
Composing and Deploying Grid Middleware
Web Services using Model Driven Architecture

Aniruddha Gokhale1 and Balachandran Natarajan1

Institute for Software Integrated Systems, Vanderbilt University,
PO Box 36, Peabody,
Nashville, TN 37221

{a.gokhale, b.natarajan}@vanderbilt.edu

Abstract. Rapid advances in networking, hardware, and middleware
technologies are facilitating the development and deployment of com-
plex grid applications, such as large-scale distributed collaborative scien-
tific simulation, analysis of experiments in elementary particle physics,
distributed mission training and virtual surgery for medical instruction.
These predominantly collaborative applications are characterized by their
very high demand for computing, storage and network bandwidth require-
ments. Grid applications require secure, controlled, reliable, and guaran-
teed access to different types of resources, such as network bandwidth,
computing power, and storage capabilities, available from multiple ser-
vice providers. Moreover, they demand multiple, simultaneous end-to-end
quality of service (QoS) properties, such as delay guarantees, jitter guar-
antees, security, scalability, reliability and availability guarantees, and
bandwidth and throughput guarantees, for their effective operation.
Existing grid infrastructure middleware, such as Globus, ICENI, and Le-
gion, offer simplified application programming interfaces (APIs) for de-
ploying grid applications. However, grid applications using these APIs
become tightly coupled to their respective middleware infrastructure cre-
ating an impediment to interoperability, portability, maintenance and ex-
tensibility. Moreover, existing grid infrastructure middleware offer only
the means and not the solutions for reserving and securely accessing re-
sources. Thus, the onus of actually reserving and provisioning these dif-
ferent resources while also ensuring end-to-end QoS still lies on the grid
applications. These low-level concerns increase the accidental complexi-
ties incurred developing complex grid applications.
A promising solution to remedy these problems is to use the Model-
Integrated Computing (MIC) paradigm to model the resource and QoS
requirements of grid applications and integrate it with grid component
middleware. MIC tools can perform feasibility analysis of the applica-
tion’s resource and QoS requirements and determine the right resource
provisioning strategies. The MIC tools can subsequently synthesize, as-
semble and deploy QoS-enabled grid middleware components configured
with the resource reservation and service provisioning strategies tailored
to the needs of the grid application, while also delivering end-to-end QoS.
Moreover, MIC tools can also be used to expose the deployed grid mid-
dleware as a Web service thereby decoupling grid applications from any
particular middleware API.

2

The paper provides three contributions to the study of a model-driven ap-
proach to assembling and deploying QoS-enabled grid middleware capable
of provisioning resources and delivering QoS end-to-end to grid applica-
tions. First, we describe our Grid component middleware called GriT,
which is based on the Object Management Group’s (OMG) CORBA Com-
ponent Model (CCM). Second, we explain how we are using the OMG
Model Driven Architecture (MDA), which is a standardization of the MIC
technology, to develop a tool called CoSMIC. CoSMIC is used to simplify
composition of semantically compatible components of GriT to provide
end-to-end QoS and resource guarantees to grid applications. Third, we
show how the CoSMIC tools expose the deployed GriT middleware as a
Web service that enables grid applications to use ubiquitous web proto-
cols, such as Session Initiation Protocol (SIP) to create, join, or leave
collaborative grid applications.

Keywords: Model-Integrated Computing, Model Driven Architectures, CORBA
Component Model, Grid Computing, QoS

1 Introduction

The term grid applications applies to a special class of distributed applications
that have very high computing and resource requirements, and are often col-
laborative in nature. Grid computing [1] is an emerging paradigm that seeks to
harness the power of the internet and the sophisticated resources spread across
it, such as super computers, storage devices, and others to support grid appli-
cations.

The grid computing paradigm envisages a distributed hardware infrastruc-
ture and a wide range of software infrastructure for services, programming mod-
els, tools, programming languages and methodologies capable of providing the
massive computational requirements (Petaflops) and massive storage capacities
(Petabytes) required by grid applications. Moreover, it is also expected to sup-
port high-fidelity, real-time collaboration between geographically distributed vir-
tual organizations (VOs) [2], that comprise researchers, scientists, other users,
and organizations.

For grid applications to operate effectively, however, they simultaneously
require:

– secure and controlled access to many different resources available from mul-
tiple resource and service providers, including networking resources (such as
bandwidth and buffers), operating system resources (such as threads, CPU
and kernel buffers), storage resources (such as high performance databases
and RAIDs), computing resources (such as supercomputers), display re-
sources capable of 3-D rendering, and many other specialized types of re-
sources, such as sensors, telescopes, oscilloscopes, and other electronic equip-
ment

3

– end-to-end multiple quality of service (QoS) properties, such as delay guar-
antees, jitter guarantees, security, scalability, high reliability and availability
guarantees, and bandwidth and throughput guarantees to grid applications.

