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Abstract. Edge computing is an attractive avenue to support low-latency
applications including those that leverage deep learning (DL)-based model
inferencing. Due to constraints on compute, storage and power at the
edge, however, these DL models must be quantized to reduce their foot-
print while minimizing loss of accuracy. However, DL models and their
quantized equivalents are often prone to adversarial attacks requiring
them to be made robust against such attacks. The resource constraints
at the edge, however, preclude any quantization and robustness design
operations directly at the edge. Moreover, the changing dynamics of edge-
based computations and resulting concept drifts in the models require an
iterative approach to meet the needs of robust DL models at the edge.
To address these challenges, this paper presents initial results on an it-
erative procedure involving a DDDAS feedback loop. DDDAS is used
to dynamically instrument the edge-deployed, quantized DL models for
data on the effectiveness of their quantization and robustness abilities,
which in turn is used to drive an automated, cloud-based process that
uses tools, such as Apache TVM, to generate quantized, optimized and
robust DL models suitable for the edge. These models subsequently are
automatically deployed at the edge using orchestration tools. Prelimi-
nary studies using this approach have shown its effectiveness in image
classification and object detection applications.

Keywords: Deep Learning, Dynamic Data-driven System, Adversarial
Machine Learning, Edge Computing, Model quantization

1 Introduction

Deep learning (DL) can be used to detect and segment distinct objects in an
image, translate speech to text, detect fraud, etc, which has led to a number
of DL-based cloud-hosted services. For several reasons, such as low latency re-
sponse, conservation of bandwidth, security, privacy, environmental concerns,
etc., however, applications are being designed to shift most of their computa-
tions away from the cloud and closer to the edge. Consequently, there is a need
to deploy these traditional DL models on a diverse range of edge hardware from
FPGAs to GPUs to ASICs [36]. Moreover, due to capacity and power constraints
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of these edge resources, the footprint of these models for edge resources must
be reduced – a process known as quantization. Thus, a change in model exe-
cution performance and accuracy across these different devices can be expected
since these models are typically optimized for the smaller footprint and resource-
constrained devices. There have been several efforts, such as Apache TVM [7],
Once-for-all (OFA) [4], and knowledge distillation (KD) [14] that attempt to
optimize DL models for heterogeneous platform deployment especially at the
edge.

Unfortunately, current machine learning models are generally vulnerable to
adversarial machine learning (AML) attacks, which are bound-limited perturba-
tions unnoticeable to the human eye but that cause the model to misunderstand
the data. While frameworks like TVM, OFA and KD work effectively under
normal, non-adversarial conditions, prior studies on determining whether or not
the compiler-generated smaller DL models are vulnerable to the same adver-
sarial machine learning (AML) attacks as traditional DL models are generally
lacking. Moreover, defense mechanisms against such attacks, e.g., an effective
defense strategy such as adversarial training, take much longer to deploy than
traditionally trained DL models.

These prohibitive costs make it very difficult to use existing AML defense
techniques directly on the edge. To address this problem, we propose a novel
application of the DDDAS paradigm [9] to generate, evaluate and deploy robust
and optimized edge-based DL models. In our approach, the DDDAS feedback
loop manifests between a powerful cloud or fog server and multiple edge-based
devices. The end result is a robust and reduced-size DL model that will be de-
ployed on the edge devices. Our novel application of the DDDAS paradigm op-
erates as follows: An initial reduced size and robust DL model is deployed at the
edge; then this edge device will periodically stream dynamically instrumented
data concerning attack robustness as well as accuracy of model predictions back
to the server where several larger models will check the performance and ro-
bustness of the edge-based model. Based on these performance results, adaptive
retraining of the edge-based model will occur at the cloud server. Subsequently,
this new model will be deployed on the edge-device after adversarial retraining
and optimization.

In this paper, we lay out the general idea behind our approach and present
preliminary results using this approach. In Section 2 we provide the necessary
background information. This will be followed by Sections 3, 4 where we de-
scribe our approach. We present some of our initial results in Section 5. We then
conclude the paper and discuss future directions in Section 6.

2 Background and Related Work

To make this paper self-contained, we provide background information on the
use of deep learning in computer vision focusing primarily on adversarial ma-
chine learning, and on model quantization/optimization. We also describe related
efforts and compare them to our proposed ideas.
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2.1 Edge-based Computer Vision Applications

Edge Computing is the idea of moving the computation from the cloud closer
to the sensors or Internet of Things (IoT). One of the benefits of this approach
is that it eliminates the need to send data back to the cloud, which can be very
costly depending on the type of data.

