Poster: A Cloud-enabled Coordination Service for
Internet-scale OMG DDS Applications

Kyoungho An and Aniruddha Gokhale
Dept of EECS, Vanderbilt University
Nashville, TN 37212, USA
{kyoungho.an, a.gokhale}@vanderbilt.edu

ABSTRACT

The OMG Data Distribution Service (DDS), which is a stan-
dard specification for data-centric publish/subscribe com-
munications, has shown promise for use in internet of things
(IoT) applications because of its loosely coupled and scalable
nature, and support for multiple QoS properties, such as
reliable and real-time message delivery in dynamic environ-
ments. However, the current OMG DDS specification does
not define coordination and discovery services for DDS mes-
sage brokers, which are used in wide area network deploy-
ments of DDS. This paper describes preliminary research
on a cloud-enabled coordination service for DDS message
brokers, PubSubCoord, to overcome these limitations. Our
approach provides a novel solution that brings together (a)
ZooKeeper, which is used for the distributed coordination
logic between message brokers, (b) DDS Routing Service,
which is used to bridge DDS endpoints connected to dif-
ferent networks, and (c) BlueDove, which is used to pro-
vide a single-hop message delivery between brokers. Our
design can support publishers and subscribers that dynam-
ically join and leave their subnetworks.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

Keywords

Data Distribution Service, Cloud Computing, Publish/Sub-
scribe, Middleware, Discovery, Coordination

1. INTRODUCTION

Emerging paradigms, such as the internet of things (IoT),
connect machines and devices in a loosely couple manner
to form intelligent and large-scale systems. The publish/-
subscribe (pub/sub) communication paradigm is attractive
for these emerging domains since it provides a scalable and
decoupled data delivery mechanism between communication

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

DEBS’14, May 26-29, 2014, MUMBAL, India.

Copyright 2014 ACM 978-1-4503-2737-4/14/05 ...$15.00.
http://dx.doi.org/10.1145/2611286.2611323.

peers. However, these new systems need to be scalable, in-
teroperable, and dependable while operating in dynamic en-
vironments with entities that may be mobile. Specifically,
IoT applications require scalable pub/sub that satisfies a
number of quality of service (QoS) properties. The OMG
Data Distribution Service (DDS) [5] is a standard specifica-
tion defining a data-centric pub/sub middleware with many
QoS policies, which holds substantial promise for IoT appli-
cations.

Despite the many features of DDS, there are multiple chal-
lenges in using DDS for internet-scale applications. First,
DDS uses multicast as a default transport to discover end-
points (i.e., publishers and subscribers) in a system. If
endpoints are located in isolated networks not supporting
multicast, these endpoints cannot be discovered by other
peers. In addition, because of network firewalls and net-
work address translation (NAT), even if endpoints are dis-
covered, peers may not deliver messages to the destination
endpoints. Some DDS broker solutions [6] 2] exist to re-
solve these issues. Yet, for internet-scale DDS applications
where a number of heterogeneous devices and networks ex-
ist, a middleware solution to efficiently and scalably discover
and coordinate DDS brokers located in isolated networks re-
mains an unresolved issue.

To fill this gap, this paper presents preliminary ideas on
PubSubCoord, which is a cloud-based coordination service
for geographically dispersed DDS brokers to transparently
connect endpoints managed by different brokers to realize
internet-scale, pub/sub applications. Our solution extends a
pub/sub system architecture from the BlueDove system [4]
for scalability and low-latency by leveraging its single-hop
message delivery capability between edge brokers (brokers
adopting and managing endpoints in a network). The cloud-
based approach enables elasticity to the solution.

It is possible that a broker can directly communicate with
other brokers without an intermediate layer of brokers, but
in such a solution, each broker will need to manage connec-
tions to other brokers and deliver a number of messages as
well. To resolve this scalability issue, edge brokers can be
used as intermediate brokers for other brokers by construct-
ing an overlay network. However, if an edge broker fails, it
interrupts data delivery of other brokers because the failed
broker is used as an intermediate broker.

