
DQML: A Modeling Language for Configuring
Distributed Publish/Subscribe Quality of Service

Policies?

Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale

Institute for Software Integrated Systems, Dept. of EECS,
Vanderbilt University, Nashville, TN, USA 37203

{jhoffert,schmidt,gokhale}@dre.vanderbilt.edu

http://www.dre.vanderbilt.edu

Abstract. Many publish/subscribe (pub/sub) middleware platforms pro-
vide flexibility in configuring policies that affect end-to-end quality of ser-
vice (QoS). While the functionality and tunability of pub/sub middleware
has increased, so has the complexity of creating semantically compatible
QoS policy configurations. This paper makes two contributions to address-
ing these challenges. First, it describes how a domain-specific modeling
language (DSML) can automate the analysis and synthesis of semantically
compatible QoS policy configurations. Second, it empirically evaluates how
this DSML increases productivity when generating valid QoS policy con-
figurations. For our motivating scenario, we show a 54% reduction in de-
velopment effort using DQML over manual methods.

Key words: Configuration Modeling Tools, Pub/Sub Middleware, Dom-
ain-Specific Modeling Languages, Data Distribution Service, Modeling
Metrics

1 Introduction

Emerging trends for publish/subscribe systems. The use of distributed sys-
tems based on publish/subscribe (pub/sub) technologies has increased due to the
advantages of scale, cost, and performance over single computers [11, 22]. In con-
trast to distributed object computing middleware (e.g., Java RMI and CORBA)
where clients invoke point-to-point methods on distributed objects, pub/sub mid-
dleware disseminates data from suppliers to one or more consumers. Examples
of pub/sub middleware include Web Services Brokered Notification [19], the Java
Message Service (JMS) [21], the CORBA Event Service [14], and the Data Distri-
bution Service (DDS) [16]. These technologies support data propagation through-
out a system using an anonymous subscription model that decouples event sup-
pliers and consumers.

Pub/sub middleware is applicable to a broad range of application domains,
such as satellite coordination and shipboard computing environments. This mid-
dleware provides policies that affect end-to-end system QoS. Common policies
include persistence (i.e., saving data for current subscribers), durability (i.e., sav-

? This work is supported in part by the AFRL/IF Pollux project and NSF TRUST.

http://www.dre.vanderbilt.edu

2 Joe Hoffert et al.

ing data for subsequent subscribers), and grouped data transfer (i.e., transmitting
and receiving a group of data as an atomic unit).

Challenges in configuring pub/sub middleware. While tunable policies
enable fine-grained control of system QoS, a number of challenges arise when
developing QoS policy configurations, which are combinations of QoS properties
that affect overall system QoS. For example, each QoS policy may have multi-
ple parameters associated with it, such as the data topic of interest, data filter
criteria, and the maximum number of messages to store when transmitting data.
Each parameter can also be assigned a range of values (such as the legal set of
topics), a range of integers for the maximum number of data messages stored for
transmission, or the set of regular expressions used as filtering criteria.

The QoS policies associated with individual suppliers or consumers collectively
determine the overall observed QoS of suppliers and consumers. Not all combina-
tions of QoS policies/parameters deliver the required system QoS, however, and
may thus not be semantically compatible. It is tedious and error-prone to trans-
form a valid QoS policy configuration design manually to its implementation for
a middleware platform.

Solution approach→Model-driven QoS policy configuration. We have
developed a domain-specific modeling language (DSML) called the Distributed
QoS Modeling Language (DQML) to address the challenges described above. In
particular, DQML helps developers (1) choose valid sets of values for QoS policies
in pub/sub middleware, (2) ensure that these QoS policy configurations are se-
mantically compatible, i.e., they do not conflict with each other, and (3) automate
the transformation of a QoS policy configuration design into the correct pub/sub
middleware-specific implementation.

Our prior work [7] briefly outlined some QoS policy configuration challenges
and summarized our DSML-based solution approach. This paper significantly ex-
pands our prior work to (1) provide in-depth analysis of the challenges and present
additional lessons learned, (2) empirically evaluate the productivity gains of our
DSML solution, and (3) compare our work with related efforts.

2 Motivating Example: NASA’s Magnetospheric Multiscale
Mission

We chose NASA’s Magnetospheric Multiscale (MMS) Mission [20] as a case study
to showcase the complexities of configuring QoS policies in pub/sub middleware.
MMS comprises five co-orbiting and coordinated satellites instrumented identically
to study various aspects of the earth’s magnetosphere, e.g., turbulence in key
boundary regions, magnetic reconnection, and charged particle acceleration. The
satellites can be (re)positioned into different temporal/spatial relationships, e.g.,
to construct a three dimensional view of the field, current, and plasma structures.

An example MMS spacecraft deployment is shown in Figure 1. This deployment
includes a non-MMS satellite that communicates with the MMS satellites, as well
as a ground station that communicates with the satellites during a high-capacity
orbit window. The figure also shows the flow of data between systems involved in
the deployment, along with the QoS requirements applicable to the MMS mission.

To transport telemetry data, the MMS satellites are equipped with both down-
link and uplink capability. To enable precise coordination for particular types of

Distributed QoS Modeling Language 3

Provisioning of data
resources

Key:

= MMS ground station = other satellites

= MMS spacecraft = data flow

Data reliability

Data for late
arriving
readers

Data with time
deadlines

Ordered data

Data priority

Inter-arrival data
spacing

Determining
liveness

Data redundancy

Fig. 1. Example MMS Mission Scenario with QoS Requirements

telemetry and positioning data each satellite gathers, stores, and transmits in-
formation regarding neighboring spacecraft. Instrumentation on each satellite is
expected to generate ∼250 megabytes of data per day. To enable the satellites
to wait for high-rate transmission windows and thereby minimize ground station
cost, each satellite also stores up to 2 weeks worth (i.e., 3.5 GB) of data. To meet
these data requirements, the pub/sub middleware used for MMS needs to support
the QoS policies summarized in Table 1.

