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ABSTRACT

Federating mission critical systems over wide-area networks
still represents a challenging issue. For example, it is hard to as-
sure both reliability and timeliness in a hostile environment such
as the Internet. The publish/subscribe (pub/sub) interaction model
is a promising solution for scalable data dissemination over wide-
area networks. Nevertheless, currently available pub/sub systems
lack efficient support to achieve both reliability and timeliness in
unreliable scenarios. This paper describes an innovative approach
to fill this gap making three contributions. First, a cluster-based
peer-to-peer organization is introduced to handle a large number
of publishers/subscribers. Second, the cluster coordinator is repli-
cated to mask process crashes and to preserve cluster connectivity
toward the outside world. Third, multiple-tree redundancy is ap-
plied to tolerate link crashes thereby minimizing unpredictability
in the delivery time. We present a simulation-based evaluation to
assess the effectiveness of the proposed approach in an unreliable
setting. This study indicates that our approach enforces the relia-
bility of event delivery without affecting its timeliness.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability

Keywords
Fault-tolerance, Timeliness, Peer-to-Peer Overlay, Replication,
Multiple-Tree Redundancy

1. INTRODUCTION

In the last few years, more and more industrial projects aim to
develop the so-called Large scale Complex Critical Infrastructures
(LCCIs) [1], i.e., Internet-scale federation of several autonomous
and heterogeneous systems that work collaboratively and synergis-
tically to provide critical facilities. This represents a novel prospec-
tive on how mission critical systems are architected: from small,
monolithic and vertical architectures, which characterized tradi-

tional systems, there has been a shift toward large highly modular
and integrated systems. As a practical example, we can consider
the road map outlined by EuroControl for the European Air Traffic
Control (ATC) evolution, object of the European Research Project
called Single European Sky (SESAR) 1. The current European ATC
framework is segmented among several systems, namely Area Con-
trol Centers (ACCs), each one responsible for a well-defined por-
tion of the air space. In order to handle more efficiently the growing
aviation traffic, the solution is a framework where the ATC opera-
tions are seamlessly and fully integrated. In fact, the novel ATC
framework will be based on a data-centric model in which all Area
Control Centers cooperate via a data distribution service.

The effectiveness and performance of LCCIs strongly depend
on the quality of the adopted interconnection middleware, which
has to deal with some serious challenges. First, critical operations
exhibit a time-sensitive behavior: information is useful only if de-
livered "on time", i.e., respecting certain time boundaries. So, mes-
sages have to be exchanged with a predictable latency (Timeliness).
Second, one of the key properties that a critical system has to pro-
vide is to be dependable and able to handle properly error condi-
tions imposed by network and process faults. Then, message dis-
semination has to be guaranteed despite manifestations of several
faults (Reliability). Last, the rising of the activity of a single sys-
tem and the escalation of connected systems increase the number of
data exchanges, and consequently the time of computation. There-
fore, the adopted middleware must be able to scale while maintain-
ing suitable performance (Scalability).

Middleware solutions that adopt a publish/subscribe interaction
model, i.e., pub/sub services, are very appealing to efficiently in-
terconnect several systems since the inherent decoupling properties
promote scalability [2]. The focus of the publish/subscribe com-
munity has never been on reliable event dissemination for two main
reasons. On one hand, guaranteeing message delivery despite net-
work failures has been always thought as inherited by the pub/sub
system from the protocol used to implement the notification ser-
vice. On the other hand, there were more challenging issues, such
as scalability and expressiveness. However, research interest of the
community is recently increasing more and more toward novel ap-
proaches to satisfy reliability requirements. So, some techniques
have been developed specifically for these middleware to cope with
several kind of faults. However, these architectures lack an ade-
quate support to jointly assure reliability e and timeliness. In order
to fill this gap, this paper presents a novel approach based on a
1This is one of the key objectives of the research project, namely Inizia-
tivaSoftware (www.iniziativasoftware.it), supported by the University of
Naples and by FINMECCANICA, one of the largest Italian company which
develops mission critical and complex system infrastructures in the context
of military and civil scenarios.



Figure 1: Efforts on reliability aspects in publish/subscribe middleware

peer-to-peer infrastructure. Our driving ideas are the following:
• Clustering publishers and subscribers that reside on the same

routing domain, and using a hierarchical peer-to-peer orga-
nization so to handle large numbers of participants without
affecting the message latency;

• Implementing a replication schema of the coordinator in each
cluster so to treat process crashes without leading to discon-
nections among the clusters or considerable fluctuations in
the message delivery time;

• Adopting a multi-tree approach so to cope with link crashes
and to preserve connectivity into the coordinators overlay
without worsening the timeliness of the data dissemination.

The reminder of the paper is organized as follows. Section 2
provides 1) a definition of the properties that a reliable pub/sub ser-
vice has to provide in order to be used to federate time-sensitive
applications, 2) background on the faults that can occur in pub/sub
middleware, and 3) a taxonomy of the available solutions to imple-
ment a reliable pub/sub system. In Section 3, we describe in details
our approach, while in Section 4 we report experimental results of
our initial simulation-based study to assess the quality of our ap-
proach. Lastly„ section 5 discusses related work, and we conclude
in Section 6 with some remarks on future works.

