricochet
with an R value of 4. We constrained the protocols in this way because config-
ured correctly either protocol can generally provide lower ReLate2 values than the
other. However, we are interested in a relative comparison of the protocols them-
selves rather than reconfigurations that can make the one protocol outperform the
other for a particular environment.

As noted in Section 4.1, we used the ISISlab testbed for experiments involving
only ANT NAKcast and ANT Ricochet due to the availability of a larger number
of hardware nodes. We were able programmatically to induce packet loss at the
end hosts for these two protocols since the ANT source code is available and thus
we did not require Emulab’s network traffic shaping capability.

As with the Emulab experiments in Section 4.2, we began with experiments
where the number of receivers and packet loss were low. We also expanded the
sending rates to include 10Hz and 100Hz along with the original rates of 25Hz
and 50Hz. Adding sending rates made sense as the packet loss recovery times for
both of these protocols are sensitive to the update rate.

The packet loss recovery time for NAKcast is sensitive to the update rate since
loss is only discovered when packets are received. If packets are received faster then
packet loss is discovered sooner and recovery packets can be requested, received,
and processed sooner. Likewise, the packet loss recovery time for Ricochet is sen-
sitive to the update rate since recovery data is only sent out after R packets have
been received. When packets are received sooner, recovery data is sent, received,
and processed sooner.

Moreover, our results and analysis are focused on environment configurations
with relatively low (i.e., 1%) and high (i.e., 5%) network loss combined with rel-
atively few (i.e., 3) and many (i.e., 20) receivers. While we ran experiments that
ran the spectrum of configurations between these bounds, the particular experi-

ments at these limits are useful for understanding the behavior of the protocols.
We show data collected while using 10Hz and 100Hz sending rates to highlight
the behavorial distinctions of the protocols.

Figures 13 and 14 show that for a low number of receivers (i.e., 3), a low loss
percentage (i.e., 1%), and low sending rate (i.e., 10Hz), NAKcast, in general, has
lower ReLate2 values. In fact, NAKcast 0.05 provided the lowest ReLate2 values
for all of the ISISlab protocol configurations tried, i.e., NAKcast with timeout
values of 0.05 and 0.025 seconds and Ricochet with R values of 4 and 8. Ricochet
provided lower average update latency as the sending rate increases. We discuss
this observation in more detail in the analysis section that follows. The number of
updates received remains constant across various sending rates for both protocols
and we do not include those figures here.

Fig. 13. ISISlab: 3 readers, 1% loss Fig. 14. ISISlab: 3 readers, 1% loss

Figures 13 and 14 also show the reliability of Ricochet at low loss rates. This
reliability can be seen by comparing the figures and noticing that the graphs
appear very similar. This similarity points out that Ricochet is almost as reliable
as NAKcast with reliability rates ranging from 99.97% to 99.99%. This reliability
is fairly constant across the different sending rates.

Figures 15 and 16 show the effect on the protocols of increasing packet loss.
In this environment configuration we have changed the network loss from 1% to
5%. We see that NAKcast performed best not only for a sending rate of 10 Hz
as was the case for 1% loss but also for 25 Hz. Ricochet still provided the best
ReLate2 values for sending rates of 50 Hz and 100 Hz. Moreover, while Ricochet
average update latency improved over NAKcast the ReLate2 values don’t reflect
this as Ricochet only had better ReLate2 values for sending rates of 50 and 100
Hz. This is due to Ricochet’s reliability ranging from 99.42% to 99.56% which has
decreased from the experiments with 1% loss.

Figures 17 and 18 show the effect on the protocols of increasing the number of
receivers. In this environment configuration we increased the number of receivers
from 3 to 20. We see that now Ricochet and NAKcast performed equally well at
10 Hz where NAKcast always performed best at that rate with only 3 receivers.
Ricochet provided the best ReLate2 values for the other sending rates. Moreover,

Fig. 15. ISISlab: 3 readers, 5% loss Fig. 16. ISISlab: 3 readers, 5% loss

Ricochet’s reliability is almost as high as with only 3 receivers ranging from 99.94%
to 99.96% of updates received.

������������������������������������
� � � � �� ��	
� �
�� �
����� �� ����������

20 receivers, 1% loss

� !"#$% &'&()&*+ ,-"."/0% ,12 314)&*+� !"#$% &'&(5(*+ ,-"."/0% ,12 314 5(*+� !"#$% &'&((&*+ ,-"."/0% ,12 314 (&*+� !"#$% &'&()&&*+ ,-"."/0% ,12 314)&&*+
Fig. 17. ISISlab: 20 readers, 1% loss Fig. 18. ISISlab: 20 readers, 1% loss

Finally, Figures 19 and 20 show the effect on the protocols of increasing the
number of receivers and loss rate. In this environment configuration we had 20
receivers and 5% network loss.