The infrastructure middleware that hosts grid applications is called a Com-
putational Grid or simply a Grid [1]. Examples of grid infrastructure middleware
include Globus [3], Legion [4] and ICENI [5] among others. The Grid provides
dependable, consistent, pervasive and inexpensive access to high-end computa-
tional capabilities useful for distributed super-computing, on-demand computing,
high-throughput computing, data-intensive computing and collaborative comput-
ing.

Although existing grid infrastructure middleware seems suited to supporting
next-generation grid applications, however, developing distributed grid applica-
tions using these is fraught with the following challenges.

Challenge 1: Tight coupling with grid infrastructure middleware: Grid applica-
tions are developed using one of existing grid infrastructure middleware technolo-
gies, such as Globus, Legion, ICENI, and others making them tightly coupled to
the underlying middleware. However, with advances and sophistication in grid
middleware technologies, it is imperative for grid applications to avail of these ad-
vances. This in turn implies that grid applications be seamlessly portable across
different middleware without significantly affecting existing applications thereby
preserving investments. This proliferation of grid middleware choices has raised
the level of accidental complexity by increasing the amount of effort required to
interoperate and port applications between grid middleware technologies.

An effective approach to decouple grid applications from the underlying grid
middleware is to expose the grid middleware as a Web service [6]. Grid appli-
cations can then use standards-based ubiquitous web protocols such as http and
Session Initiation Protocol (SIP) to access the underlying grid middleware.

Challenge 2. Accidental complexities in integrating software systems. To reduce
lifecycle costs and time-to-market, application developers are attempting to as-
semble and deploy distributed grid applications by selecting the right set of
compatible grid middleware components, which in itself is a daunting task. The
problem is further exacerbated by the existence of myriad strategies for con-
figuring and deploying the underlying component middleware to leverage the
environment advantages. Moreover, integrating applications using multiple mid-
dleware technologies demands multiple skill sets which makes the task even more
complicated. Application developers therefore spend non-trivial amounts of time
debugging problems associated with the selection of incompatible strategies and
components. What is needed is an integrated set of processes and tools that can
(1) select and validate a suitable configuration of middleware components and
(2) generate optimized Web service configurations automatically.

Challenge 3: Satisfying multiple quality of service requirements simultaneously:
As noted earlier, grid applications demand varying degrees and forms of QoS

4

support from their grid middleware. For example, collaborative scientific appli-
cations involving geographically dispersed scientists, engineers, and physicists
working on real-time experiments and data require the infrastructure to be ef-
ficient, predictable, scalable, secure, and fault tolerant. Owing to the complex
nature of these QoS requirements, it is not feasible for a single grid infras-
tructure middleware to provide an end-to-end solution that addresses all these
challenges. Instead, highly configurable, flexible, and optimized higher-level, grid
middleware components based on standards, such as CORBA Component Model
(CCM) [7], must be used to assemble and deploy middleware tailored to the needs
of the grid application.

Challenge 4: Lack of well-defined patterns for resource reservation: As mentioned
earlier, grid applications require simultaneous access to several different types of
resources available from multiple resource and service providers that own them.
These service providers include internet service providers (ISPs), storage service
providers (SSPs), content service providers (CSPs), and others. For example, a
distributed virtual surgery application involving geographically dispersed doc-
tors, radiologists, medical professionals, and medical students will require high
bandwidth for collaboration, large storage databases to hold patient records and
radiology images, expensive display devices for precise 3-D modeling and render-
ing of images, virtual reality equipment for simulating surgeries, and telephony
equipment to maintain multi-leg call sessions.

Applications that require these resources must maintain Service Level Agree-
ments (SLAs) with each individual service provider that provide the resources
and services. Moreover, today’s grid applications must authenticate themselves
with each service provider everytime they access resources owned by the provider.

Conventional grid infrastructure middleware provide only the means to se-
curely access the resources from different service provider. However, the respon-
sibility of reserving and accessing the resources is still the responsibility of the
grid applications. A possible solution to address this problem is for the grid
middleware to provide a set of generic resource reservation strategies that grid
applications can use. However, such a solution fails to serve the needs of all
grid applications, each of whom might have differing end-to-end resource and
QoS needs. What is therefore needed is an ability to compose patterns-based
strategies for multiple resource reservations while assuring the end-to-end QoS
requirements of the grid aplications. Moreover, these strategies should be de-
ployed within the grid middleware and made available to the grid applications
as a Web service.

Challenge 5: Provisioning and managing resources is hard: As mentioned in chal-
lenge 4, grid applications must make reservations for several different resources
while ensuring that the end-to-end QoS requirements are met. Even if this prob-
lem is resolved by deploying custom resource reservation strategies within the
grid middleware as outlined above, provisioning and managing multiple resources
from multiple providers is a daunting task that existing grid infrastructure mid-
dleware currently do not handle and leave it to the grid application.