Our solution solves both scalability and reliability prob-
lems. The inter-edge broker data delivery is managed by a
routing broker (intermediate brokers connecting edge bro-
kers), which reduces the number of connections incident on
edge brokers and ensures that a failure of edge brokers does

not affect data delivery of other edge brokers. Our approach
can also reduce end-to-end latency due to the single-hop
data delivery between edge brokers compared to the overlay
network of connected edge brokers, which incurs multi-hop
data delivery.

In our approach, if a routing broker gets overloaded or
fails, the overall quality of service (latency or throughput)
provided through the routing broker can be degraded or pos-
sibly the service can become unavailable. To overcome this
problem, routing brokers are placed in cloud data centers,
clustered with others, which elect a leader among them-
selves. A leader of routing brokers is responsible for load
balancing, scaling, and fault-tolerance. If one of routing
brokers in a cluster fails, the leader assigns topics adopted
by the failed routing broker to avoid service cessation.

Our pub/sub system provides an automatic discovery mech-

anism between brokers without static configurations of lo-
cators (IP address and port) by exploiting ZooKeeper |[3],
which is a service for distributed process coordination. Bro-
kers connect to ZooKeeper servers as clients to store discov-
ery event information and notify other brokers if brokers are
matched by topics.

For mobile publishers and subscribers that are common in
IoT, the endpoints spawned in devices can be reassigned to
another edge broker as a range of a served network domain
possibly changes. For this scenario of endpoint mobility,
routing decisions of brokers need be made in a reliable and
timely manner. In our approach, notifications between bro-
kers can be done by utilizing ZooKeeper because of its ease,
scalability, and reliability in terms of data delivery and data
consistency.

The remainder of this paper is organized as follows: Sec-
tion [2| provides background information on the underlying
technologies; Section [3] describes the design and implemen-
tation of PubSubCoord; and Section [d] presents conclusions
and future work.

2. BACKGROUND

This section provides background information on the un-
derlying individual technologies we use in our solution.

2.1 ZooKeeper

ZooKeeper is a service for coordinating processes of dis-
tributed applications [3]. The ZooKeeper service consists
of an ensemble of servers that use replication to accomplish
high availability with strong consistency and high perfor-
mance. ZooKeeper provides a watch mechanism to provide
a notification service for clients when a specific data node
(ZooKeeper data object called znode containing its path and
data content) or children of a data node is created, updated,
or deleted. There are some useful coordination recipes us-
ing ZooKeeper often used in distributed applications such
as leader election, group membership, and sharing configu-
ration metadata.

Our solution, PubSubCoord, uses ZooKeeper for brokers
to discover each other and coordinate routing paths based
on events of endpoint discovery detected by edge brokers.
Moreover, it is utilized for group membership and leader
election in a cluster of routing brokers. The data model of
ZooKeeper is like a file system with a simple client API (only
read and write). The hierarchical namespace can be used for
group membership and in our solution it is used to manage
endpoints grouped by topics. Figureshows znode data tree

structure of PubSubCoord stored in ZooKeeper servers. The
root znode contains three znodes: topics, leader, broker.
The topics znode contains znodes for created topics and in-
volved endpoints. The leader znode is used to elect a leader
among routing brokers, and broker znode includes znodes
for routing brokers where locator information is stored for
automatic broker discovery.

]

‘ ltopics ’ ‘ /leader ’ ‘ /broker ’
‘/topic_A’ ‘/topic_BH /rb1 H b2 H /b3 ’
| |
‘ /pub H /sub ‘ /pub ’ ‘ /sub ’
| | /
[t | [| [| [wve | [0]

Figure 1: PubSubCoord znode Data Tree Structure

Brokers connect to the servers as clients and create/up-
date/delete znode and also receive notifications by setting
watches on interesting znode paths. ZooKeeper provides
different modes for znode: ephemeral and persistent. zn-
ode with ephemeral mode is automatically deleted when a
session of a client which creates the znode to ZooKeeper
servers is lost. We utilize this ephemeral mode to easily
manage events happened when brokers join or leave our sys-
tem. As ZooKeeper provides a quorum mode of servers to
achieve high availability, the coordination service provided
by ZooKeeper avoids single point of failure.