MMS Requirement Description
Redundancy data redundancy (store data on another satellite)
Durability making data available at a later time for analysis
Presentation maintain message ordering and granularity
Transport priority prioritizing data transmissions
Time-based filtering flow control to handle slow consumers
Deadline deadlines on receipt of data
Reliability no loss of critical data
Resource limits effective provisioning of resources
Liveliness assurances of properties when spacecraft is unavailable

Table 1. MMS pub-sub QoS Policy Requirements

A challenge for MMS developers is to determine how the interaction of the QoS
policies listed in Table 1 impacts the deployed system. Key issues to address are
determination of any conflicts of QoS settings and the behavior of the system in
light of such conflicts. Not all combinations of QoS policies and parameter values
are semantically compatible, i.e., only a subset actually make sense and provide the
needed capabilities. Ideally, incompatibilities in QoS policy configurations should
be detected before the MMS system runs so modifications will be less costly and
easier to implement, validate, and optimize.

3 Analyzing QoS Policy Configuration Challenges and
Solutions

This section explores the challenges of generating QoS policy configurations for
pub/sub middleware and presents DSML-based solutions. We analyze these chal-
lenges in the context of a prototype MMS mission (see Section 2) implemented
using OMG Data Distribution Service (DDS) [16] pub/sub middleware (see Sec-
tion 3.1). We selected DDS as our middleware platform due to its extensive support
for QoS policies that are relevant to the MMS mission case study.

4 Joe Hoffert et al.

3.1 Overview of the OMG Data Distribution Service (DDS)

The OMG DDS specification defines a standard architecture for exchanging data
in pub/sub systems. DDS provides a global data store in which publishers and
subscribers write and read data, respectively. DDS provides flexibility and mod-
ular structure by decoupling: (1) location, via anonymous publish/subscribe, (2)
redundancy, by allowing any numbers of readers and writers, (3) time, by provid-
ing asynchronous, time-independent data distribution, and (4) platform, by sup-
porting a platform-independent model that can be mapped to different platform-
specific models, such as C++ running on VxWorks or Java running on Real-time
Linux.

The DCPS entities in DDS include topics, which describe the type of data
to be written or read, data readers, which subscribe to the values or instances of
particular topics, and data writers, which publish values or instances for particular
topics. Properties of these entities can be configured using combinations of the 22
DDS QoS policies shown in Table 2. Moreover, publishers manage groups of data

DDS QoS Policy Description
Deadline Determines rate at which periodic data is refreshed
Destination Order Sets whether data sender or receiver determines order
Durability Determines if data outlives the time when written or read
Durability Service Details how durable data is stored
Entity Factory Sets enabling of DDS entities when created
Group Data Attaches application data to publishers, subscribers
History Sets how much data is kept to be read
Latency Budget Sets guidelines for acceptable end-to-end delays
Lifespan Sets time bound for “stale” data
Liveliness Sets liveness properties of topics, data readers, data writers
Ownership Controls writer(s) of data
Ownership Strength Sets ownership of data
Partition Controls logical partition of data dissemination
Presentation Delivers data as group and/or in order
Reader Data Lifecycle Controls data and data reader lifecycles
Reliability Controls reliability of data transmission
Resource Limits Controls resources used to meet requirements
Time Based Filter Mediates exchanges between slow consumers and fast producers
Topic Data Attaches application data to topics
Transport Priority Sets priority of data transport
User Data Attaches application data to DDS entities
Writer Data Lifecycle Controls data and data writer lifecycles

Table 2. DDS QoS Policies

writers and subscribers manage groups of data readers.
Each QoS policy has ∼2 parameters, with the bulk of the parameters having a

large number of possible values, e.g., a parameter of type long or character string.
Section 3.2 shows that not all QoS policies are applicable to all DCPS entities nor
are all combinations of policy values semantically compatible.

3.2 DDS QoS Policy Configuration: Challenges and DSML-based
Solutions

In the context of DDS and the MMS case study, we developed a DSML-based
solution to four types of challenges that arise when creating QoS policy configura-

Distributed QoS Modeling Language 5

tions.2 We chose a DSML-based solution over other common solution techniques
(such as manually-implementing point- and pattern-based [12] solutions) since
DSMLs can ensure (1) proper semantics for specifying QoS policies and (2) all
parameters for a particular QoS policy are properly specified and used correctly,
as described in Section 1. DSMLs can also detect many types of QoS policy config-
uration problems at design time and can automatically generate implementation
artifacts (e.g., source code and configuration files) that reflect design intent.
Challenge 1: Managing QoS Policy Configuration Variability.

Context. DDS provides three points of variability with respect to QoS policy
configurations: (1) the associations between a single DDS entity and two or more
QoS policies, (2) the associations between two or more entities, and (3) the number
and types of parameters per QoS policy.

Problem. When creating a DDS QoS policy configuration, associations are
made between various entities e.g., between a data writer sending collected data
from an MMS satellite and the publisher that manages the data writer. Not all
possible associations are valid, however. For example, the association between
a data writer and a subscriber is invalid since a subscriber manages one or more
data readers and not data writers. If the rules governing valid associations between
entities are not obeyed when associations are created the QoS policy configuration
will be invalid.