5

What is required is an ability to model the resource and QoS requirements
of grid applications using Unified Modeling Language (UML) [8] modeling tools
or Statecharts [9]. Model analysis tools can be used to determine if provisioning
such a system is feasible or not. If it is, then a separate set of tools can synthesize
the appropriate resource provisioning and management strategies composed from
a library of higher-level QoS-enabled grid middleware components.

A promising way to address the challenges developing grid applications described
above is to use Model-Integrated Computing technologies [10]. Understanding
how to integrate Model-integrated Computing (MIC) and grid component mid-
dleware is essential to resolve the configuration, management, and deployment
challenges of deploying QoS-enabled grid middleware as Web services. This pa-
per provides the following three contributions toward the successful integration
of Model-Integrated Computing and grid component middleware that is essential
to develop QoS-enabled Web services to address the challenges presented above:

– We illustrate how the Model-Integrated Computing paradigm can be applied
to simplify the development of large-scale grid applications that integrate
components of our QoS-enabled reusable component middleware, called Grid
TAO (GriT) [11].

– We discuss how emerging standards, such as the Object Management Group
(OMG)’s Model Driven Architecture (MDA) [12] and the CORBA Compo-
nent Model (CCM) [7] can be used to provide a standards-based approach
to assemble and deploy grid middleware Web services.

– We describe how QoS-enabled component middleware enables modeling and
synthesis tools to rapidly develop, assemble, and deploy flexible Web services
that support heterogeneity, yet can be tailored readily to meet the needs of
grid applications with multiple simultaneous QoS requirements.

The rest of the paper is organized as follows: Section 2 presents an overview
of the MIC paradigm and MDA, and describes our MDA tool, called CoSMIC;
Section 3 explains the GriT component middleware architecture; Section 4 ex-
plains how the CoSMIC tools is used to compose, assemble, and deploy GriT
middleware components as a Web service that is tailored to the needs of grid
applications; Section 5 describes related research; and finally Section 6 provides
concluding remarks.

2 Model Integrated Computing and Component
Middleware Synthesis: The Key to Developing Next
Generation Grid Applications

Model Integrated Computing (MIC) [10] is a paradigm for expressing application
functionality and QoS requirements at higher levels of abstraction than is possi-
ble using third-generation programming languages, such as Visual Basic, Java,
C++, or C#. In the context of grid applications, MIC tools can be applied to

6

1. Analyze different—but interdependent—characteristics of system behav-
ior e.g. resource requirements, such as network bandwidth, CPU processing
speed, and storage capacity, and QoS requirements, such as scalability, pre-
dictability, safety, and security. Tool-specific model interpreters translate the
information specified by models into the input format expected by analysis
tools. These tools can check whether the requested behavior and properties
are feasible given the constraints.

2. Synthesize platform-specific code that is customized for specific grid mid-
dleware and grid application properties, such as end-to-end timing deadlines,
throughput requirements of simulations, and authentication and authoriza-
tion strategies modeled at a higher level of abstraction.

The Object Management Group (OMG) has recently adopted the Model
Driven Architecture (MDA) [12] to standardize the integration of MIC paradigm
with component middleware technologies and web services. This section provides
an overview of the MIC and MDA technologies. We then describe a tool called
CoSMIC [13] we are developing to model grid application resource and QoS
requirements.

2.1 Overview of Model-Integrated Computing

Model-Integrated Computing (MIC) [10] is a development paradigm that ap-
plies domain-specific modeling languages systematically to engineer computing
systems ranging from small-scale real-time embedded systems to large-scale dis-
tributed enterprise and grid applications. MIC provides rich, domain-specific
modeling environments, including model analysis and model-based program syn-
thesis tools [14]. In the MIC paradigm, application developers model an inte-
grated, end-to-end view of the entire application, including the interdependen-
cies of its components. Rather than focusing on a single, custom application,
therefore, MIC models capture the essence of a class of applications. MIC also
allows the modeling languages and environments themselves to be modeled by
so-called meta-models [15], which help to synthesize domain-specific modeling
languages that can capture the nuances of domains they are designed to model.

When implemented properly, MIC technologies help to:

– Free application developers from dependencies on particular software APIs,
which ensures that the models can be used for a long time, even as existing
software APIs become obsolete and replaced by newer ones.

– Provide correctness proofs for various algorithms by analyzing the models
automatically and offering refinements to satisfy various constraints.

– Synthesize code that is highly dependable and robust since the tools can be
built using provably correct technologies.

– Rapidly prototype new concepts and applications that can be modeled quickly
using this paradigm, compared to the effort required to prototype them man-
ually.

– Save organizations significant amounts of time and effort, while also reducing
application time-to-market.