We see that while Ricochet had a noticeable improvement in average update
latency compared to NAKcast, NAKcast offset this discrepancy with its higher
reliability. For higher rates, i.e., 25, 50, and 100 Hz, the ReLate2 values for Rico-
chet and NAKcast are comparable. NAKcast always provided the lowest ReLate2
values for 10 and 25 Hz while Ricochet always provided the lowest ReLate2 values
for 50 and 100 Hz. Moreover, Ricochet’s reliability is in the same range as for 3
receivers with 5% loss ranging from 99.46% to 99.55% of updates received.

The results above show that for a set protocol configuration there are perfor-
mance trade-offs between NAK-based and LEC protocols. In general, NAK-based
protocols performed better with a lower network loss percentage, lower sending
rates, and few receivers. In this environment configuration there is no concern for
NAK storms where receivers flood the sender with requests for retransmissions.
Moreover, NAK-based protocols only needed to receive one update that is out
of sequence to determine loss whereas LEC protocols need to receive R updates
before error detection and correction information is sent among the receivers.

Fig. 19. ISISlab: 20 readers, 5% loss

���������������������������
� � � � ��	
 ��	
� �� �	� ����������

20 receivers, 5% loss

����� ! �"�� ��#$ %&�'�()! %*� +*� ��#$����� ! �"�� ��#$ %&�'�()! %*� +*� ��#$����� ! �"�� ��#$ %&�'�()! %*� +*� ��#$����� ! �"�� ���#$ %&�'�()! %*� +*� ���#$
Fig. 20. ISISlab: 20 readers, 5% loss

NAK-based protocols also delivered consistently high reliability, at the cost of
higher latency for higher sending rates.

LEC protocols, however, provided better performance when the loss in the
network was higher and as sending rates increased. LEC protocols did not incur
increasingly more network usage as network loss and number of receivers increased.
LEC protocols scaled well in the number of receivers and in network loss. LEC
protocols also generally provided lower latency at the cost of small decreases in
reliability.

NAKcast 0.05 provided the lowest ReLate2 values and lowest average latency
for 3 receivers, 1% loss, and 10 Hz sending rate. The data make sense since the
sending rate was less than the timeout period and the loss rate and number of
receivers were low. If the network drops a packet the packet is as likely to be dis-
covered in the same amount of time by NAKcast with a timeout of 0.05 as it is with
a higher timeout. The sending rate is so low that increasing the NAKcast timeout
to 0.025 seconds provided no benefit and indeed added overhead as timeouts are
generated and checked more frequently.

5 Related Work

This section compares our work on FLEXMAT with related R&D efforts.
Performance evaluation of network transport protocols. Much prior

work has evaluated network transport protocols, e.g., Balakrishnan et al. [12]
evaluate the performance of the Ricochet transport protocol with the Scalable
Reliable Multicast (SRM) protocol [17]. Bateman et al. [13] compare the per-
formance of TCP variations both using simulations and in a testbed. Cheng et
al. [19] provide performance comparisons of UDP and TCP for video streaming
in multihop wireless mesh networks. Kirschberg et al. [9] propose the Reliable
Congestion Controlled Multicast Protocol (RCCMP) and provide simulation re-
sults for its performance. In contrast to our work on FLEXMAT, these evaluations
specifically target the protocol level independent of any integration of QoS-enabled
pub/sub middleware.

Performance evaluation of enterprise middleware. Xiong et al. [15]
conducted performance evaluations for three DDS implementations, including
OpenDDS. That work highlighted the different architectural approaches taken
and trade-offs of these approaches. In contrast, to our work on FLEXMAT, how-

ever, that prior work did not include performance evaluations of DDS with various
transport protocols.

Sachs et al. [10] present a performance evaluation of message-oriented middle-
ware (MOM) in the context of the SPECjms2007 standard benchmark for MOM
servers. The benchmark is based on the Java Message Service (JMS). In particu-
lar, the work details performance evaluations of the BEA WebLogic server under
various loads and configurations. In contrast to our work on FLEXMAT, however,
that work did not integrate various transport protocols with the middleware to
evaluate its performance.

Tanaka et al. [20] developed middleware for grid computing called Ninf-G2. In
addition, they evaluate Ninf-G2’s performance using a weather forecasting system.
The evaluation of the middleware does not integrate various protocols and evaluate
performance in this context, as our work on FLEXMAT does.

Tselikis et al. [5] conduct performance analysis of a client-server e-banking ap-
plication. They include three different enterprise middleware platforms each based
on Java, HTTP, and Web Services technologies. The analysis of performance data
led to the benefits and disadvantages of each middleware technology. In contrast,
our work on FLEXMAT measures the impact of various network protocols inte-
grated with QoS-enabled pub/sub middleware.

Performance evaluation of embedded middleware. Bellavista et al. [16]
describe their work called Mobile agent-based Ubiquitous multimedia Middleware
(MUM). MUM has been developed to handle the complexities of wireless hand-off
management for wireless devices moving among different points of attachment to
the Internet. In contrast, our work on FLEXMAT focuses on the performance and
flexibility of QoS-enabled anonymous pub/sub middleware.