Associations can be made not only between DDS entities but also between a
DDS entity and the QoS policies. Not all QoS policies are valid for all DDS entities,
however. For instance, associating a Presentation QoS policy with an MMS ground
station’s data reader is invalid. The rules that determine which QoS policies can
be associated with which DDS entities must be considered when creating valid
QoS policy configurations.

Finally, the number and types of parameters differ for each QoS policy type.
The number of parameters for any one QoS policy ranges from one (e.g., Deadline
QoS Policy) to six (e.g., Durability Service QoS Policy). The parameter types
for any one QoS policy also differ. The parameter types include boolean, string,
long, struct, and seven different types of enums. It is hard to track the number of
parameters a particular QoS policy has manually; it is even harder to track the
valid range of values that any one single parameter can have.

General DSML-based solution approach. A DSML can ensure that only ap-
propriate associations are made between entities and QoS policies. In addition,
a DSML can list the parameters and default values of any selected QoS policy.
DSMLs ensure that only valid values are assigned to the QoS policy parameters.
For example, a DSML can raise an error condition if a string is assigned to a pa-
rameter of type long. Section 4.2 describes how DQML addresses the QoS policy
configuration variability challenge by allowing only valid values to be assigned to
parameters and checking for valid associations between QoS policies and entities.
Challenge 2: Ensuring QoS compatibility.

Context. DDS defines constraints for compatible QoS policies. Table 3 lists the
QoS policies that can be incompatible and the relevant types of entities for those
2 Similar analysis and solutions are also applicable to other pub/sub middleware and

application domains, though DDS’s rich set of QoS policies makes it a particularly
interesting platform.

6 Joe Hoffert et al.

policies. Incompatibility applies to QoS policies of the same type, e.g., reliability,
across multiple types of entities, e.g., data reader and data writer.

QoS Policies Affected DDS Entities
Deadline Topic, data reader, data writer
Destination
Order Topic, data reader, data writer
Durability Topic, data reader, data writer
Latency Budget Topic, data reader, data writer

QoS Policies Affected DDS Entities
Liveliness Topic, data reader, data writer
Ownership Topic, data reader, data writer
Presentation Publisher, subscriber
Reliability Topic, data reader, data writer

Table 3. Potential Incompatible DDS QoS Policies

Problem. When compatibility constraints are violated, data will not flow be-
tween DDS data writers and data readers, i.e., compatibility impacts topic dis-
semination. For example, an incompatibility between reliability QoS policies will
occur if an MMS ground station requests data be sent reliably, but an MMS
spacecraft only offers sending data via best-effort. The data will not flow between
the spacecraft and the ground station because the values of the QoS policies are
incompatible, as shown in Figure 2.

Best effort data
transfer offeredReliable

data transfer
requested

X
Data will not

be transferred

Key:
= MMS ground station = MMS spacecraft = intended data flow

Fig. 2. Incompatible MMS Ground Station and Spacecraft Reliability QoS

General DSML-based solution approach. A DSML can include compatibility
checking in the modeling language itself. A DSML user can invoke compatibility
checking to make sure that the QoS policy configuration specified is valid. If
incompatible QoS policies are detected the user is notified at design time and
given details of the incompatibility. Section 4.2 describes how DQML addresses
the QoS compatibility challenge by providing compatibility constraint checking
on QoS policy configurations.
Challenge 3: Ensuring QoS consistency.
Context. The DDS specification defines when QoS policies are inconsistent, i.e.,

when multiple QoS policies associated with a single DCPS entity are not valid.
Table 4 describes the consistency constraints for QoS policies associated with
a single DDS entity. For example, an inconsistency between the Deadline and

Consistency Constraints for QoS Policies
Deadline.period ≥ Time Based Filter.minimum separation
Resource Limits.max samples ≥ Resource Limits.max samples per instance
Resource Limits.max samples per instance ≥ History.depth

Table 4. DDS QoS Consistency Constraints

Time-based Filter QoS policies occurs if an MMS ground station tries to set the
Deadline QoS policy’s deadline period to 5 ms and the Time-based Filter QoS
policy’s minimum separation between incoming pieces of data to 10 ms, as shown
in Figure 3. This invalid configuration violates the DDS constraint of deadline
period ≥ minimum separation.

Distributed QoS Modeling Language 7

Time based filter.minimum_separation = 10ms

Deadline.period = 5 ms.

X
QoS policies
will not be set

Fig. 3. Inconsistent QoS Policies for an MMS Ground Station

Problem. Manually checking for all possible consistency constraint violations
is tedious and error-prone for non-trivial pub/sub systems.

General DSML-based solution approach. A DSML can include consistency
checking in the modeling language itself. As with compatibility checking, DSML
users can invoke consistency checking to ensure that the QoS policy configura-
tion is valid. If inconsistent QoS policies are found users are notified at design
time with detailed information to help correct the problem. Section 4.2 describes
how DQML addresses the QoS consistency challenge by providing consistency
constraint checking on QoS policy configurations.
Challenge 4: Ensuring Correct QoS transformation.

Context. After a valid QoS policy configuration has been created it must be
correctly transformed from design to implementation.

Problem. A conventional approach is to (1) document the desired QoS policies,
parameters, values, and associated entities often in an ad hoc manner (e.g., using
handwritten notes or conversations between developers) and then (2) transcribe
this information into the source code. This ad hoc process creates opportunities
for accidental complexities, however, since the QoS policies, parameters, values,
and related entities can be misread, mistyped, or misunderstood. The QoS policy
configurations encoded in the system may therefore differ from the valid configu-
rations intended originally.