7

Popular examples of MIC tools being used today include the Generic Mod-
eling Environment (GME) [14] and Ptolemy [16] (which are used primarily in
the real-time and embedded domain) and UML/XML tools based on the OMG
Model Driven Architecture (MDA) [12] (used primarily in the enterprise appli-
cation domain thus far).

As shown in Figure 1, MIC uses a set of tools to

– Analyze the interdependent features of the system captured in a model and
– Determine the feasibility of supporting different non-functional system as-

pects, such as QoS requirements, in the context of the specified constraints.

Integrated
Model

Model
Interpreter &

Code
Synthesizer

System
Constraints

Executable
specifications

Platform-
specific
Code

Generator

Integrate &
Generate

Synthesize
Application

Code

Fig. 1. The Model-Integrated Computing Process

Another set of tools then translates models into executable specifications that
capture the platform behavior, constraints, and interactions with the environ-
ment. These executable specifications can in turn be used to synthesize applica-
tion software.

2.2 Overview of the OMG Model Driven Architecture

The OMG MDA [12] defines standard ways to address many of the challenges
facing complex applications, such as the grid applications, outlined in Section 1.
The MDA builds upon years of research on model-integrated computing [10,
9, 17] to provide standard modeling notations based on the Unified Modeling
Language (UML) [8]. Figure 2 illustrates the structure of the MDA.

The MDA defines platform-independent models (PIMs) and platform-specific
models (PSMs) that streamline platform integration issues and protect invest-
ments against the uncertainty of changing platform technology. These two levels
of models can be differentiated as follows:

8

Fig. 2. Overview of the OMG Model Driven Architecture (Copyright OMG, reproduced
by permission)

– The PIMs describe at a high-level how applications will be structured and in-
tegrated, without concern for the middleware/OS platforms or programming
languages, on which they will be deployed. PIMs provide a formal definition
of an application’s functionality, as well as a representation of the application
as a computation-independent business model, grid experiment model or a
military strategy, also referred to as a Domain Model. For example, resource
and QoS requirements of grid applications can be modeled generically using
modeling tools based on UML.

– The PSMs are so-called constrained formal models since they express platform-
specific details. The PIM models are mapped into PSMs via translators. For
example, the generic operation that is specified in the PIM could be mapped
and refined to the domain-specific operation, such as limits on response time
accessing a resource, in the underlying Real-time CORBA platform.

Both PIM and PSM descriptions of applications are formal specifications built
using modeling standards, such as UML, which can be used to model applica-
tion functionality and system interactions. The MDA also defines a platform-
independent meta-modeling language that allows platform-specific models to be
modeled at an even higher level of abstraction.

2.3 Component Synthesis with Model Integrated Computing
(CoSMIC)

Figure 3 illustrates how we are applying the MIC technology to build a MDA-
based tool called CoSMIC (which stands for Component Synthesis with Model

9

Integrated Computing) suitable for modeling resource and QoS requirements of
grid applications. The CoSMIC tool composes grid middleware tailored to grid
application requirements from functional building blocks of the Grid TAO (GriT)
middleware, which is explained in Section 3. Moreover, CoSMIC tools expose the
deployed grid middelware as a web service.

Integrated
Model

CoSMIC
Model Interpreter &
Code Synthesizer

System
Constraints

Executable
specifications

GriT & CIAO Component
Repository

CoSMIC
Component

Assembly/Code
Generator

GriT & CIAO
Plugins

GriT & CIAO
CCM

 Assembly

Integrate &
Generate

Select
Components

synthesize &
assemble

GriT CCM
Application

Server

Deploy
CIAO CCM

Package
Deployment

Tools

Fig. 3. The CoSMIC MDA Tool

In the CoSMIC approach, higher-level modeling languages, such as UML [8]
are used to model grid application QoS and resource requirements. CoSMIC
analysis tools then determine the feasibility of the requirements. Once a fea-
sibility analysis is complete, CoSMIC translator tools are used to synthesize
pattern-oriented, semantically compatible grid middleware code composed from
a set of reusable, QoS-enabled GriT components. The decision on which patterns
make most sense are made by the CoSMIC synthesis tools based on the input
models and constraints.

10

3 The Grid TAO (GriT) Middleware Architecture

This section describes our next generation Grid component middleware called
Grid TAO (GriT) [11]. GriT enhances the Component Integrated ACE ORB
(CIAO) [18, 13] middleware, which is our CCM [7] implementation of the The
ACE ORB (TAO) [19, 20]. TAO is an open-source, high-performance, highly
configurable CORBA ORB that implements key patterns [21] to meet the de-
manding QoS requirements of distributed systems.

Figure 4 illustrates the components of the GriT middleware architecture.
Below we explain each component of the architecture in detail.