There have been several recent works, such as OpenDataCam [28], Coral-
Pie [34] and DeepLite [15], that demonstrate different object detection applica-
tions at the edge and the need for edge accelerators. In Coral-Pie, the applica-
tion is vehicle tracking using two Raspberry Pi’s conected to a Coral USB. The
authors did not use the full YOLOv3 [27] for object detection because it was
too computationally expensive for the CORAL USB. OpenDataCam is an open
source tool for monitoring and tracking moving objects in a live video stream.
This application uses YOLOv3 on a desktop machine and recommends using
YOLOv3-tiny for edge devices like Jetson Nano.

2.2 Adversarial Machine Learning and Defenses

Adversarial machine learning attacks on deep learning is a relatively new field
with its start in machine learning models [3]. The work on adversarial evasion
attacks [2] led to the seminal work on adversarial work on deep learning mod-
els [30]. The idea behind the attacks is that the image that is to be classified
is perturbed enough to make the ML model misclassify but not so much that a
human observer would notice. Several more efforts followed, such as FGSM [13],
PGD [23] and DeepFool [25].

There have been efforts to defend against such attacks. One of the most
successful defenses is a proactive method called Adversarial Training [23]. The
idea is to augment the training with adversarial examples so that the model
will hopefully learn smoothened decision boundaries taking into account the ad-
versarial perturbations, and later can correctly classify the adversarial samples.
There have been other defense works that utilize data augmentation [22] and/or
pre-processing [33] [26] where the idea is to remove the perturbations from the
image, or at least to mitigate the impact of the perturbation. A combination
of these data transformations with adversarial training [32] [1] have also been
proposed as a set of defense strategies.

Generally speaking, adversarial machine learning attacks and defenses have
gained much research interest. A roadmap on improving and evaluating adver-
sarial examples was given in [6], where the authors outline an approach to test
the robustness of models and describe some of the usual pitfalls that can occur
with defenses.

2.3 Deep Learning Computer Vision Attacks and Defenses

Since we focus on computer vision DL models with the goal of making them
robust for the edge, we provide some background in this area. Computer vision
is a very large area including many kinds of tasks like detection, classification
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and segmentation. Among them, object detection is a quite fundamental one.
Object detection in computer vision can be broken into two categories: Single
shot and Two-stage. Two-stage object detectors like R-CNN [12] have a region
proposal network in the first stage that narrows down the number of Region of
Interests (ROIs), and in the second stage completes the classification and refines
the bounding box. Two-stage models achieve good performances but training
and inference are both expensive. Single shot detectors like SSD models [20]
predict the boundary box and the class at the same time. Single shot detectors
often trade accuracy (on objects too close or far away) for the inference speed.

Due to the rise in the number of applications using deep learning-based object
detectors, research has focused on attacks against object detectors in a direction
guided by the previous adversarial machine learning works. The purpose of these
attacks can be different, ranging from causing many false objects to be detected
like adding an adversarial patch [21] to not detecting any objects at all as in
TOG [8].

Another recent extended attack on a tracking application was presented in
[17] in which the authors try to fool the Multiple Object Tracking (MOT). They
present an early work in autonomous driving to explore an attack on the complete
computer vision pipeline. Since adversarial ML attacks on object detectors is still
a relatively new field, the research on defense techniques is still scarce. Efforts,
such as [16], have used a two-stage adversarial training algorithm to improve
the robustness in safety-critical scenarios. In [35] the authors present a similar
adversarial training approach with a model trained on PGD attacked data. They
however only use one type of attack to augment their training data.

2.4 Summary of Prior Efforts and Unresolved Challenges

Much work has been done to address the challenges of adversarial machine learn-
ing and deploying models on edge-based devices, but little work has been done
on evaluating the robustness of edge-based models before and after optimiza-
tion and as models incur concept drift. We posit that the adversarial robustness
challenges, particularly on edge hardware deployments, requires further inves-
tigations into the following questions, which formulates the need to apply the
DDDAS paradigm as discussed in this paper:

1. Although research on model optimization with adversarial robustness exists,
these are mostly input-dependent solutions raising the question whether such
settings are too ideal without considering realistic resource limitations?

2. Past research has focused heavily on the single computation device node
adversarial vulnerability raising the question whether more adaptive system-
level attack evaluations can be designed?