2. BACKGROUND AND OPEN ISSUES

Since its early years, the publish/subscribe community has been
more focused on scalable architectures, efficient delivery, and ex-
pressive subscriptions rather than reliable event dissemination. As
a proof of this lack of attention on fault-tolerance issues, main stan-
dardized, and mature, commercial pub/sub services do not address
them at all, such as Java Message Service (JMS) [3], or provides
very basic mechanisms, such as the recent OMG standard called
Data Distribution Service (DDS) [4]. However, the status is chang-
ing since pub/sub services have started to be also used in applica-
tion domains that expose stringent reliability requirements. E.g.,
EuroControl decided that the technology of reference to be used in
the project SESAR, which aims to device the novel European ATC
framework by interconnecting critical systems, is the DDS speci-
fication. We have performed an assessment of the available liter-
ature on reliable pub/sub services in order to measure the efforts
spent on such topic. We have collected all the papers published at
international conferences and journals, counting how many of them

are focus on reliable pub/sub services at a each year starting from
20002. As shown by the black line in Figure 1, our study of the
literature demonstrates that in the last decade we have witnessed a
growing interest of the community in studying novel approaches to
guarantee a reliable event dissemination upon networks and nodes
that expose a faulty behavior. This section presents a study of reli-
ability aspects in pub/sub service by means of 1) defining the fun-
damental properties that a reliable pub/sub service has to provide;
2) formalizing which failures are of interest to be handled in order
to guarantee a reliable event dissemination; and 3) analyzing the
current approaches to devise a reliable pub/sub service in order to
find the most suitable one to provide both reliability and timeliness.

2.1 Reliable Publish/Subscribe

A pub/sub service is made of several processes that exchange
messages through a so-called notification service. These processes
play the roles of publishers, which send messages, and/or sub-
scribers, which receive the messages in whom they are interested.
In fact, a process pj receives only those messages that satisfy the
k-th, namely Cj,k, of its active subscription predicates, contained
in the set called Σj : if the message mi matches the subscription
Cj,k , then Cj,k(mi) ≡ ⊤ and mi is delivered to pj , otherwise
Cj,k(mi) ≡ ⊥ and mi is not delivered to pj . Given a message
mi, it is possible to define as its view, namely viewof(mi), all the
processes that have to receive the message mi:

viewof(mi) =

{
V ∃j, k : Cj,k(mi) = ⊤
⊥ otherwise

where V = {pj | ∃Cj,k ∈ Σj : Cj,k(mi) = ⊤}.
So, during its operational phase a process pj performs a series of
the following four operations:

1. Publish: At time t, a message mi is published if pj sends it
to the notification service, namely NS, and the view of the
message is not empty:

t = pub(mi, pj) ⇒ t = send(mi, NS),

under the constraint that viewof(mi) ̸= ⊥ ;
2. Notify: At time t, pj is notified of a published message when

a message is received by the notification service, namely NS,
and one of the subscriptions contained in Σj is verified:

t = not(mi, pj) ⇒ (t = recv(mi, NS) ∧ Cj,k(mi) = ⊤);

3. Subscribe: A new subscription Cj,k is created:
sub(Cj,k,Σj) ⇒ Σj = (Σj ∪ Cj,k);

4. Unsubscribe: An existent subscription Cj,k is erased:
unsub(Cj,k,Σj) ⇒ Σj = (Σj ∩ Cj,k).

A so-defined pub/sub service has to satisfy two main properties:
+ Safety: a process pj is notified of a message mi because an-

other process pi has previously published it:
∃pj : tn = not(mi, pj) ⇒ ∃pi : (tp = pub(mi, pi) ∧ tp < tn);

+ Liveness: if a process pj has a subscription Cj,k, it receives
one of the published messages that satisfy it:

∃pj , ∃Cj,k ∈ Σj ⇒ ∃mi : not(mi, pj).

A pub/sub service is defined reliable if the message delivery is
guaranteed despite that processes may fail and/or the network may
be affected by several anomalies. So, considering a view of the
message mi, namely V, the following properties have to be guaran-
teed by a reliable pub/sub service:
2A work can be published in several papers in different years,
namely paper distribution. In this case, we have considered it as
a single paper in the median year of the paper distribution, e.g., if a
work has been published in 3 papers in 2002, 2 papers in 2003 and
2 paper in 2004, we have considered it as one paper in 2003.



Figure 2: (a) Distribution of current solutions for each fault; (b) Taxonomy of faults addressed by current solutions

⋆ Agreement: if a non-faulty process pj is notified, then all the
other non-faulty processes of the view are eventually noti-
fied:

∃pj ∈ V : not(mi, pj) ⇒ ∀p ∈ V : not(mi, p);

⋆ Validity: if a non-faulty process pj publishes the message
mi, then at least one of all non-faulty processes of the view
is notified of the message:

∃pj ∈ V : pub(mi, pj) ⇒ ∃!pk ∈ V : not(mi, pk);

⋆ Integrity: every non-faulty process pj performs the notify of
the message mi at most once:
∃pj ∈ V : not(mi, pj) = tn1 ⇏ ∃not(mi, pj) = tn2 : n1 ̸= n2.