Cloud

Data

IBM Compatible
Cell phone

Hand held computer
Laptop computer

Raid drive

Oscilloscope
Servers

Mainframe

Grid Service Provider
SIP using Web services or CORBA/Parlay or JAIN API

Network

Meta Request Broker

Comp
Home

RT POA

ORB QoS
Interfaces

R
ef

le
ct

Collective

Resource

Connectivity

Fabric

C
O

R
B

A

C
om

p

container
Policies

Adaptor

MRBpo Grid
Stack

Comp
Home

RT POA

ORB QoS
Interfaces

R
ef

le
ct

Collective

Resource

Connectivity

Fabric

C
O

R
B

A

C
om

p

container
Policies

Adaptor

MRBpo Grid
Stack

Fig. 4. Grid TAO (GriT) Middleware Architecture

Grid Service Provider (GSP) The GriT middleware comprises the notion of a
Grid Service Provider (GSP) similar to other service providers such as ISPs,
SSPs, CSPs and other providers providing specialized services such as access
to advanced displays, virtual reality equipment, telescopes, oscilloscopes, etc.
A fundamental difference between a GSP and other service providers is that a
GSP is an abstract notion. The GSP does not actually own resources. The goal
of the GSP is to provide a standard, unified view of resources to grid applications
thereby eliminating the need for grid applications to require the knowledge and
location of individual resource service providers.

Moreover, the GSP provides a single sign-on capability for grid applications,
which eliminates the need for multiple SLAs and authentication mechanisms
with multiple service providers. Applications use the GSP to delegate the re-
sponsibility of authenticating themselves with the individual specialized service
providers. In addition, the GSP offers its user interface as a standard web ser-

11

vice, thereby enabling grid clients to use techniques such as SIP to create, join, or
leave collaborative grid applications. Figure 5 illustrates the concept of a GSP.

comp
1

comp
N

Resource Adaptor

MRB

Web
server

WSDL

Client

PDA

1 2 3

4 5 6

7 8 9

* 8 #

Workstation

Laptop computer

Grid Service Provider

SIP
sessions

Cloud

Data
Raid drive

Oscilloscope
Servers

Mainframe Network

Fig. 5. Overview of Grid Service Provider (GSP)

Meta-Resource Broker Architecture At the heart of the GSP is a Meta Resource
Broker (MRB), which is an enhanced the Common Object Request Broker Archi-
tecture (CORBA) Object Request Broker (ORB), that encapsulates resources
from multiple providers as CORBA objects. The MRB exemplifies the actual
GriT middleware. The MRB provides applications with standards-based, uni-
form interfaces and mechanisms to access and manage the underlying resources,
and to create or join new or existing collaborative sessions, respectively.

The MRB is based on the CCM, where components represent the policies
to manage the virtual resources . The resources are virtual since the GSP does
not actually own any resources, but maintains only abstractions of them. These
components therefore serve as a resource proxy of the actual resources thereby
providing a uniform view to client applications. The internal structure of the
MRB is illustrated in Figure 6.

The MRB mediates requests for different services and resources on behalf of
grid applications and delivers them with the resources and guaranteed quality of
service (QoS). This is accomplished by the MRB delegating the task of looking
up individual resources required by the grid applications to MRB part objects.
Figure 7 illustrates the use of part objects as defined in the Data Parallel CORBA
(DP-CORBA) [22] specification.

When a grid application makes a reservation request to the GSP for all the
different resources it needs and the QoS guarantees, this request is handed down
by the GSP to its underlying MRB parallel object. The MRB parallel object

12

Home

Parallel
RT POA

ORB QoS
Interfaces

R
ef

le
ct

co
m

p

container

Policies

Adaptor

Meta Resource Broker

PROPERTY
MANAGER

GROUP
MANAGER

GENERIC FACTORY

PARALLEL OBJECT
MANAGER

&
REPLICATION MANAGER

TAO PARALLEL RT & FT ORB CORE

Fig. 6. Meta-Resource Broker Internals

will in turn partition the request using the techniques described in the DP-
CORBA specification and the Data Reorganization Effort (www.data-re.org),
such as block distribution or cyclic distribution. The partitioned request is then
handed over to the MRB part objects. Each MRB part object is responsible
to discover the appropriate resources that can meet the application’s QoS re-
quirements. This discovery process is performed in parallel thereby providing a
highly scalable and predictable solution to determine the feasibility of resources
and service provisioning.

The mechanism of resource discovery outlined above is akin to a nested trans-
action. If any one of the child transaction i.e., resource discovery undertaken by a
part object, is unsuccessful, then the parent transaction i.e., the request initiated
by the MRB parallel object, is rolled back.