General DSML-based solution approach. A DSML can provide model inter-
preters to generate correct-by-construction3 implementation artifacts. The inter-
preters iterate over the QoS policy configuration model designed in the DSML to
create appropriate implementation artifacts (e.g., source code, configuration files)
that will correctly recreate the QoS policy configuration as designed. Section 4.2
describes how DQML addresses the challenge of correct QoS transformation by
providing an interpreter that traverses the model and generates implementation
specific artifacts.

4 The Distributed QoS Modeling Language (DQML)

The Distributed QoS Modeling Language (DQML) is a DSML that automates the
analysis and synthesis of semantically compatible DDS QoS policy configurations.
We developed DQML using the Generic Modeling Environment (GME) [1], which
is a meta-programmable environment for creating DSMLs. This section describes
the structure and functionality of DQML and explains how it resolves the chal-
lenges described in Section 3.2 in the context of DDS and the MMS case study.

4.1 Structure of the DQML Metamodel

The DQML metamodel constrains the possible set of models for QoS policy con-
figurations, as described below.
3 In this paper “correct-by-construction” refers to QoS policy configuration artifacts

that faithfully transfer design configurations into implementation and deployment.

8 Joe Hoffert et al.

Scope. The DQML metamodel includes all DDS QoS policy types shown in
Table 2, but supports only DDS entity types that have QoS policies associated
with them. In addition to topics, data readers, and data writers previously men-
tioned, DQML can associate QoS policies with (1) publishers, which manage one
or more data writers, (2) subscribers, which manage one or more data readers, (3)
domain participants, which are factories for DDS entities for a particular domain
or logical network, and (4) domain participant factories, which generate domain
participants. While other entities and constructs exist in DDS, none directly use
QoS policies and are thus excluded from DQML.

Figure 4 shows a portion of the DQML metamodel relevant to the Deadline
QoS policy and its relationships to applicable DDS entities, e.g., data reader, data
writer, and topic. Figure 5 shows a portion of the DQML metamodel relevant to the
OCL constraint placed on the Deadline QoS policy to ensure semantic compatibil-
ity. The compatibility constraints are associated with a topic since compatibility
between a data reader and a data writer is determined by a common topic. This

Fig. 4. Deadline QoS Policy Relationships (UML notation)

figure shows the appropriate relationships and the number of associations. Other
QoS policies are modeled in this way, along with the parameters and constraints
for each policy.

Associations between entities and QoS policies. DQML supports asso-
ciations between DDS entities and QoS policies rather than having DDS entities
contain or own QoS policies. This metamodel design decision allows greater flex-
ibility and ease of constraint error resolution. If QoS policies had been contained
by the DDS entities then multiple DDS entities could not share a common QoS
policy. Instead, the policy would be manually copied and pasted from one entity
to another, thereby incurring accidental complexity when designing a QoS policy
configuration.

In contrast, DQML supports multiple DDS entities having the same QoS policy
by allowing modelers to create a single QoS policy with the appropriate values.
Modelers can then create associations between the applicable DDS entities and
the QoS policy. This approach also simplifies constraint errors resolution, e.g., if
constraint errors are found, the offending entities can be associated with a common
QoS policy to eliminate the compatibility error.

Constraint definition. The DDS specification defines constraints placed
on QoS policies for compatibility and consistency. The DQML metamodel uses

Distributed QoS Modeling Language 9

Fig. 5. Deadline QoS Policy Compatibility Constraints

GME’s Object Constraint Language (OCL) [23] implementation to define these
constraints. As noted in Section 3.2 for challenges 2 and 3, compatibility con-
straints involve a single type of QoS policy associated with more than one DDS
entity, whereas consistency constraints involve a single DDS entity with more than
one QoS policy. Both types of constraints are defined in the metamodel and can
be checked when explicitly initiated by users.

To maximize flexibility, DQML does not enforce semantic compatibility con-
straints automatically in the metamodel since users may only want to model some
parts of a DDS application, rather than model all required entities and QoS poli-
cies. Only checking constraints when initiated by modelers enables this flexibil-
ity. Conversely, association constraints (i.e., the valid associations between DDS
entities and QoS policies) are defined in the metamodel and are thus checked
automatically when associations are specified.

4.2 Functionality of DQML

DQML allows developers to designate any number of DDS entity instances in-
volved with QoS policy configuration. For example, DQML supports the seven
DDS entity types that can be associated with QoS policies, as shown in Figure 6.
QoS policies can be created and associated with these entities as described below.

10 Joe Hoffert et al.

Fig. 6. DDS Entities Supported in DQML

Specification of QoS policies. DQML allows developers to designate the
DDS QoS policies involved with a QoS policy configuration. DQML supports all
DDS policies, along with their parameters, the appropriate ranges of values, and
the default parameter values. Developers can then change default settings for QoS
policy parameters as needed. Moreover, if a QoS policy parameter has a limited
range of values, DQML enumerates only these specific values and ensures that
only one of these values is assigned to the parameter.

DQML also ensures that the type of value assigned is appropriate. For example
it ensures that a character value is not assigned to a parameter that requires an
integer value. The DQML interpreter externalizes the parameter values (whether
set explicitly or by default) so that no QoS policy has uninitialized parameters.

Figure 7 shows an example of how DQML addresses the challenge of managing
QoS policy configuration variability as outlined in Section 3.2. In this example
DQML displays the parameters for the history QoS policy along with the default
values for the parameters in grey, i.e., history depth = 1 and history kind
= KEEP LAST. Since history kind is an enumerated type, DQML lists the valid
values when the user selects the parameter. Only one of the valid values can be
assigned to the parameter.