Moreover, since critical systems, such as LCCIs, exhibit real-time
constraints jointly to fault-tolerance, a pub/sub service is suitable
in this context only if it verifies an additional property:

⋆ Timeliness: given a deadline ∆, all non-faulty processes are
notified of a published message before ∆ is expired:

∃∆ : pub(mi, pj) ⇏ ∃pk ∈ V : not(mi, pk) > ∆.

2.2 Failure Model

Several kind of faults may affect a pub/sub service, and they
need to be carefully treated. Briefly, such faults can be classified as
follows:

• Network anomalies: temporary misbehaviours of a link:
– Loss: links behave as a fair loss channel, i.e., messages

in transit though the link may be lost;
– Ordering: messages are not received in the same order

as they have been published;
– Corruption: messages are received corrupted;
– Delay: a message is delivered later than expected;
– Congestion: a link/router is overloaded and several ano-

malies may suddenly happen;
– Partitioning: network is fragmented into several dis-

connected parts.

• Link crash: links experience loss of connectivity, i.e., pack-
ets are always lost for a certain time, which is not necessarily
permanent but may dynamically appear and disappear;

• Node crash: nodes crash due to hardware/software failures;
• Churn: nodes unexpectedly join/leave the system.

We have analyzed which kind of faults, with respect to this taxon-
omy, are handled by the available reliable pub/sub services. Only
10% of the available systems, as shown in Figure 2(a), handle faults
due to network anomalies, and the majority of such systems, 70%

of them, focus on recovering from message losses. The reason be-
hind this may be found on the consideration that pub/sub services
are designed on top of an event dissemination protocol. Studing
how to cope with network anomalies may be not felt as a challeng-
ing issue by the community since it can be simply addressed using
a reliable event dissemination protocol, such as one of the reliable
multicast protocols developed during the last twenty years [5, 6, 7].

On the other hand, many efforts have been spent to address
faults that can lead to inconsistent topologies within the broker
overlay. The most studied fault is the node crash, 34% of the sys-
tems, in particular the case in which the crashed node hosted a pro-
cess that acted as a broker, which is critical in the system since it
glues togethers publishers and subscribers. While, only a smaller
number of systems, 18%, consider also churn. This may be due
to two reasons: 1) mostly all these systems are built on peer-to-
peer infrastructures, which gracefully manage these dynamics3; 2)
this fault is treated for free, without a particular solution. Looking
at Figure 2(b), we can notice that systems dealing with churn also
handle node crashes. In fact, churn can be seen as a special case of
node crash, so all the techniques adopted to cope with node crashes
can be also used in this other case. On the other hand, the second
most studied class of faults is the link crash, specifically in 26% of
the systems. In conclusion, as shown in Figure 2(b), most of the re-
liable pub/sub systems deal jointly with node and link crashes, 64%
in total. So, putting everything together, a failure model suitable for
pub/sub services comprises only node and link crashes.

2.3 Approaches for Reliable pub/sub service

This sections aims to provide a taxonomy of the current ap-
proaches adopted in literature to implement reliable pub/seb ser-
vices. There are two ways to implement the notification service:
one uses IP Multicast [4], while the other one adopts an application-
level multicast for scalability reasons [8]. The first two approaches
in the taxonomy are employed in the first prospective, while the
other approaches in the latter one.

Retransmissions (ARQ). A way to achieve reliable event dis-
semination is to have publishers storing messages, so that sub-
scribers can ask for their retransmission when losses are somehow
detected [4]. Despite the ease with which it can be implemented,
3In fact, the ones that do not care about churn adopt a static broker
overlay rather than a peer-to-peer infrastructure.



this approach is not optimal due to several drawbacks. First, it can
deal only with message losses. Second, the time to recover dropped
messages is unpredictable. In fact, the number of retransmissions
needed to successfully receive a message depends on the network
behavior, which is never known a priori. Moreover, there are no
guarantees to achieve agreement, due to a link crash that discon-
nect partially/completely publishers to a part of the interested sub-
scribers or the possibility that a publisher may crash before all the
subscribers have recovered the lost messages. Lastly, messages can
be received twice due to false-negative detection of dropped mes-
sages.

Forward Error Correction (FEC). A different way to recover
lost message is to use spatial redundancy rather than temporal re-
dundancy: instead using retransmissions, the sender forwards re-
dundant data, so the receiver can reconstruct the original message
even if some packets has been dropped during the delivery [9]. This
solution enforces timeliness, since the worst case latency is pre-
dictable, however, it presents several drawbacks. The main one
is that agreement is reached depending on the redundancy used at
the sender side. In fact, a receiver can obtain the message only
if the sender has delivered more additional data than the packets
lost by the network, otherwise the dropped packets are more than
the ones the receiver can reconstruct and the message is considered
lost. Choosing the right redundancy is a very hard task in Internet,
since the pattern loss of the network is highly variable over time.

Epidemic Algorithm (Ep-ARQ). ARQ suffers from a serious
scalability limitation due to the centralization of the recovery duty
at the publisher side. To overcome it, a different approach is to use
an epidemic approach [10] that distributes the recovery responsi-
bility among the leaf nodes of the forwarding tree. In fact, each
process exchanges at a random time its history of the received mes-
sages with a randomly-chosen process among the ones constitut-
ing the system. Subsequently, inconsistencies, i.e., message drops,
are detected by comparison and corrected through retransmissions.
It provides more guarantees than using ARQ since it can also re-
cover messages lost due to crashed nodes and/or links. Moreover,
since the detection of lost messages is performed by comparison
of histories rather than timeout expiration, it avoids to receive the
same message twice. However, there is no guarantee that the pub-
lished message reaches all the subscribers, but agreement is ob-
tained within a certain probability due to the random nature of the
algorithm. Moreover, there is no predictable upper bound on the
time to reach the agreement since retransmissions are adopted.