2.2 DDS Routing Service

DDS Routing Service is a service for integrating geograph-
ically dispersed DDS systems [6]. It integrates DDS appli-
cations across domains (DDS virtual networks), LANs, and
WANSs. Traditionally, DDS applications only communicate
with applications in the same domain in a LAN, but DDS
Routing Service enables DDS applications to send and re-
ceive data across domains in LANs as well as WANs without
any changes on applications. As DDS Routing Service ex-
ploits DDS entities for its implementation, it also supports
some benefits provided by DDS entities such as a rich set of
QoS policies and content-based filtering.

Our solution utilizes DDS Routing Service for brokers to
establish DDS data dissemination paths based on routing
decisions by coordination logics. As our system is deployed
in internet-scale WAN environments, we use TCP commu-
nication between brokers for reliable data delivery in geo-
graphically dispersed networks. DDS Routing Service sup-
ports IP and port translation as well as Transport Layer
Security (TLS) for security reasons in WANs. DDS Routing
Service can be administered remotely by sending commands
(add peers or add topic route) by DDS entities with a special
topic, so it is easy to set up routing paths in a programmable
way in our solution. Each broker in PubSubCoord sends
commands to Routing Service based on its coordination al-
gorithms and event notifications from ZooKeeper.

3. DESIGN OF PUBSUBCOORD

This section describes the design and implementation of
PubSubCoord.

3.1 PubSubCoord Architecture

Traditional pub/sub systems form a network with brokers,
to which endpoints can be directly connected, to realize a
scalable solution. However, it is challenging to maintain
routing states for brokers to deliver messages to matching
subscribers efficiently. Brokers can be used as intermediate
brokers for others, and if a broker fails, it halts not only
a service for endpoints connected to this broker but also a
service for endpoints connected to other brokers.

To overcome the limitations, PubSubCoord is structured
by harnessing a two-tier architecture like the BlueDove sys-
tem [4]. An entity called edge broker is directly connected
to endpoints in a LAN to behave as a bridge to other end-
points located in different LANs. Another entity called rout-
ing broker links to edge brokers to deliver data between edge
brokers according to assigned topics between geographically
dispersed endpoints. Applying this architecture reduces the
need for maintaining states for edge brokers to route mes-
sages for other brokers in the traditional system and a failed
broker does not affect other brokers in a system. Never-
theless, all data traffic goes through routing brokers, and
if routing brokers are overloaded or failed, it will impact
overall performance of a system.

For that reason, we locate routing brokers in cloud data
centers and elastically scale resources of routing brokers de-
pending on their loads. Also, routing brokers form a clus-
ter among themselves and elect a leader for fault-tolerance
and load balancing. When an endpoint is created with
a new topic, a leader selects a routing broker to assign
the topic considering loads of routing brokers in a cluster.
When a routing broker fails, an elected leader reassigns top-
ics adopted by the failed brokers to another routing broker
to keep providing a service. If a leader fails, routing brokers
elect a leader again.

Routing \ Routing
Broker Broker
\

\
Routing
Broker
2 «/ p3 P3
P,

P2 P2, P4

LAN LAN

P3 P3 Edge Edge
[©] Broker Broker
P3 "pa
© 8}

LAN /
Pl Edge
Broker
PZ

st P2
@ ® ®

Figure 2: PubSubCoord Architecture

Figure [2] shows an example applying the PubSubCoord
architecture. Pz{y} is a publisher identified with z inter-
ested in topic y. As there are no other endpoints interested
in topic A other than P! and S1, they only communicate in
a LAN with UDP multicast as a default transport for scal-
ability and low latency. P2, P4, and S2 are interested in
topic B and these are located in different networks. They

communicate with each other over a routing broker respon-
sible for topic B. A network transport between brokers is
configurable, and TCP unicast is used as default transport
because transmissions occur in WANSs or a cloud data center
which may cause high rate of packet loss.