Fig. 7. Example of DQML QoS Policy Variability Management

Association between entities and QoS policies. DQML supports gener-
ating associations between the DDS entities themselves and between a DDS entity
and the QoS policies. DQML ensures that only valid associations are created i.e.,
where it is valid to associate two particular types of entities or associate a particu-
lar DDS entity with a particular type of QoS policy. DQML will notify developers
if the association is invalid and disallow the association at design-time.

Checking compatibility and consistency constraints. DQML supports
checking for compatible and consistent QoS policy configurations. Users initiate
this checking and DQML reports any violations. Constraint checking in DQML
uses default QoS parameter values to determine QoS compatibility and consis-
tency if no values are specified. Developers of QoS policy configurations might

Distributed QoS Modeling Language 11

explicitly associate only a single QoS policy to an entity and assume no checking
for compatibility or consistency is applicable. A constraint violation may exist,
however, depending on the interaction of the explicit parameter values and the
default values for other entities.

For instance, if developers specify only a single presentation QoS policy in a
configuration, associate it with a single subscriber entity, and change the default
access scope value from instance to topic or group, they may assume no constraint
violations occur. The explicit access scope value set on the subscriber is incom-
patible, however, with the implicit (default) value of instance for any publisher
associated via a common topic.

The constraint resolution problem is further exacerbated by QoS policies that
can be associated with a topic entity and then act as the default QoS policy for
data readers or writers. For example, the reliability QoS policy can be associated
with a data reader, a data writer, or a topic. If the policy is associated with a
topic, any data readers or data writers not explicitly associated with a reliability
policy will use the topic’s reliability QoS policy. DQML can check this type of
QoS association for compatibility and consistency.

Compatibility
Constraint for

Reliability -
VIOLATED

Best effort data
transfer offered

Reliable data
transfer

requested

X

Key:

= MMS ground station

= MMS spacecraft

= intended data flow

Fig. 8. Example of DQML QoS Policy Compatibility Constraint Checking

Figures 8 and 9 show examples of how DQML addresses the challenges of en-
suring QoS compatibility and consistency, respectively, as described in Section 3.2.
Figure 8 shows how DQML detects and notifies users of incompatible reliability

Consistency
Constraint
VIOLATED

Time based filter.minimum_separation = 10ms

Deadline.period = 5 ms.

X
QoS policies
will not be set

Fig. 9. Example of DQML QoS Policy Consistency Constraint Checking

QoS policies. Likewise, Figure 9 shows an incompatible deadline period, i.e., 10
is less than the time based filter’s minimum separation of 15. Both policies are

12 Joe Hoffert et al.

associated with the same MMS Ground Station data reader. DQML checks the
consistency of the modeled QoS policies and notifies users of violations.

Transforming QoS policy configurations from design to implemen-
tation. Figure 10 shows how DQML addresses the challenge of correctly trans-
forming QoS policy configurations from design to implementation, as described in
Section 3.2. In this example, DQML generates a QoS policy configuration file for
an MMS satellite data reader. QoS policies associated with the data reader along
with values for the policies are shown. This file can then be integrated into the
MMS implementation to ensure the desired QoS policy configuration.

Fig. 10. Example QoS Policy Configuration File

5 Productivity Analysis of DQML for the DDS
Benchmarking Environment

This section presents the results of a productivity analysis using DQML. The MMS
scenario described in Figure 1 is used within the context of the DDS Benchmark-
ing Environment (DBE) described in Sidebar 1 to evaluate MMS scenario QoS
behavior. We present the productivity benefit and the break-even point of using
DQML vs. manually implementing QoS policy configurations for DBE. Manual
implementation of configurations is applicable to both the point- and pattern-
based solutions presented in previous work [7] since neither approach provides
implementation guidance.

Sidebar 1: DDS Benchmarking Environment (DBE)

DBE is a suite of software tools used to examine and evaluate various DDS
implementations [8]. DBE requires correct QoS policy settings so that data will
flow as expected. If these policy settings are inconsistent QoS evaluations will
not commence properly. DBE runs a set of Perl scripts that launches executables
for the DDS application and in particular deploys data readers and data writers
onto specified nodes. For each data reader and data writer DBE also deploys a
QoS policy settings file. The files and settings are currently generated manually.

5.1 The DQML DBE Interpreter

To support DBE and its need to generate correct QoS policy configurations we
developed a DQML interpreter that generates QoS policy parameter settings files
for the data readers and data writers that DBE configures and deploys. This
interpreter can also accommodate other DCPS entities, e.g., topics, publishers,
and subscribers. All QoS policies from a DQML model are output for the data
readers and data writers.

Distributed QoS Modeling Language 13

The DQML interpreter creates one QoS policy parameter settings file for each
data reader or data writer that is modeled. The names of the files are generated by
using the name of the data reader or data writer prepended with the either “DR”
or “DW” plus the current count of data readers or data writers processed (e.g.,
DR1 Satellite1.txt). The filename prefix is generated to ensure that a unique
filename is created since the names of the data readers and data writers modeled
in DQML need not be unique.

A common DBE use-case for DQML thus becomes (1) model the desired DCPS
entities and QoS policies in DQML, (2) invoke the DBE interpreter to generate
the appropriate QoS settings files, and (3) execute DBE to deploy data readers
and data writers using the generated QoS settings files.