If the request for resources is feasible, then the result of the MRB part ob-
ject resource discovery operation is a collection of resources required by the
application that provide it with the QoS guarantees. This collection of virtual
resources is subsequently managed by the MRB as another parallel object. It
is then upto the grid application to efficiently utilize these resources, although
GriT will manage them on behalf of the grid application.

Figure 7 illustrates how the MRB reserves and manages different types of
virtual resources, which are high-level abstractions of resources, such as net-
work bandwidth, databases, or supercomputers, belonging to different service
providers.

[11] provides detail information on the GriT middleware architecture.

13

Home

RT POA

ORB QoS
Interfaces

R
ef

le
ct

Collective

Resource

Connectivity

Fabric

co
m

p
 container

Policies

Adaptor

MRBpart object

TAO ORB

Grid
Stack

Home

RT POA

ORB QoS
Interfaces

R
ef

le
ct

Collective

Resource

Connectivity

Fabric

co
m

p
 container

Policies

Adaptor

MRBpart object

TAO ORB

Grid
Stack

Home

RT POA

ORB QoS
Interfaces

R
ef

le
ct

Collective

Resource

Connectivity

Fabric

co
m

p
 container

Policies

Adaptor

MRBpart object

TAO ORB

Grid
Stack

Home

RT POA

ORB QoS
Interfaces

R
ef

le
ct

Collective

Resource

Connectivity

Fabric

co
m

p

container
Policies

Adaptor

MRBpart object

TAO ORB

Grid
Stack

Network

Meta Resource Broker

Data

Raid drive

Oscilloscope

Servers

Mainframe

Fig. 7. Meta-Resource Broker Architecture

4 Resolving Grid Application Challenges Using Model
Integrated Computing

This section describes how the MDA-based CoSMIC tool can be used to develop,
assemble and deploy GriT middleware components as a web service, which is
tailored to the needs of complex grid applications. In particular, we show how
the application functionality specified as models can be used to synthesize new
components that implement the web service, as well as to assemble them with
semantically compatible reusable components provided by the GriT middleware.

First we describe how we provision the middleware components with appro-
priate strategies to reserve and manage the resources. Next we describe how
these deployed components are made available as a web service so that grid
applications can use it via standard web protocols such as http and SIP.

4.1 Model Driven Grid Middleware Deployment

Context. Today’s grid applications are built using conventional grid infrastruc-
ture middleware, such as Globus or Legion. These middleware provide the APIs
required to reserve the resources and securely access them.

Problem. Conventional grid infrastructure middleware make it hard to develop
next-generation grid applications for the following reasons outlined in Section 1.

1. tight coupling with grid infrastruture middleware
2. accidental complexities in integrating software systems

14

GSP Application Server

Containers Containers

MRB resource
Component

Web service
Component

Deployment
&

Configuration
Mechanism

GriT Middleware Framework

Deployment
&

Configuration
Metadata

GriT
Component
Repository

Compose Deploy

Middleware
Configuration Metadata 5

4

3

1

2

3

4

5

Configuring and deploying an application services end-to-end

Synthesizing application component implementations

Configuring application component containers

Composing components into application server components

Synthesizing middleware-specific configurations

Mgmt
Policies

6

6 Synthesizing middleware implementations

Client

Middleware Bus

Central
Data
Store

1

System Development

Supercomputer
Centers

Collaboration
station

Storage
Service
Provider
Center

Component
Assembly

Content
Service
Provider
Center

2

GSP
Application

Server

WWW/
UDDI

Fig. 8. Composing Grid Middleware from Models

3. satisfying multiple quality of service requirements simultaneously
4. lack of well-defined patterns for resource reservation
5. provisioning and managing resources is hard

In order to support next-generation grid applications effectively, there is a need
to address these challenges. Our approach of using model integrated computing
tools to assemble and deploy grid middleware as web services addresses these
challenges.

Solution. Our solution involves using the MDA-based tool, called CoSMIC, to
compose resource provisioning and QoS management patterns from building
blocks of the GriT component middleware and to deploy them as web services.
Our approach is illustrated in Figure 8.

15

Figure 8 illustrates six points at which Model-Integrated Computing, es-
poused by the CoSMIC tool, can be integrated into the grid middleware archi-
tecture, called GriT. We describe each of these six integration points below.

1. Configuring and deploying application services end-to-end: Assembling and
deploying collaborative grid applications with stringent end-to-end QoS and re-
source guarantees is a daunting task. We are using CoSMIC to configure the
right set of services to guarantee the QoS and resource requirement.

2. Composing components into application servers: Integration at this level will
help compose the application server, which is responsible for hosting the appli-
cation. We are using CoSMIC tools to compose grid application servers out of
semantically compatible standard middleware components and possibly legacy
components available as part of a component library.

3. Configuring application component containers: Application components use
containers to interact with the application servers in which they are configured.
Containers provide many policies that grid applications can use to fine-tune un-
derlying component middleware behavior. Since grid applications consist of many
interacting components, their containers must be configured with consistent and
compatible policies.