3. The high transferability of the adversary across model settings raises the
question whether models can be deployed at the edge in a resilient way to
mitigate potential adversarial risks for new edge-based data-driven applica-
tions?
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Given these unresolved challenges, our objective is to explore solutions from
a system-level perspective. To make this system robust and resilient, we are
adopting DDDAS principles because the DDDAS’s dynamic and adaptive feed-
back loop can ensure that the ML models never start to decrease in performance
nor lose their robustness.

3 Methodology

In this section, we present our work. First, we describe the overall system model
and then discuss the approach highlighting the DDDAS loop and its components
that are distributed across the edge and cloud.

3.1 System Model

The system consists of one or more edge devices and a cloud server. In this
scenario, the edge device is assumed to run an application such as surveillance
of a parking lot or aiding an augmented reality (AR) device that is giving real-
time guidance to a user. It will be directly connected to a camera or any other
type of sensor being used.

Fig. 1: System Model with the DDDAS Feedback Loop

3.2 Server side

As seen in Figure 1, the server is used to train the original model that is to
be deployed to an edge device. This is also where multiple larger networks are
deployed that have been trained using different architectures, defense methods,
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etc. The goal is to cover enough ’adversarial’ ground with multiple networks
that a fusion of all of the models cannot be fooled by whatever perturbations
are crafted.

There have been many research works on machine learning model optimiza-
tions for specific hardware, and in particular smaller edge-based devices [29].
Among them we specifically choose three critical techniques of Once-for-all (OFA)
[4], Apache TVM [7] and Knowledge Distillation (KD) [14]. These three tech-
niques involve three model phases of adversarial training, defensive model op-
timization and robustness-preservation model structure simplification. OFA [4]
trains one network, and then uses a generalized pruning approach to obtain many
smaller networks that have reduced dimensions in depth, width, kernel size, and
resolution. Apache TVM [7] is a deep learning optimizer and compiler, that takes
in models trained using frameworks such as Tensorflow, PyTorch, MXNet, etc.
and generates code optimized to run the models on diverse hardware backends.
KD [14] utilizes a teacher-student approach, where the teacher is a large model
and the student is a smaller model. In our framework, the candidate models go
through Apache TVM or OFA where they are optimized for the given device.

We emphasize the dynamic data-driven aspect by continuously checking pre-
diction results on incoming data from the edge side in a dynamic way. The
server takes in data from the edge device and passes it through multiple net-
works, where we then fuse those results and compare them to the edge-device
model prediction. From the fused results, we create new ground truth train-
ing and validation images. These images can then either be used directly, or
they can be attacked and used for adversarial training. Using terminology from
Knowledge Distillation (KD) [14], while all of this is going on, an edge model is
continuously fine-tuned with the newly annotated data while a student model is
distilling knowledge using the fused results as the teacher model. When the edge
device drops below a certain performance threshold, one of the updated models
is chosen to be deployed.

3.3 Edge side

The edge side is where the application is actually executing. It is continuously
collecting the streaming data which is passed through the quamtized and opti-
mized network. These results are saved and checked for any potential anomalies.
If there are any, then this triggers a certain amount of data and predictions to
be sent back to the server. Periodically, data and predictions are sent back for
model checking, where a trigger causes more data to be sent back.

We emphasize the ’dynamic data-driven’ view from two aspects. First of
all, the periodic prediction result checking and calibration with the server side
enables the ’dynamic’ model updating to guarantee consistent adversarial ro-
bustness. Secondly, the feedback information from the server side should also
enable potential threat type detection and estimation(for example which Lp

norm attack), leading to ’dynamic’ selection and execution of robust candidate
models.
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3.4 Expected Use Cases

In ongoing work we are applying these ideas to augmented reality edge applica-
tions used to provide interactive maintenance support. We expect this framework
to allow users to deploy applications to the edge that can then be dynamically
adapted during deployment to perform most optimally when faced with clean
or adversarial data. We combine multiple ideas to obtain the most robust, opti-
mized edge-based DL models.

4 Experimental Setup

Fig. 2: System Model with the DDDAS Feedback Loop

In this section, we will explore each part of the DDDAS feedback loop and
how we plan to implement and evaluate each component. To more easily visualize
the distinct parts of the loop, we have highlighted the parts in Figure 2.