5.2 Productivity Analysis

Scope. DBE currently deals only with DDS data readers and data writers. Our
productivity analysis therefore focuses on the QoS parameters relevant to data
readers and data writers. (Similar analysis can be done for other types of DDS
entities associated with QoS policies.) At a minimum, in the MMS scenario each
MMS satellite, non-MMS satellite, and ground station will have a data writer and
data reader to send and receive data, respectively, which yields seven data readers
and seven data writers to configure. This scenario provides the minimal baseline
since production satellites and ground stations typically have many data writers
and data readers for use in sending and receiving not only to other systems but
also for use internally between various subsystems.

QoS Policy # of
Params

Param
Type(s)

Deadline 1 int
Destination Order 1 enum
Durability 1 enum
Durability Service 6 5 ints, 1 enum
History 2 1 enum, 1 int
Latency budget 1 int
Lifespan 1 int
Liveliness 2 1 enum, 1 int
Ownership 1 enum
Ownership
Strength

1 int

Reliability 2 1 enum, 1 int
Resource Limits 3 3 ints
Transport Priority 1 int
User Data 1 string
Writer Data
Lifecycle

1 bool

Total
Parameters

25

Table 5. DDS QoS Policies for data
writers

QoS Policy # of
Params

Param
Type(s)

Deadline 1 int
Destination Order 1 enum
Durability 1 enum
History 2 1 enum, 1 int
Latency budget 1 int
Liveliness 2 1 enum, 1 int
Ownership 1 enum
Reader Data
Lifecycle

1 int

Reliability 2 1 enum, 1 int
Resource Limits 3 3 ints
Time Based Filter 1 int
User Data 1 string

Total
Parameters

17

Table 6. DDS QoS Policies for data
readers

A data writer can be associated with 15 QoS policies with a total of 25 param-
eters, as shown in Table 5. A data reader can be associated with 12 QoS policies
with a total of 17 parameters, as shown in Table 6. The total number of relevant
QoS parameters for DBE is thus 17 + 25 = 42. Each QoS parameter value for a

14 Joe Hoffert et al.

data reader or writer corresponds to one line in the QoS policy parameter settings
file for DBE, as shown in Figure 10.

Interpreter development. DQML’s DBE interpreter was developed using
GME’s Builder Object Network (BON2) framework, which generates C++ code
using the Visitor pattern [4]. Within BON2, developers of the DQML DBE inter-
preter need only modify and add certain portions to the framework that are called
to process the particular DSML. In particular, BON2 provides a C++ visitor class
with virtual methods (e.g., visitModelImpl, visitConnectionImpl, visitAtomImpl)
that the developer subclasses and then overrides the virtual methods.

In BON2, the DDS entities supported in DQML are referred to as model
implementations. The DBE interpreter is thus only concerned with overriding the
visitModelImpl method. When the BON framework invokes this method it passes
as an argument a model implementation. The model implementation provides
methods to (1) traverse the associations a DDS entity has using the getConnEnds
method and specifying the relevant QoS policy association as an input parameter
(e.g., the association between a data reader and a reliability QoS policy), (2)
retrieve the connected QoS policy, and (3) obtain the attributes of the associated
QoS policy using the policy’s getAttributes method.

The DQML-specific code for the DBE interpreter contains ∼160 C++ state-
ments that were developed specifically for DQML and DBE. The C++ develop-
ment effort for the DBE interpreter need only occur once. In particular, no QoS
policy configuration for DBE incurs this development overhead since the inter-
preter already exists. The development effort is included only for comparison with
manually implemented QoS policy configurations.

The interpreter code is fairly straightforward once developers understand how
to navigate the model in the BON2 framework and access the appropriate in-
formation. Although developers should be familiar with the Visitor pattern [4]
(since the BON2 framework uses it heavily), they only need define the appro-
priate methods for the automatically generated Visitor subclass. In general, the
DQML interpreter code specific to DBE gathers model information, creates the
QoS settings files, and outputs the settings into the QoS settings files.

The most challenging part of developing DQML’s DBE interpreter is navigat-
ing through the model’s QoS policy elements and related entities using the BON2
framework. Conversely, the most challenging aspects of handcrafting QoS policy
configurations are (1) maintaining a global view of the model to ensure compati-
bility and consistency and (2) remembering the number of and valid values for the
parameters of the various QoS policies. For non-trivial QoS policy configurations,
therefore, developing the DQML-specific C++ code for the interpreter is no more
complex than manually ensuring that the QoS settings in settings files are valid,
consistent, compatible, and correctly represent the designed configuration.

Analysis for the MMS scenario. As a conservative approximation, the
creation and use of the DBE interpreter for DQML has its break-even point for a
single QoS policy configuration when there are at least 160 QoS policy parameter
settings needed, which correlates to the 160 C++ statements for DQML’s DBE
interpreter. As shown in Figure 11, using the results for QoS parameters in Tables 5
and 6 for data readers and data writers, the break-even point equates to ∼10 data
readers, ∼7 data writers, or some combination of data readers and data writers

Distributed QoS Modeling Language 15

where the QoS settings are greater than or equal to 160 (e.g., 5 data readers and
3 data writers = 160 QoS policy parameter settings).

From the analysis above—and using the minimal MMS scenario in Figure 1 of 7
data writers and 7 data readers—the total number of QoS parameters to consider
is 7 * 25 (for data writers) + 7 * 17 (for data readers) = 294. This number exceeds
the 160 lines of C++ code developed for the DBE interpreter and shows that the
minimal MMS scenario warrants the use of DQML and the creation and use of
the DBE interpreter. Using DQML for this scenario provides a 160 ÷ 294 = 54%
reduction in development effort as compared to manual methods.