Reconfigurations (Reconf). Adopting topological reconfigu-
rations is another possible solution to recover connectivity in the
forwarding tree after a node/link has crashed. An example is the
self-stabilization publish/subscribe [11], i.e., routing entries into
the brokers have a limited validity, and they have to be periodi-
cally renewed otherwise they are deleted. This approach aims to
guarantee a consistent connectivity into the system, i.e., all the pro-
cess are connected each other. But, it does not cope with message
drops, so not all the subscriber receive the messages of interest if
network omissions may happen

Broker Replication (BroRep). Another method to achieve
fault-tolerance is applying redundancy into the system. This is re-
alized by replicating the brokers in the forwarding tree [12]. The
state of a broker is replicated to its neighbors, so in case of a bro-
ker failure it can be easily substituted without losing subscription
consistency into the system. This solution is tailored only on node
failures, and link crashes may involve that some subscribers are not
reachable and so there may be no agreement in the system.

Path Redundancy (PatRed). Systems such as Bayeux [13] and

Table 1: Properties guaranteed by the current approaches

System Agreement Validity Integrity Timeliness

ARQ [4] 4

FEC [9] 4* 4 4 4

Ep-ARQ [10] 4** 4 4

Reconf [11] 4 4

BroRep [12] 4 4

PatRed [13, 14] 4*** 4 4 4

* only with the appropriate redundancy
** only within a known probability
*** only if path diversity is guaranteed

XNET [14] use a different form of redundancy, i.e., establishing
redundant paths among the nodes of the system. A message is sent
through multiple paths, and only the first-received replica of the
message is delivered to the application. This solution appears to be
tailored to link failures, but can also cope with node crashes just
circumventing the failed node. This allows all the properties of the
reliable pub/sub service plus timeliness under one condition: all the
paths to a destination exhibit path diversity, i.e., if a path fails, the
others are not affected by the same failure.

As shown in table 1, path redundancy is an appealing solution
to architect reliable publish/subscribe middleware with timeliness
constraints, however, providing path diversity is still a challenging
issue. In fact, different overlay links may be built on top of the same
network links, so choosing different overlay links does not guaran-
tee diversity. To mitigate this issue, the adopted broker overlay
needs to be topology-aware of the underlay network [15], but cur-
rent solutions do not provide this feature. This paper aims to define
a multi-tree overlay that is aware of the underlay topology. Path re-
dundancy has been extensively used for resilient overlay multicast
in the context of multimedia applications [16]. The main difference
with such approaches is that the adoption of broker replication al-
lows the proposed approach to fast detect and recover node crashes
without leading to a loss of connectivity in the overlay tree for a
certain period of time, enforcing the agreement property.

3. THE PROPOSED APPROACH

In this section we describe the design of a novel approach for a
topic-based publish/subscribe middleware to federate mission criti-
cal systems over wide-area networks, e.g., the so-called Large scale
Complex Critical System (LCCI) [1]. Due to the requirements that
LCCIs impose on the adopted middleware, this novel approach has
been designed keeping the following objective in mind: all the sub-
scribers are guaranteed to receive on-time all the messages despite
several faults may occur (reliable and timely event delivery).

Considering that our application scenario is related to LCCIs,
we envision that a pub/sub service is composed by tens or hun-
dreds of processes hosted on nodes scattered over Internet. More-
over, these processes do not expose churn: all the nodes provide a
long-running service and suddenly leave the system only due to a
failure. Due to the conclusions of subsection 2.2, we also assume
that a pub/sub service can be affected by only node and link crashes
among the plethora of possible faults. On one hand, processes may
fail by crashes, which cause nodes to halt and to lose theirs internal
volatile state, and, without lacking generality, we assume that pro-
cesses do not recover after a crash (fail-stop failure model). On the



Figure 3: Different layers of abstraction in a pub/sub service

other hand, links can crash, however, they recover after a certain
period of time has elapsed since the crash happened (fault-recover
failure model), so the same link may experience several crashes
during the operational phase of the pub/sub service. Moreover, we
assume that the network is not partitionable due to link crashes:
give two correct processes p and q, there always be a correct path,
i.e., constituted by not-crashed links, that allows p to reach q. Even
if that situation is likely to happen in real use cases that adopt Inter-
net as interconnection infrastructure, we decided to do not address
it in this paper4 and left it for future work.

3.1 Grouping Nodes in Clusters

The architecture of current Internet is made by a collection of
interconnected Routing Domains, each one sharing common ad-
ministration control and routing protocol [17]. Domains exhibit a
hierarchical topological organization according to two abstraction
levels, as illustrated in the lower part of Figure 3. On one hand,
there are the so-called Stub Domains, within which the path joining
two of its nodes stays. These domains may consist of Local Area
Networks (LANs) or Autonomous Systems (AS), and are managed
by a central organization, so policies to assure Quality-of-Service
(QoS) constraints in the data dissemination may be applied. On
the other hand, Transit Domains are in charge to efficiently inter-
connect several stub domains and to form the network backbone.
Lacking a central management reference and traffic orchestrator,
transit domains are affected by several failures that may compro-
mise the effectiveness and resiliency of the message forwarding.
Although important technical progress has been made [18], more
work needs to be done before having a data delivery with trustable
QoS guarantees in such environment.