3.2 Implementation of PubSubCoord

Algorithms [1] and [2] describe the pseudo code for event
callback functions in edge brokers and routing brokers, re-
spectively. Callback functions are invoked by either DDS
built-in DataReader for endpoint discovery or watch notifi-
cations by ZooKeeper.

Algorithm 1 Edge Broker Callback Functions

function ENDPOINT CREATED(ep)
create_znode (ep, eppath)
if ! topicMultiSet.contains(eptopic) then
node_cache = create_node_cache (epiopic)
set_listener (node_cache)
routingService.createTopicRoute(eptopic)
topicMultiSet.add(eptopic)
function ENDPOINT DELETED(ep)
delete_znode (eppatn)
topicMultiSet.delete(epropic)
if ! topicMultiSet.contains(eptopic) then
delete node_cache
routingService.deleteTopicRoute(epiopic)

function TOPIC CACHE LISTENER(nodeCache)
rb_locator = nodeCache.getDatal()
if ! rbPeer List.contains(rb_locator) then
rbPeer List.add(rb_locator)
routingService.addPeer (rb_locator)

Each callback function for edge brokers is invoked when
the following events occur:

e [Endpoint Created - It is invoked when an endpoint
(publisher or subscriber) in a network is created and
activated by a built-in DDS Data Reader for endpoint
discovery.

e FEndpoint Deleted - It is invoked when an endpoint
(publisher or subscriber) in a network is deleted. This
callback function is activated by a built-in DDS Data
Reader for endpoint discovery.

e Topic Cache Listener - It is invoked when a topic zn-
ode managed by an edge broker is created, deleted, or
updated and activated by ZooKeeper client API.

Endpoint Created callback function first creates a znode
for a created endpoint to notify this discovery event to rout-
ing brokers. If a topic interested by the created endpoint has
not appeared in an edge broker before, a znode cache and
its listener for the topic is created to receive notifications for
the znode update. When the znode is updated, it triggers
the Topic Cache Listener callback in Algorithm

We used the Curator framework [1], a high-level API that
simplifies using ZooKeeper, and it provides useful recipes
such as leader election and caches. We used the cache recipe
to reserve data accessed multiple times for fast data access
and reducing loads on ZooKeeper servers.

Endpoint Deleted callback function deletes the znode for
the existing endpoint to notify a routing broker, and deletes

it from a multi set for topic. Then, it checks the multi set
contains the topic. If the topic is contained in the multi set,
it means other endpoints are still interested in the topic. If
it is empty, the cache and its listener need to be removed as
there are no endpoints interested in the topic.

In Topic Cache Listener callback function, each topic zn-
ode stores a locator of a routing broker which is responsible
for the topic. The locator of a routing broker is added to
a Routing Service running in an edge broker to establish a
communication path between an edge broker and a routing
broker.

Algorithm 2 Routing Broker Callback Functions

function RB CACHE LISTENER(nodeCache)
topic_set = nodeCache.getData()
for topic : topic_set do
if ! cacheList.contains(topic) then
children_cache = create_children_cache (topic)
set_listener (children_cache)
cacheList.add(topic)

function ENDPOINT CACHE LISTENER(childrenCache)

cache_data = childrenCache.getData()

eb_locator = cache_data.getLocator()

topic = cache_data..getTopic()

switch cache_data.getEventType() do

case Child_Added
if | ebPeer List.contains(eb_locator) then

ebPeer List.add(eb_locator)
routingService.addPeer(eb_locator)

if ! topicList.contains(topic) then
routingService.create TopicRoute(topic)

topicMultiSet.add(topic)

case Child_Deleted

topicMultiSet.delete(topic)

if ! topicMultiSet.contains(topic) then
ebPeer List.delete(eb_locator)
routingService.deleteTopicRoute(topic)

Each callback function for routing brokers is invoked when
the following events occur:

e RB Cache Listener - 1t is invoked when a znode for a

routing broker is updated and activated by the ZooKeeper

client API.

e [Endpoint Cache Listener - It is invoked when children
of a znode for an assigned topic is created, deleted, or
updated and activated by ZooKeeper client API.