Fig. 11. Metrics for Manual Configuration vs. DQML’s Interpreter

Generalized analysis. The break-even analysis above is relevant to gen-
erating a single QoS policy configuration. The analysis does not consider any
subsequent modifications to an existing configuration or development of new con-
figurations for DBE that would not require any modifications to interpreter code.
Changes made to a configuration also require that developers (1) maintain a global
view of the model to ensure compatibility and consistency and (2) remember the
number of, and valid values for, parameters of the various QoS policies being
modified. These challenges still exist when changing an already valid QoS policy
configuration.

Moreover, there may be thousands of data readers and writers in large-
scale DDS systems, e.g., shipboard computing or air-traffic management envi-
ronments [3]. Assuming 1,000 data readers and 1,000 data writers, the number of
QoS parameters to manage is 17 * 1000 + 25 * 1000 = 42,000. This number
does not include QoS parameter settings for other DDS entities such as publishers,
subscribers, and topics. For such large-scale DDS systems the development cost
of the DQML interpreter in terms of lines of code is amortized by more than 200
times (i.e., 42,000 / 160 = 262.5).

6 Related Work

This section compares our work on DQML with related R&D efforts.

16 Joe Hoffert et al.

DSMLs for configuring QoS. There are currently several DSMLs devel-
oped to model QoS requirements for distributed real-time embedded (DRE) sys-
tems. The Distributed QoS Modeling Environment (DQME) [6] is a modeling tool
that targets essential elements of dynamic QoS adaptation. DQME is a hybrid
of domain-specific modeling and run-time QoS adaption methods, with emphasis
on adapting QoS to changing conditions with limited system resources. DQME
focuses on QoS solution exploration of a running system by providing run-time
QoS adaptation strategies as modeling elements to be incorporated into an exist-
ing DSML. In contrast, DQML focuses on design-time generation of semantically
compatible QoS policy configurations and correct application-specific implemen-
tation artifacts for data-centric pub/sub middleware, such as DDS. In this way,
DQML ensures that data for a particular application using pub/sub technology
will be disseminated as intended.

The Options Configuration Modeling Language (OCML) [2] is a DSML that
aids developers in setting compatible component configuration options for the sys-
tem being developed whereas DQML models QoS policy configuration for data-
centric middleware that can be applicable across various endpoints such as pro-
cesses, objects, or components. OCML is a modeling language intended to be
domain-independent that captures complex DRE middleware and application con-
figuration information along with QoS requirements. It is part of the Component
Synthesis using Model Integrated Computing (CoSMIC) [10] tool chain. It cur-
rently supports configuration management only for distributed object computing
(DOC) architectures rather than data-centric publish-subscribe architectures such
as DDS. This is an important difference because the endpoints receiving data in
a system utilizing DDS do not specify details of the type and implementation
characteristics of the end points. For instance, these endpoints could be processes,
objects, or components. DQML models QoS policy configuration for data-centric
middleware that can be applicable across these various endpoints. Conversely,
OCML is focused to aid developers set component configuration options for the
system being developed.

Runtime monitoring. Real-time Innovations Inc. (www.rti.com) and Prism
Technologies (www.prismtechnologies.com) have developed DDS products along
with MDE tools that monitor and analyze the flow of data within a system us-
ing DDS. These tools help verify that a system is functioning as designed for a
particular QoS policy configuration and for a particular point of execution. Dis-
covering configuration problems at run-time is very late in the development cycle,
when problems are more expensive and obtrusive to fix. Moreover, these tools are
designed only for the vendor-specific DDS implementation.

In contrast, DQML allows QoS policy designers to create semantically compat-
ible QoS policies at design time. DQML can also use the QoS policy configuration
model to construct semantically compatible and syntactically correct implementa-
tion artifacts (e.g., source code, configuration files) that can be incorporated into
the system implementation without human intervention. Moreover, DQML is not
DDS implementation specific but is more generally applicable.

QoS Profiles. The Unified Modeling Language (UML) [17, 18] provides a
profile for modeling QoS properties and mechanisms [15]. The profile specifies
a notation for various QoS categories within UML such as throughput, latency,
security, and scalability. The profile does not, however, provide explicit support

www.rti.com
www.prismtechnologies.com

Distributed QoS Modeling Language 17

for all the QoS policies modeled in DQML although extensions to the profile can
be made to support arbitrary QoS policies. The profile also does not provide
automated enforcement of semantic compatibility between QoS properties as is
supported by DQML.

7 Concluding Remarks

DQML is a DSML we developed to address the challenges of (1) managing QoS
policy configuration variability, (2) developing semantically compatible configu-
rations, and (3) correctly transforming QoS policy configurations from design to
implementation. The following lessons learned summarize our experience using
DQML to model QoS policy configurations for DDS in the context of the MMS
mission.
• OCL presents a significant learning curve for typical application

developers. Many application developers who are accustomed to using a func-
tional or object-oriented language, such as Java, C, or C++, are not familiar with
rule-based constraint languages, such as OCL. Moreover, tool support for OCL
is often rudimentary, e.g., limited debugging support, which impedes productiv-
ity. In future work we plan to address enforcing constraints by evaluating other
constraint solving technologies, such as the Constraint Logic Programming Finite
Domain (CLP(FD)) solver [13].
• DSMLs should build upon pattern knowledge. A DSML can benefit

from the knowledge already documented in configuration patterns by incorporat-
ing these patterns into the DSML itself. This approach ensures that different types
of patterns provide semantic compatibility and are implemented correctly. We are
therefore enhancing DQML to support patterns and higher level services (e.g.,
security and fault tolerance [9]).
• Run-time feedback provides crucial system performance insight.