A topic-based pub/sub service at the Internet scale exhibits pro-
cesses 1) scattered across different stub domains and 2) needed to
communicate through several transit domains and according to the
4In fact none of the approaches introduced in subsection 2.3 deal
with partitionable networks.

model introduced in subsection 2.1. As shown in the upper part of
Figure 3, we propose a hierarchical approach to organize a pub/sub
service, which reflects the previous considerations on the Internet
topology: 1) a node runs only a single process of the pub/sub ser-
vice5, for simplicity; 2) nodes in the same domain are clustered
together; and 3) each cluster holds a coordinator that allows inter-
actions with the other clusters. Nodes in the same cluster communi-
cated though an intra-cluster routing, and they can send messages
outside the cluster only via their coordinator. In fact, a coordinator
allows communications to the outside world exchanging messages
with others coordinators though an inter-cluster routing. Since the
Internet comprises multiple domains with dissimilar QoS features,
as stated above, intra-cluster and inter-cluster routing can be de-
signed separately.

3.2 Overlay Routing

Since clusters have been built grouping nodes that reside into
the same stub domain, it is suitable to use IP Multicast as a mean
to implement the intra-cluster routing. In fact, it is feasible that
IP Multicast is provided by the network infrastructure in such do-
mains6. Using IP Multicast, we can achieve efficiency both in term
of wise use of network bandwidth and scalable support to a large
number of nodes. Moreover, such domains usually exhibit low, or
even negligible, probability that network faults happen, so it is vi-
able to assume that data delivery into clusters is guaranteed.

Each cluster has to be connected to the other ones through its co-
ordinator, and the various coordinators need to cooperate exchang-
ing messages. In literature there are three possible architectural
solutions to implement this cooperation:

• Network-level multicast, which is based on IP Multicast [6].
It has been demonstrated to be unsuitable for communica-
tions over Internet due to two main problems: 1) the lack
of IP Multicast facilities widely deployed over Internet [20],
and 2) the so-called Reliability versus Scalability problem [21].
In particular, network-level Multicast is unable to guarantee
highly-reliable delivery to a large number of subscribers due
to an ACK implosion and the centralization of the recovery
duty in the multicaster, which represents a single-point-of-
failure into the system.

• Proxy-based overlay network, which shifts multicast support
from routers to end systems that are organized into a static
overlay structure [22]. The main drawback of this architec-
tural paradigm is the lack of self-* capabilities (i.e., self-
organizing, self-configuring and self-healing) [23], e.g., it
needs a strong human intervention for its deployment [24].

• Peer-to-Peer application-level multicast, which implements
multicast services on top of a peer-to-peer communication
infrastructure. This solution provides the same scalability
properties of a proxy-based overlay network, and in addic-
tion, it enhances the system with self-* capabilities. Due
to these properties, peer-to-peer application-level multicast
is the most promising architecture to be used for the inter-
cluster routing.

There is a considerable literature on per-to-peer application-level
multicast [25], and the debate on-going in this field is what is the
5Therefore, ’process’ and ’node’ are sometimes used as synonyms.
6For simplicity, we have assumed that Stub Domains offer the pos-
sibility to use IP Multicast, however, there may be cases where this
is not necessarily true. In these cases, one of the several Group
Communication Toolkits (GCT) available in literature [19] can be
used instead of IP Multicast.



Figure 4: Event Dissemination

right way, in term of performance and reliability, to structure the
participant to a multicast session [26]. On one hand, there are
tree-based approaches that organize the nodes into a tree, where
each node can implicitly define its parent from which it receives
the incoming messages. On the other hand, there are mesh-based
approaches that expose a less structured organization letting each
node to employ a swarming delivery mechanism to a certain subset
of nodes. For two reasons our choice has been to adopt a tree-
based solution, and to propose mechanisms to overcome its intrin-
sic weaknesses: tree-based approaches give direct control on the
path followed by messages and present lower communication over-
head [27]. In the proposed approach, the tree-base application-level
multicast is built on top of a structured or Distributed Hash Table
(DHT) overlay since it simplifies the tree construction. Among the
available DHT solutions, we preferred the ones based on the Plax-
ton Mesh [28] data structure since it enforces a fast search operation
(its complexity goes mostly around O(log(N)) hops, where N is the
number of the peers into the overlay). Therefore, we have chosen to
built our system on top of Pastry [29], however, other similar DHT
overlays can be used since most of Plaxton-based DHTs do not
present strong differences among each other. Moreover, we have
drawn on the experience of Scribe [30] for the tree construction.
Each peer in the system is univocally identified by a peerID and
each multicast communication has a unique groupID. The coordi-
nator whose peerID is numerically close to the groupID is selected
as the root of the related multicast tree. A coordinator that wants to
join an existent multicast-tree, because one of the peers in its clus-
ter or itself is interested to receive messages from it, sends a join
message to the root. Each coordinator along the way checkes if it
is already in the tree: in the positive case, it registers the sender as
a child and informs it to be its parent, otherwise, it forwards the
message to the next coordinator on the way to the root. If a co-
ordinator wants to send a message, because one of the peers in its
cluster or itself has published a message, it forwards the message to
the root, and the root would deliver the message though the layers
of the tree.