In RB Cache Listener callback function, a znode for a
routing broker stores a set of topics assigned by a cluster
leader. When the topic set is updated, it applies changes by
creating a cache and its listener for endpoints interested in
assigned topics.

When an endpoint is created or deleted, edge brokers cre-
ate or delete znodes for endpoints and these events will no-
tify Endpoint Cache Listener callback function in routing
brokers by ZooKeeper’s watch mechanism. The znode cache
in Endpoint Cache Listener callback function stores a loca-
tor of an edge broker and its topic name. The event can
be creation or deletion, so it needs to be differentiated by
looking at an event type. If it is the creation events, a lo-
cator of an edge broker needs to be added to DDS Routing

Service running in this routing broker if it does not exist.
After that, it requests the Routing Service to create a route
for the topic from a routing broker to an edge broker. If an
event type is deletion, it has to delete a locator and a topic
route.

4. CONCLUDING REMARKS

OMG DDS has been used successfully for many mission
critical systems when these are deployed in the same net-
work. However, as a system scales up, it requires integrating
pub/sub endpoints in different networks to realize internet-
scale, QoS-enabled pub/sub systems. Realizing internet-
scale DDS is hard for a variety of reasons. This paper
presents preliminary work on a cloud-enabled coordination
service for internet-scale DDS applications that can support
scalability, fault-tolerance, and endpoint mobility.

Our future work primarily includes complexity analysis
and empirical evaluation to validate the scalability and low-
latency of our solution. Specifically, we will measure (1)
end-to-end latency and throughput of endpoints located in
different networks, (2) discovery time of moving endpoints
from an edge broker to another, and (3) response time of co-
ordination events from ZooKeeper with increasing number
of endpoints and brokers. We also plan to investigate auto-
matic configurations of content-based filtering on brokers to
reduce network and computation overhead. Additional di-
mensions of future work involves research on adaptive over-
lay network according to the deadline information provided
by endpoints since DDS endpoints can allow users to define
deadline values and these values can be used as hints by
brokers to structure a deadline-aware overlay network.

5. ACKNOWLEDGMENTS

This work is supported in part by NSF CAREER CNS
0845789. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of NSF.

6. REFERENCES

[1] Apache. Apache curator. http://curator.apache.org,
2014.

[2] A. Hakiria, P. Berthoua, A. Gokhalec, D. C. Schmidtc,
and G. Thierrya. Supporting end-to-end scalability and
real-time event dissemination in the omg data
distribution service over wide area networks. Submitted
to Elsevier Journal of Systems Software (JSS), 2013.

[3] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX conference
on USENIX annual technical conference, volume 8,
pages 11-11, 2010.

[4] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei. A scalable
and elastic publish/subscribe service. In Parallel &
Distributed Processing Symposium (IPDPS), 2011
IEEE International, pages 1254-1265. IEEE, 2011.

[5] OMG. The data distribution service specification, v1.2.
http://www.omg.org/spec/DDS/1.2, 2007.

[6] RTI. Rti routing service user’s manual.
http://community.rti.com/rti-doc/510/RTI_
Routing_Service_5.1.0/doc/pdf/RTI_Routing_
Service_UsersManual.pdf, 2013.

http://curator.apache.org
http://www.omg.org/spec/DDS/1.2
http://community.rti.com/rti-doc/510/RTI_Routing_Service_5.1.0/doc/pdf/RTI_Routing_Service_UsersManual.pdf
http://community.rti.com/rti-doc/510/RTI_Routing_Service_5.1.0/doc/pdf/RTI_Routing_Service_UsersManual.pdf
http://community.rti.com/rti-doc/510/RTI_Routing_Service_5.1.0/doc/pdf/RTI_Routing_Service_UsersManual.pdf

	Introduction
	Background
	ZooKeeper
	DDS Routing Service

	Design of PubSubCoord
	PubSubCoord Architecture
	Implementation of PubSubCoord

	Concluding Remarks
	Acknowledgments
	References