While DQML ensures valid QoS policy configurations, some system properties
(e.g., latency and CPU resource utilization) are best evaluated at run-time. Incor-
porating this type of dynamic information back into a QoS policy configuration
model helps increase overall development productivity and system robustness. We
are evaluating ways to incorporate runtime and emulation feedback [5] into DQML
to enhance QoS policy configuration development.

GME can be downloaded from www.isis.vanderbilt.edu/Projects/gme.
DQML is part of the CoSMIC tool chain and can be downloaded in GME’s XML
format from www.dre.vanderbilt.edu/~jhoffert/DQML/DQML.zip.

References

1. Akos Ledeczi et al. Composing Domain-Specific Design Environments. IEEE Com-
puter, pages 44–51, November 2001.

2. Arvind S. Krishna et al. Model-Driven Techniques for Evaluating the QoS of Mid-
dleware Configurations for DRE Systems. In Proceedings of the 11th Real-time Tech-
nology and Application Symposium (RTAS ’05), pages 180–189, San Francisco, CA,
March 2005. IEEE.

www.isis.vanderbilt.edu/Projects/gme
www.dre.vanderbilt.edu/~jhoffert/DQML/DQML.zip

18 Joe Hoffert et al.

3. Douglas C. Schmidt et al. Addressing the Challenges of Tactical Information Man-
agement in Net-Centric Systems with DDS. CrossTalk - The Journal of Defense
Software Engineering, March 2008.

4. Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

5. James H. Hill et al. Applying System Execution Modeling Tools to Evaluate En-
terprise Distributed Real-time and Embedded System QoS. In Proceedings of the
12th International Conference on Embedded and Real-Time Computing Systems and
Applications, Sydney, Australia, August 2006.

6. Jianming Ye et al. A Model-Based Approach to Designing QoS Adaptive Applica-
tions. In Proceedings of the 25th IEEE International Real-Time Systems Symposium,
pages 221–230, Washington, DC, USA, 2004. IEEE Computer Society.

7. Joe Hoffert et al. A QoS Policy Configuration Modeling Language for Pub-
lish/Subscribe Middleware Platforms. In Proceedings of International Conference
on Distributed Event-Based Systems (DEBS), Toronto, Canada, June 2007.

8. Ming Xiong et al. Evaluating Technologies for Tactical Information Management in
Net-Centric Systems. In Proceedings of the Defense Transformation and Net-Centric
Systems conference, Orlando, Florida, April 2007.

9. Sumant Tambe et al. MoPED: Model-based Provisioning Engine for Dependability,
Jun 2008. Submitted to 46th International Conference on Objects, Models, Compo-
nents, Patterns (TOOLS 2008).

10. Tao Lu et al. CoSMIC: An MDA Tool suite for Application Deployment and Config-
uration. In Proceedings of the OOPSLA 2003 Workshop on Generative Techniques
in the Context of Model Driven Architecture, Anaheim, CA, October 2003. ACM.

11. Yi Huang and Dennis Gannon. A comparative study of web services-based event
notification specifications. Proceedings of the International Conference on Parallel
Processing Workshops, 0:7–14, 2006.

12. Gordon Hunt. DDS Use Cases: Effective Application of DDS Patterns and QoS.
In OMG’s Workshop on Distributed Object Computing for Real-time and Embedded
Systems, Washington, D.C., July 2006. Object Management Group.

13. Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. Journal
of Logic Programming, 19/20:503–581, 1994.

14. Object Management Group. Event Service Specification Version 1.1, OMG Docu-
ment formal/01-03-01 edition, March 2001.

15. Object Management Group. UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms, v1.0, OMG Document formal/06-05-02
edition, May 2006.

16. Object Management Group. Data Distribution Service for Real-time Systems Spec-
ification, 1.2 edition, January 2007.

17. Object Management Group. Unified Modeling Language Infrastructure, v2.1.2, OMG
Document formal/2007-11-04 edition, November 2007.

18. Object Management Group. Unified Modeling Language Superstructure, v2.1.2,
OMG Document formal/2007-11-02 edition, November 2007.

19. Organization for the Advancement of Structured Information Standards. Web
Services Brokered Notification Version 1.3, OASIS Document wsn-ws brokered-
notification-1.3-spec-os edition, October 2006.

20. Surjalal Sharma and Steven Curtis. Magnetospheric Multiscale Mission. Springer
Verlag, 2005.

21. SUN. Java Messaging Service Specification. java.sun.com/products/jms/, 2002.
22. Sasu Tarkoma and Kimmo Raatikainen. State of the Art Review of Distributed

Event Systems. Technical Report C0-04, University of Helsinki, 2006.
23. Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your

Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

java.sun.com/products/jms/

	Distributed QoS Modeling Language
	Joe Hoffert et al.
	Introduction
	Motivating Example: NASA's Magnetospheric Multiscale Mission
	Analyzing QoS Policy Configuration Challenges and Solutions
	Overview of the OMG Data Distribution Service (DDS)
	DDS QoS Policy Configuration: Challenges and DSML-based Solutions
	Challenge 1: Managing QoS Policy Configuration Variability.
	Challenge 2: Ensuring QoS compatibility.
	Challenge 3: Ensuring QoS consistency.
	Challenge 4: Ensuring Correct QoS transformation.

	The Distributed QoS Modeling Language (DQML)
	Structure of the DQML Metamodel
	Functionality of DQML

	Productivity Analysis of DQML for the DDS Benchmarking Environment
	The DQML DBE Interpreter
	Productivity Analysis

	Related Work
	Concluding Remarks
	References