Putting everything together, let consider an example of a node
publishing a message of a given topic, as shown in Figure 4:

1. Node N1 publishes the message m1 with groupID equal to
d46a1c, so a multicast message is sent to all the interested
nodes in the cluster and to the coordinator;

2. The coordinator C1 of the cluster receives the message m1

and passes it to the root of the overlay tree;
3. The root C2 exchanges the received message with all the in-

Figure 5: Replication Schema inside a cluster

terested nodes in his cluster, arrows (3’) in Figure, and then
forwards m1 to its children, arrows (3”) in Figure;

4. All the coordinators reached by the message of the root C2

perform an IP Multicast in their cluster, arrows (4’) in Figure,
and then forward m1 to their children, arrows (4”);

5. The message is propagated though the layers of the tree un-
til there are coordinators, such as C4-C7, with no children.
Then, these coordinators multicast the received message into
their cluster, and the delivery is concluded.

3.3 Fault-tolerance at the cluster level

The main weakness of the proposed hierarchical approach is
that the entire system is vulnerable when a coordinator fails. In
fact, the failure of a coordinator leads to both the isolation of the
related cluster from the rest of the system and the disconnection
of some coordinators from the rest of the overlay tree. Moreover,
since the entire traffic toward the outside world passes through the
coordinator, the consequent strong workload exacerbates its time to
fail.

The trivial solution to this issue is to replicate the coordinator,
however, the choice of which replication flavor to use is critical
since it affects the quality of the system perceived by the end-users.
On one hand, one option is to use a passive replication schema [31],
in which the failed coordinator is replaced by one of its backups.
The case that both the coordinator and all of its replicas fail at the
same time is extremely rare, so this solution improves the availabil-
ity. However, timeliness is compromised since the cluster would be
isolated for a certain time window, i.e., time to detect the failure of
the coordinator and election of a new coordinator among the back-
ups, so the overlay tree would be disconnected in some of its parts.
On the other hand, an other option is to use an active schema [32],
in which a cluster exposes a virtual coordinator made of a set of
partners with equal responsibilities. Since there are several coordi-
nators available at the same time, a failed coordinator is instanta-
neously replaced without isolating the cluster or affecting the over-
lay tree. So timeliness is achieved, however, availability may suffer
of a possible failure of all the coordinators due to common mode er-
rors. We propose a hybrid schema where the coordinator is actively
p-redundant, i.e., there are p coordinators active at the same time,
moreover, there are k backups for each active coordinator. The sys-
tem designer is free to choose the robustness of the cluster varying
<p,k>. Such organization is illustrated in Figure 5 and constructed
through a distributed bully election algorithm. This solution also
has a positive impact on the overlay tree management. In fact, since
the participants to the tree would result highly available, there is no



Figure 6: How a new node join two distinct trees

Figure 7: Event delivery among coordinators

need to cope with node crashes, avoiding traditional routing ap-
proaches that circumvent the failed element and compromise the
timeliness of the message delivery.

3.4 Fault-tolerance at the overlay level

The proposed replication-based approach does not cope with
link crashes, in fact, a cluster does not receive a message when the
link connecting it to its parent in the multicast tree has crashed.
Considering that several prior studies have demonstrated that Inter-
net exhibits redundant connections at AS level [33], link crashes
can be handled exploiting path redundancy. There are three al-
ternative prospectives to implement such solution [16]: 1) cross-
link, i.e., connecting random peers via extra cross-cutting links;
2) in-tree, i.e., establishing alternative links among different layers
of the tree; and 3) multiple-tree, i.e., creating several overlapping
trees. While all of them have been demonstrated to improve the re-
siliency of the multicast service, we have chosen to adopt the latter
approach since it is able to reduce delivery ratio and to cope better
with stringent real-time deadlines [34].

As discussed in subsection 2.3, multiple-tree approach enforces
reliability and timeliness under the condition to guarantee diversity
among the paths composing the multiple trees. When a message
has to reach a node from an other one, it travel through a path,
consisting of a succession of network devices, e.g., routers and/or
switches. Given two paths P1 and P2, we can define a measure
of their reciprocal diversity, namely Q(P1, P2), as the number of
the overlapping networked devices, and the two paths are diverse if
Q(P1, P2) is zero. The overlapping nodes can be identified thought
measurements at path- and AS- level as described in [35]. Given
such measure, it is possible to have two different formulations of
path diversity. Given a forest of n trees, namely Ti with i = 1,...,n,
such forest verifies the path diversity constraint if and only if two
paths, taken from any of the n trees, that exhibit a positive value
as measure of their reciprocal diversity do not exist (Global Diver-
sity):

F =
∪

i=1,...,n

(Ti) : F is diverse ⇔

̸ ∃Pi, Pj ∈ F : (Q(Pi, Pj) > 0) ∧ (i ̸= j).