Due to the number of policies and the intricate interactions among them,
it is tedious and error-prone for an application to manually specify and main-
tain its component policies and semantic compatibility with policies of other
components. We are using CoSMIC tools to automate the validation and con-
figuration of these container policies by allowing system designers to specify the
required system properties as a set of models. Another set of CoSMIC tools can
then analyze the models and generate the necessary policies and ensure their
consistency.

4. Synthesizing application component implementations: We are using modeling
languages and tools to increase the automation in generating and integrating grid
application components. The goal is to bridge the gap between specification and
implementation via sophisticated aspect weavers and generator tools that can
synthesize platform-specific code customized for specific application properties,
such as resilience to denial of service attacks, robust behaviour under heavy load,
and good performance for normal load.

5. Synthesizing middleware-specific configurations: In this step, the CoSMIC
tools generate the deployment descriptors for the grid middleware. The deploy-
ment descriptors take into account the application’s QoS and resource require-
ments along with the constraints.

6. Synthesizing middleware implementations: The CoSMIC tools can also be
used to generate custom grid middleware implementations. This is a more ag-
gressive use of modeling and synthesis than integration point 5 described above
since it affects middleware implementations, rather than their configurations.

16

4.2 Model Driven Grid Web Service Deployment

Context. Both wireless and wireline client applications must be able to partici-
pate in collaborative grid applications. This requires thin client applications that
can use the grid middleware interfaces to share resources.

Problem. As mentioned earlier, programming directly at the grid framework-
specific protocols is too low-level and hence tedious and error-prone. Addition-
ally, it ties the application to the underlying middleware API making portability
infeasible. Moreover, for small footprint wireless clients and other embedded de-
vices to use the grid framework, standards-based protocols and interfaces must
be used.

Solution. The services offered by the GSP will be hosted as a web service as
shown in Figure 5. This approach is similar to the ideas proposed in Open Grid
Services Architecture (OGSA) [6]. The CoSMIC tools can be used to synthe-
size a Web Service Description Language (WSDL) description of the GSP’s ser-
vices. Moreover, CoSMIC tools can also help deploy these services and register
it with naming services, such as Uniform Description, Discovery, and Integra-
tion (UDDI) or a CORBA Trader. Client applications can then access the GSP
services via the web.

This web services approach provides grid application developers tremendous
benefits when establishing SIP sessions [23]. SIP is designed to enable two or
more participants to establish a session consisting of multiple media streams in-
cluding audio, video, and other internet-based communication mechanisms such
as distributed gaming, shared applications, whiteboards, etc. Participants in a
collaborative application will use the GSP’s interfaces and services to set up
SIP-enabled collaborative sessions.

5 Related Work

Our previous work in collaboration with researchers at University of California,
Irvine, on a high-performance, real-time CORBA ORB called the the ADAP-
TIVE Communication Environment (ACE) ORB (TAO) [24] has examined many
dimensions of ORB middleware design, including static operation scheduling,
event processing, I/O subsystem and pluggable protocol integration, both syn-
chronous and asynchronous ORB Core architectures, IDL compiler features and
optimizations, systematic benchmarking of multiple ORBs, patterns for ORB
extensibility, high-performance fault-tolerant CORBA, and ORB performance.

The Component Integrated ACE ORB (CIAO) [18, 13] is our CCM-enabled
version of the TAO ORB. The GriT middleware described in this paper enhanced
CIAO by providing grid computing-specific components.

Grid computing is an emerging powerful paradigm to build large-scale, dis-
tributed, collaborative applications that require secure, controlled access to dif-
ferent resources from multiple providers. The GriT middleware is a distribution

17

middleware that complements and enhances the low-level grid infrastructure
middleware such as Globus [3], Legion [4], and ICENI [5].

Our research is exploring the use of Model-Intergrated Computing (MIC) [10,
25, 17] to model and synthesize Grid middleware code for provisioning Grid
applications.

Popular examples of MIC technology being used today include Generic Mod-
eling Language (GME) [14] and Ptolemy [16] (which are used primarily in the
real-time and embedded domain) and MDA [12] based on UML [8] and Exten-
sible Markup Language (XML) [26] (which is used primarily in the business
domain).

6 Conclusions

The key to the success of developing next generation grid applications lies in the
integration of Model Integrated Computing and component middleware. This
paper describes a MIC tool we are developing, called CoSMIC. We show how
CoSMIC can be used to assemble and deploy grid middleware from fundamental
building blocks provided by the GriT middleware. Moreover, we show how the
same synthesis process can also be used to expose the grid middleware as a Web
service, thereby decoupling grid applications from any particular middleware
API.