4.1 Feedback Loop Components

To begin testing the proposed DDDAS feedback loop from Figure 1, there were
several experimental logistical issues that we needed to resolve. The first was
determining how can we use pre-existing datasets to test out our feedback loop
with ’new’ data. Our initial idea was to take datasets and reduce the number of
training images, and use the extra training images for the feedback loop. These
could then be combined with the validation and test sets to simulate new data
being presented. This data would then be used later on in the retraining phase
of the loop.
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We want to split the data so that there are examples from each class in the
new data. We also needed to separate some data for the anomaly detection.
For example, we would want an anomaly to be detected for object detection if
there are too few or too many detected objects. We discovered a tool [24] that
would aid us in doing this. This tool allows the user to more easily visualize and
rearrange datasets for their needs.

NN Model Checking The first component we will discuss is how we evaluate
the edge model’s performance. There has been some research done on fusion
and its impact on robustness, which has mostly shown that fusion does improve
robustness [31]. We want to utilize this fact to evaluate the edge model.

To setup this component, we use pretrained networks, which are adversarially
trained networks as well as a variety of different neural networks. The idea is
to get a diverse enough ensemble of models that when fused together will not
be fooled by adversarial examples, OOD data, etc. When we say fused together,
we mean by utilizing decision-level fusion. Decision-level fusion is where the
output probabilities from ML models trained on different modalities of data are
combined in order to achieve better performance than from just one type of data.
There are several different types of decision-level fusion: average ranks, naive-
bayes, highest probability, generalized chernoff, and sandia probabilistic fusion.
Each algorithm, makes decisions slightly differently based on the probability
distributions.

We directly use the robust decisions to determine how our edge model is
performing. This is done by comparing the fused results with the edge model
results. We have a threshold set, that has been determined through testing, to
determine when the edge model’s performance has dipped enough to warrant
retraining.

Preparation of New Data and History Tracking We discussed briefly
how we plan to approach sending ’new’ data through a network for evaluation
and retraining. A benefit of splitting up the data more than just train and test
splits, is that we have already annotated data. This way we can check how well
our annotation techniques work without having to hand annotate new data.

In this component, we use the predictions from the NN model check to help
us annotate the new images. We also store the results of the models to be able
to compare performance going forward.

NN Model Training/Retraining At this point, new data has been anno-
tated and there is a need to retrain the edge model. We utilize several different
approaches to determine the best and most robust model. Several of the different
training techniques we are using are our own QUAT [5] approach, normal train-
ing, knowledge distillation training, regular adversarial training, etc. We then
compare each of these models to each other and send the best one to the next
step of the feedback loop.
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NN Model Optimization In this component, we optimize the trained model
to be deployed on a specified edge device using preexisting frameworks such as
Apache TVM. This step will optimize the model to be deployed on whatever
hardware is being used. There has been some previous work showing that model
quantization can actually improve adversarial robustness [37].

Real-time Edge Application This component is where the real-time edge
application will be deployed. At the moment we are focusing solely on computer
vision tasks like image classification, object detection, semantic segmentation.
With one of our motivating applications being AI-assisted AR for smart mainte-
nance, we would like to include other tasks such as natural language processing
in further work.

While the application is being run, there is periodic offloading of some of
the collected data as well as the model’s predictions. There also is an anomaly
detector running that checks the model’s ouputs at runtime and checks to see if
there is any anomalous behavior. An example of this for object detection would
be detecting many more objects than is normal or not detecting any objects for
an extended period of time.

To aid in decision-making further on in the loop, we also collect resource
usage data. We see this mainly being used to help in the optimizations of the
models.

4.2 Datasets

We want to evaluate our framework using several computer vision tasks; image
classification, object detection, and semantic segmentation. To carry out the best
and most informative evaluation, we wanted to select several datasets for each
task.

In Table 1, there is a dataset that we collected ourselves, Car Engines. The
goal for this dataset was to show a proof of concept for engine maintenance
guidance using ML. This dataset was collected with help from collaborators in
our research group. The dataset was then self-annotated for semantic segmen-
tation. An example image and segmentation map from this dataset can be seen
in Figure 3.

4.3 Models

The models we are using and their deployment level are each outlined in Table 2.
We also present the model size to illustrate the differences between cloud and
edge models.
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CV Task Dataset Train/Val/Test Images Classes
Image Classification CIFAR10 [18] 60,000 10

CIFAR100 60,000 100/20
Imagenet [10] 14,197,122 1000

Object Detection Pascal VOC [11] 21,493 20
MS COCO [19] 123,287 80
VisDrone [38] 8632 10

Semantic Segmentation Pascal VOC 123,287 20
Car Engines (Ours) 58 14

Table 1: Description of CV Tasks and Corresponding Datasets

Fig. 3: Example Engine Images (L: RGB Image, R: Segmentation Map)

4.4 Devices

In Table 3, we list out the devices we have used/plan to use for evaluation of
our feedback loop. We have also included selected resource information such as
CPU cores, RAM, GPU, and typical power consumption when idle and busy.