In large scale networks, it is impossible to verify if trees satisfy this
condition since it requires global knowledge on all the connections
among the coordinators in the systems and their reciprocal diver-
sity. Then, to use a multi-tree approach in a distibuted manner, we
have to provide a different formulation of tree diversity: given a
node NA and n trees, namely Ti with i = 1,...,n, the forest of n trees
verifies the path diversity constraint if and only if all the paths from
NA to its parents and children in the i-th tree, namely Pi|NA

do
not exhibit a positive value as measure of their reciprocal diversity
(Local Diversity):

F =
∪

i=1,...,n

(Ti) : F is diverse ⇔

∀NA ̸ ∃Pi|NA
, Pj|NA

: (Q(Pi|Nk
, Pj|Nk

) > 0) ∧ (i ̸= j).

The local diversity does not imply the global diversity, however, it
makes possible to implement a distributed algorithms that is able to
construct locally-diverse multiple trees. Therefore, we have modi-
fied the joining procedure of Scribe so to construct multiple path-
disjoint trees that satisfy the local diversity constraint. As illus-
trated in Figure 6, let consider that a new node C9 wants to join
two different trees, namely A e B. At the beginning, it sends two
join messages through Scribe and two nodes of the systems, indi-
cated in Figure as C2 and C7 that respectively have joined tree A
and B, are contacted. Each one of these nodes replies C9 with a
message containing 1) a list of their neighbors in the tree to whom
it belongs (e.g., its parent and children) and details on their path,
and 2) content of a traceroute on the path to C9, e.g., the list of the
traversed network devices. Then, C9 contacts all the nodes in each
the received lists, and receives traceroute messages about the path
to them, too. After collecting such informations, C9 can make the
decision on which will be its parent in each tree, according these
two rules:

1. the paths from C9 to its parents have to expose the lowest
measure of diversity;

2. given a parent of C9, the paths to its children have to maintain
a measure of diversity closer to the value they had before the
inclusion of C9 as a child.

So the node C9 decides on its parents by performing the following
optimization:

x̂ = min
x̄,y=C9

Q̌(x̄, y) +
∑
xi∈x̄

Div(xi|y)

 ,

where x̄ = {x1, x2, ..., xn} is a list of the possible parents for
C9, while x̂ is the list of the chosen parents for C9. Moreover, the
first addend of the sum to be minimized formalizes the first rule,



Figure 8: OMNET Model used in our study: a) topology at AS-level, b) topology at the router-level, and b) implementation of a node

where Q̌(x̄, y) measures the diversity of the paths from node y to
the parents contained in vector x̄, whose length is equal to n:

Q̌(x̄, y) =
∑

xi, xj ∈ x̄
i ̸= j

Q(P (xi, y), P (xi, y)),

where the path from a node x to a node y is indicated as P (x, y).
While, the second addend formalizes the second rule and evalu-
ates the variation of the diversity of the neighbors of a node x if x
promoted as child of x:

Div(x|y) = Q̌({Vx ∪ y}, x) − Q̌(Vx, x),

where Vx is the list of the neighbors of node x before putting y in
the children list. In the optimal case, due to the locality of Pastry,
we will always find nodes that exhibit a diversity measure equal to
zero, however, in the real case this is not always possible. Since,
the achievable diversity is always lower than the intrinsic diversity
of the topology at the network level, we acknowledge that there are
cases where the minimum of the previous optimization is not zero.

Since clusters host multiple active coordinators, there is the
problem to decide how performing the joining procedure. In or-
der to avoid the case of coordinators of a same cluster exhibiting
different dependencies in the same overlay tree, only one coordina-
tor at time performs the joining procedure. Recalling the previous
example, at the end of the join procedure, C9 1) sends to its parents
the IP addresses of its partners and backups, 2) receive back the IP
address of partners and backups of its parents, and 3) updates with
the received informations forwards its partners and backups. So,
each active coordinator will be in charge of sending messages only
through one tree, then the parameter p also defines the number of
multiple trees that are established into the system.

Even using a multiple-tree approach, there are cases in which
some nodes may experience message losses due to link crashes.
As shown in Figure 7, since two links have crashed, node N3 will
never receive messages published by N15 even if it is not iso-
lated. This is possible when all the inbound connections to the link
have crashed7. However, the outbound connections are still cor-
7We do not treat the case in which all the connections to a node,
inbound and outbound, are crashed, because in this case the node
would be completely isolated. Since we have assumed that the net-

rect, and they can be used to recover from this situation. Messages
exchanged though different trees do not reach a node at the same
time. Let consider node N7 in Figure 7, it would receive a message
before from N3 and then from N10. So, when N7 receives a mes-
sage from N10, but nothing from N3 before a timeout is expired,
it can assume that the message has not reached N3 and notifies it
that he has received a message. So, N3 knows that he has missed
a message and asks to N7 for its transmission. Since it has lost a
message, it assumes that all his inbound connections are incorrect
and executes the joining procedure to restore its connections to the
trees.

4. SIMULATION STUDY

In this section we present the results of a simulation study to
assess the quality of our approach. Instead using a real wide-area
network, such as PlanetLab8, that exhibits uncontrollable loss pat-
terns and makes tests unrepeatable, we have conducted the study
of our approach in a simulation environment called OMNET++9.
Our choice is motivated by its ease of use, modular architecture,
parametric approach and open-source code base. Moreover, OM-
NET++ is rapidly becoming a popular simulation platform in the
scientific community as well as in industrial settings. In fact, it
has an advantage over other existing simulators since, due to its
generic and flexible architecture, it easily allows for the simula-
tion of virtually any modular, event-driven system, and not just
communication-network oriented systems.