References

1. Ian Foster and Carl Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Harper Collins, 1999.

2. Ian Foster, Carl Kesselman, and Steven Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” International Journal of
Supercomputer Applications, vol. 15, no. 3, pp. 205–220, Apr. 2001.

3. I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,”
International Journal of Supercomputer Applications, vol. 11, no. 2, pp. 115–128,
1997.

4. Andrew S. Grimshaw and Wm. A. Wulf et al., “The legion vision of a worldwide
virtual computer,” Communications of the ACM, vol. 40, no. 1, pp. 39–45, Jan.
1997.

5. N. Furmento, A. Mayer, S. Gough, S. Newhouse, T. Field, and J. Darlington,
“An integrated grid environment for component applications,” in Proceedings of
the Second International Workshop on Grid Computing- Grid 2001, Denver 2001.
2001, Springer-Verlag LNCS.

6. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the grid: An
open grid services architecture for distributed systems integration,”
www.globus.org/research/papers/ogsa.pdf, Jan. 2002, DRAFT.

7. Object Management Group, CORBA 3.0 New Components Chapters, OMG TC
Document ptc/2001-11-03 edition, Nov. 2001.

8. Object Management Group, Unified Modeling Language (UML) v1.4, OMG
Document formal/2001-09-67 edition, Sept. 2001.

18

9. David Harel and Eran Gery, “Executable Object Modeling with Statecharts,”
IEEE Computer, vol. 30, no. 7, pp. 31–42, July 1997.

10. Janos Sztipanovits and Gabor Karsai, “Model-Integrated Computing,” IEEE
Computer, vol. 30, no. 4, pp. 110–112, Apr. 1997.

11. Aniruddha Gokhale and Balachandran Natarajan, “GriT: A CORBA Based Grid
Middleware Architecture,” in Proceedings of Hawaii International Conference on
System Sciences, Software Technology Track, Distributed Object and
Component-based Software Systems Minitrack, HICSS 2003, Honolulu, HW, Jan.
2003, HICSS.

12. Object Management Group, Model Driven Architecture (MDA), OMG Document
ormsc/2001-07-01 edition, July 2001.

13. Douglas C. Schmidt and Steve Vinoski, “Dynamic CORBA, Part 2: Dynamic
Any,” C/C++ Users Journal, Sept. 2002.

14. Akos Ledeczi, Arpad Bakay, Miklos Maroti, Peter Volgysei, Greg Nordstrom,
Jonathan Sprinkle, and Gabor Karsai, “Composing Domain-Specific Design
Environments,” IEEE Computer, pp. 44–51, November 2001.

15. Jonathan M. Sprinkle, Gabor Karsai, Akos Ledeczi, and Greg G. Nordstrom,
“The New Metamodeling Generation,” in IEEE Engineering of Computer Based
Systems, Washington, DC, Apr. 2001, IEEE.

16. J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework
for Simulating and Prototyping Heterogeneous Systems,” International Journal
of Computer Simulation, Special Issue on Simulation Software Development
Component Development Strategies, vol. 4, Apr. 1994.

17. Man Lin, “Synthesis of Control Software in a Layered Architecture from Hybrid
Automata,” in HSCC, 1999, pp. 152–164.

18. Aniruddha Gokhale, Douglas C. Schmidt, Balachandra Natarajan, and Nanbor
Wang, “Applying Model-Integrated Computing to Component Middleware and
Enterprise Applications,” The Communications of the ACM Special Issue on
Enterprise Components, Service and Business Rules, vol. 45, no. 10, Oct. 2002.

19. Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The Design and
Performance of Real-time Object Request Brokers,” Computer Communications,
vol. 21, no. 4, pp. 294–324, Apr. 1998.

20. Douglas C. Schmidt, Bala Natarajan, Aniruddha Gokhale, Nanbor Wang, and
Christopher Gill, “TAO: A Pattern-Oriented Object Request Broker for
Distributed Real-time and Embedded Systems,” IEEE Distributed Systems
Online, vol. 3, no. 2, Feb. 2002.

21. Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects, Volume 2, Wiley & Sons, New York, 2000.

22. Object Management Group, Data Parallel CORBA Specification, ptc/2001-11-09
edition, Nov. 2001.

23. Ubiquity Software Corporation, “White Paper: SIP and SOAP,”
www.sipforum.org/whitepapers/USC-SIPSOAP-WP2.pdf.

24. Institute for Software Integrated Systems, “The ACE ORB (TAO),”
www.dre.vanderbilt.edu/TAO/, Vanderbilt University.

25. David Harel and Eran Gery, “Executable Object Modeling with Statecharts,” in
Proceedings of the 18th International Conference on Software Engineering. 1996,
pp. 246–257, IEEE Computer Society Press.

26. “Extensible Markup Language (XML) 1.0 (Second Edition),”
www.w3c.org/XML, Oct. 2000.