5 Preliminary Studies and Challenges

Typically accuracy of the model is the only metric for image classification. Object
detection and semantic segmentation, have slightly more complex metrics.

To determine how well models perform on object detection/semantic segmen-
tation datasets like PASCAL-VOC [11], they are judged on their inference time
and their mean average precision (mAP). The mAP is calculated using a metric
called Intersection over Union (IoU). The higher the mAP the better, but its
semantics for object detection are different compared to image classification ac-
curacy, where the classification is either correct or incorrect. In contrast, the goal
of object detection is to draw bounding boxes around objects and then correctly
classify the object(s). To calculate the mAP, the analyst needs the ground-truth
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CV Task Model Backbone Model Size (MB) Device Type
Image Classification Resnet(18/50) N/A 45/98 Cloud

Densenet121 N/A 33 Cloud
Mobilenet v3 N/A 16 Edge

Object Detection YOLO v3 Darknet 237 Cloud
Tiny YOLO v3 Darknet 34 Edge
FasterRCNN Resnet50 160 Cloud
FasterRCNN Mobilenet v3 74 Edge

Semantic Segmentation Unet Resnet50 164 Cloud
Unet Mobilenet v3 43 Edge

Table 2: Description of CV Models

Deployment Device CPU RAM GPU Power
Level Name
Cloud Desktop 12 Core 32 GB NVIDIA RTX 2060 70W/175W

175W/500W
Edge Raspberry Pi 4 Core 1 GB N/A 1.9W/5W

Jetson Nano 4 Core 4 GB shared NVIDIA Maxwell 5W/10W
Jetson TX2 2 + 4 Core 8 GB shared NVIDIA Pascal 7.5W/15W

Table 3: Description of Devices Used

and predicted bounding box coordinates, which can then be used to calculate the
IoU. The IoU is calculated as the amount the predicted bounding box overlaps
with the ground-truth bounding box divided by the total area of the union of
both boxes.

To determine the efficacy of the model, the analyst sets a threshold percent-
age for the overlap. The threshold is usually set at 0.5 per convention and because
of the fact that humans can barely tell the difference between 0.3 and 0.5 IoU.
For some different datasets or competitions, a different confidence threshold is
used. The mAP is then calculated by drawing precision-recall curves with the
IoU set at different thresholds. This is done for each class, and at this point it
is just the average precision (AP). The average AP across all classes is then the
mAP.

5.1 Image Classification

We have done extensive evaluation of image classification models. Most of this
is still waiting to be publicly released, but that will all be included in the final
framework. We have looked at different techniques for adversarial training as
well as potential preprocessing techniques for improving adversarial robustness.
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5.2 Object Detection

In our earlier work, we evaluated our QUAT [5] algorithm using object detection
models. Through experimentation, our approach appeared to be a promising
solution, but there is still room for improvement as well as more evaluation
which we plan to do throughout developing this framework.

5.3 Semantic Segmentation

Fig. 4: Example Engine Images
(Top left: Normalized RGB, Top Right: Test seg, Bottom: Predicted seg)

(mIoU = 30.7%, Accuracy = 79.3%)

Some of our initial results on the Car Engine dataset are shown in Figure 4.
While the mIoU might seem slightly low at 30.7%, it is actually not bad for a
semantic segmentation task. The model was able to locate close to 3/4 of the
engine as well as the dip stick. Also, the validation accuracy of 79.3% is promising
showing that the model was able to classify the predicted objects reasonably well.

We believe these results can be further improved by training the model more
as well as add more engine images.
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6 Conclusions

This paper presented preliminary ideas and results on applying DDDAS prin-
ciples to address the challenges of realizing adversarially robust deep learning
models that are suitable for edge devices. Presently, this research has shown the
effectiveness of using a DDDAS feedback loop to keep a real-time application
from decreasing in performance and improve in robustness to unseen circum-
stances. There is still much work to be done to further explore this area of
research. We plan to explore this problem by utilizing applications such as se-
mantic segmentation and object detection that will be evaluated on a range of
edge device types and application use cases, such as augmented reality-based
maintenance.
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