TinyDDS [3] is an implementation of DDS specialized for the demands of
wireless sensor networks (WSNs). TinyDDS defines a subset of DDS interfaces for
simplicity and efficiency within the domain of WSNs. TinyDDS includes a plug-
gable framework for non-functional properties, e.g., event correlation and filtering
mechanisms, data aggregation functionality, power-efficient routing capability. In
contrast, our work on FLEXMAT focuses on how properties of various transport
protocols can be used to maintain specified QoS.
6 Concluding Remarks

Developers of RT-ESP systems face a number of challenges when developing their
applications for dynamic environments. To address these challenges, we have devel-
oped FLEXMAT to integrate and enhance QoS-enabled pub/sub middleware with
flexible transport protocols to support RT-ESP applications. This paper defines
the ReLate2 metric to empirically measure the reliability and latency of FLEX-
MAT as a first step to having QoS-enabled pub/sub middleware autonomically
adapt transport protocols as the changing environment dictates.

The latest information and source-code for FLEXMAT and related research
can be obtained at www.dre.vanderbilt.edu/~jhoffert/ADAMANT.

References

1. Y. Bai and M. Ito. A new technique for minimizing network loss from users’ per-
spective. Journal of Network Computing Appllications, 30(2):637–649, 2007.

2. Yan Bai and M.R. Ito. A Study for Providing Better Quality of Service to VoIP
Users. In 20th International Conference on Advanced Information Networking and
Applications (AINA 2006), Lecture Notes in Computer Science, vol. 3410, pages
799–804, April 2006.

3. P. Boonma and J. Suzuki. Middleware support for pluggable non-functional prop-
erties in wireless sensor networks. Services - Part I, 2008. IEEE Congress on, pages
360–367, July 2008.

4. B. Plale et al. CASA and LEAD: Adaptive Cyberinfrastructure for Real-Time Mul-
tiscale Weather Forecasting. Computer, 39(11):56–64, 2006.

5. C. Tselikis et al. An evaluation of the middleware’s impact on the performance of
object oriented distributed systems. Journal of Systems and Software, 80(7):1169 –
1181, 2007. Dynamic Resource Management in Distributed Real-Time Systems.

6. D. Schmidt et al. Pattern-Oriented Software Architecture: Patterns for Concurrent
and Networked Objects, Volume 2. Wiley & Sons, New York, 2000.

7. E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

8. G. Eisenhauer et al. Publish-subscribe for high-performance computing. Internet
Computing, IEEE, 10(1):40–47, Jan.-Feb. 2006.

9. J. Kirschberg et al. Rccmp: reliable congestion controlled multicast protocol. In 1st
EuroNGI COnference on Next Generation Internet Networks Traffic Engineering,
april 2005.

10. K. Sachs et al. Performance Evaluation of Message-oriented Middleware using the
SPECjms2007 Benchmark. Performance Evaluation, 2009. to appear.

11. M. Balakrishnan et al. Slingshot: Time-critical multicast for clustered applications.
In Proceedings of the IEEE Conference on Network Computing and Applications,
2005.

12. M. Balakrishnan et al. Ricochet: Lateral error correction for time-critical multi-
cast. In NSDI 2007: Fourth Usenix Symposium on Networked Systems Design and
Implementation, Boston, MA, 2007.

13. M. Bateman et al. A comparison of tcp behaviour at high speeds using ns-2 and
linux. In CNS ’08: Proceedings of the 11th communications and networking simula-
tion symposium, pages 30–37, New York, NY, USA, 2008. ACM.

14. M. Ngatman et al. Comprehensive study of transmission techniques for reducing
packet loss and delay in multimedia over ip. International Journal of Computer
Science and Network Security, 8(3):292–299, 2008.

15. Ming Xiong et al. Evaluating Technologies for Tactical Information Management in
Net-Centric Systems. In Proceedings of the Defense Transformation and Net-Centric
Systems conference, Orlando, Florida, April 2007.

16. P. Bellavista et al. Context-aware handoff middleware for transparent service conti-
nuity in wireless networks. Pervasive and Mobile Computing, 3(4):439 – 466, 2007.
Middleware for Pervasive Computing.

17. S. Floyd et al. A reliable multicast framework for light-weight sessions and applica-
tion level framing. IEEE/ACM Trans. Netw., 5(6):784–803, 1997.

18. V. Kumar et al. Distributed stream management using utility-driven self-adaptive
middleware. Autonomic Computing, 2005. ICAC 2005. Proceedings. Second Inter-
national Conference on, pages 3–14, June 2005.

19. X. Cheng et al. Performance evaluation of video streaming in multihop wireless
mesh networks. In NOSSDAV ’08: Proceedings of the 18th International Workshop
on Network and Operating Systems Support for Digital Audio and Video, pages 57–
62, New York, NY, USA, 2008. ACM.

20. Y. Tanaka et al. Design, Implementation and Performance Evaluation of GridRPC
Programming Middleware for a Large-Scale Computational Grid. In GRID ’04: Pro-
ceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pages
298–305, Washington, DC, USA, 2004. IEEE Computer Society.