OMNET++ follows a hierarchical architecture. At the lowest
level of the hierarchy there are simple modules which encapsulate
behavior of a given protocol or application. These simple mod-
ules are represented by C++ classes. A compound module may be
composed of simple as well as other compound modules. Mod-
ules communicate with each other via message-passing. An event
is said to have occurred whenever a module sends/receives a mes-
sage. OMNET++ enforces code reuse since its community pro-
vides several third-parties models that modelers can easily include

work is not partitionable, this case can never happen.
8www.planet-lab.org
9www.omnetpp.org.



in their own model. An example is the INET framework, which
models mostly all the protocols of wired, wireless and ad-hoc net-
works and several networking components, such as router, switches
and access points. These models have parameters whose values are
specified externally in an initialization file, and can be varied in
different simulation runs. In the context of data dissemination pro-
tocols, these parameters can be used to simulate and analyze the
effect of different network conditions on the performance of event
delivery. Additional information about OMNET++ can be found in
its User Manual10.

4.1 Simulation Setup

In our tests we have used a two-level power-law topology with
300 nodes, 8 AS and 500 edges generated by a topology generator
for OMNET++ called Rease11 with default end-to-end delays [36].
Specifically, the AS-level topology, i.e., how different ASs are in-
terconnected each other, is based on the Positive Feedback Prefer-
ence (PFP) model [37], shown in Figure 8(a), while the router-level
topology, i.e., how different routers and nodes in a given AS are in-
terconnected each other, is based on the Heuristic Optimal Topol-
ogy (HOT) model [38], illustrated in Figure 8(b). At each test, we
have randomly selected a fixed number of nodes from the 300 IP-
layer nodes as overlay nodes, among which only one at time is the
publisher and all the others are subscribers. Moreover, we have
1) used the Scribe implementation provided by an overlay network
simulation framework for the OMNeT++ called OverSim12, modi-
fying it according to our approach, as shown in Figure 8(c), 2) im-
plemented an OMNET module to perform the path measurements
as described in [35], and 3) made a patch to the INET framework
in order to reproduce link crashes that do not partition the network.
Node and link failures are uniformly distributed over the simulation
time, and parameters have been derived from [39, 40]: while the
duration of a link crash has a random distribution with a minimum
duration of 10 seconds and a maximum duration of 1200 seconds,
lastly, the time between link failures is reduced to a distribution
with a mean equal to 5000 seconds. Lastly, the publishing rate is
one message per second and the simulated duration of a single test
is two hours.

4.2 Evaluation Results

The scope of the first test, shown in Figure 9, is to assess the
scalability of the proposed approach, indicated in figure as Mod.
Scribe, compared with the unmodified version of Scribe. It is pos-
sible to notice that clustering AS-related nodes improves the scala-
bility of the approach, and the latency is affected only by the num-
ber of groups, while if we vary the number of nodes and leave the
same number of groups, the trend of the latency is almost constant.
We have studied the timeliness of the proposed approach in terms
of the standard deviation of the delivery time, illustrated in Figure
9(b). With small nodes, Scribe shows better values of timeliness,
but increasing the number of nodes involves a raise of the stan-
dard deviation, while the proposed approach exhibits a trend with
lower increasing rate. Lastly, we have evaluated the improvement
in terms of reliability, measured as the mean success rate, i.e., the
ratio of the received messages and the total published messages,

10http://www.omnetpp.org/doc/manual/usman.html
11projekte.tm.uka.de/trac/ReaSE
12www.oversim.org/

shown in Figure 9(c). Scribe provides no means to guarantee a re-
liable event dissemination, so its success rate is low and related to
the number of nodes in the tree, increasing the number of nodes
causes a drop in the success rate. While, the proposed approach ex-
hibits better reliability degree, which is not dependent on the total
number of nodes.

5. RELATED WORK
The proposed approach is very close only to the one used in [41]
since it also adopts broker replication and path redundancy. How-
ever, there are some main differences: 1) since the connection among
the brokers is ring-based, it seams to be less scalable than the pro-
posed approach that is tree-based, 2) even if paths are replicated
in the overlay, the topology-awareness is not addressed at all, last
3) system initialization needs global knowledge into the system,
which is impossible to have in Internet-scale pub/sub service, while
we do not need such information.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have analyzed the available approaches to im-
plement reliable pub/sub services and their effectiveness to the ap-
plication scenario of time-sensitive application over Internet. Path
redundancy has been shown to be an appealing approach, however,
current solutions that apply this approach do not provide path di-
versity, which has to be satisfied to guarantee that all subscribers
would receive all the messages. We have proposed a novel hybrid
peer-to-peer approach that combines the replication of the coordi-
nator in a cluster with multiple trees. We have performed a simula-
tion study to assess the quality of the proposed solution in terms of
scalability, timeliness and reliability.

We plant to make a more comprehensive simulation study to an-
alyze in details the properties of the proposed solution under differ-
ent network conditions. Moreover, multiple trees expose the draw-
back to generate considerable additional traffic, so we aim to apply
Network Coding [42] in order to optimize the generated traffic and
to achieve a wiser use of the network resources.
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