
INDICES: Applying DDDAS Principles for
Performance Interference-aware Cloud-to-Fog
Application Migration

Shashank Shekhar and Ajay Dev Chhokra and Anirban Bhattacharjee and Yogesh
Barve and Shweta Khare and Guillaume Pallez and Hongyang Sun and Aniruddha
Gokhale and Gabor Karsai

Abstract An increasing number of interactive applications and services, such as
online gaming and cognitive assistance, are being hosted in the cloud because of
its elastic properties and cost benefits. Despite these benefits, the longer and often
unpredictable end-to-end network latencies between the end user and the cloud can
be detrimental to the response time requirements of the applications. Although tech-
nology enablers, such as Cloudlets or Micro Data Centers (MDCs), are increasingly
being leveraged by cloud infrastructure providers to address the network latency
concerns, existing efforts in re-provisioning services from the cloud to the MDCs
seldom focus on ensuring that the performance properties of the migrated services
are met. This chapter demonstrates the application of DDDAS principles to address
these limitations by: (a) determining when to re-provision; (b) identifying the ap-
propriate MDC and a suitable host within that MDC that meets the performance
considerations of the applications; and (c) ensuring that the cloud service provider
continues to meet customer service-level objectives while keeping its operational

Shashank Shekhar
Siemens Corporate Technology, Princeton, NJ, USA, e-mail: shashankshekhar@siemens.com
and Ajay Dev Chhokra
Vanderbilt University, Nashville, TN, USA e-mail: ajay.d.chhokra@vanderbilt.edu
and Anirban Bhattacharjee
Vanderbilt University, Nashville, TN, USA e-mail: anirban.bhattacharjee@vanderbilt.edu
and Yogesh Barve
Vanderbilt University, Nashville, TN, USA e-mail: yogesh.d.barve@vanderbilt.edu
and Shweta Khare
Vanderbilt University, Nashville, TN, USA e-mail: shweta.p.khare@vanderbilt.edu
and Guillaume Pallez
INRIA, Bordeaux, France e-mail: guillaume.pallez@inria.fr
and Hongyang Sun
Vanderbilt University, Nashville, TN, USA e-mail: hongyang.sun@vanderbilt.edu
and Aniruddha Gokhale
Vanderbilt University, Nashville, TN, USA e-mail: a.gokhale@vanderbilt.edu
and Gabor Karsai
Vanderbilt University, Nashville, TN, USA e-mail: gabor.karsai@vanderbilt.edu

1

shashankshekhar@siemens.com
ajay.d.chhokra@vanderbilt.edu
anirban.bhattacharjee@vanderbilt.edu
yogesh.d.barve@vanderbilt.edu
shweta.p.khare@vanderbilt.edu
guillaume.pallez@inria.fr
hongyang.sun@vanderbilt.edu
a.gokhale@vanderbilt.edu
gabor.karsai@vanderbilt.edu


2 Shekhar et. al

and energy costs low. Empirical evaluations using a setup comprising a cloud data
center and multiple MDCs composed of heterogeneous hardware are presented to
validate our claims.

1 Introduction

The cloud has become an attractive hosting platform for a variety of interactive
and soft real-time applications, such as cloud gaming, cognitive assistance, health
monitoring systems and collaborative learning, due to its elastic properties and cost
benefits. Despite these substantial advantages, the response time considerations of
the users mandate lower latencies for the applications. Prior work [31, 36] have
shown that in highly interactive applications, latencies exceeding 100 milliseconds
(ms) may be too high for acceptable user experience. However, real-world experi-
ments have shown that the latencies experienced by geographically distributed users
of an interactive service may tend to be on the order of several hundreds of mil-
liseconds [52]. Consequently, there is a need to bound the resulting response times
within acceptable limits.

For any cloud-hosted interactive application, the key factors that affect the round
trip latencies are the network delay between the client and the cloud, particularly the
roundtrip delay between the nearest access point of the client and the cloud, and the
time it takes to serve the client request in the cloud. Other factors, such as the time
taken by the thin client, the time to reach the nearest access point or time for the load
balancer at the cloud front-end are negligible. Thus, any improvement in response
times must focus on reducing the network delays and the server processing time.

In recent years, edge computing, cloudlets [47] orMicroData Centers (MDCs) [3]
have emerged as one of the key mechanisms to manage and bound the transit latency
by supporting cloud-based services closer to the clients. MDCs can be viewed as
“data center in a box,” which act as the middle tier in the emerging “mobile device–
MDC–cloud” hierarchy [47].1 MDCs possess key attributes of soft states, sufficient
compute power and connectivity, proximity to clients, and conformance to standard
cloud technologies.

Recent efforts [13,14,37,60] have leveraged the cloud, MDCs and mobile ad-hoc
networks by focusing primarily on cyber foraging, where tasks are offloaded from
mobile devices to the cloud/MDCs for faster execution and conserving resources
on the mobile client endpoints. However, only recently has there been an increasing
interest inmoving tasks from the central clouds to theMDCs. Those that do, however,
have seldom considered the resulting application performance because these efforts
tend to overlook the fact that servers within theMDCmay themselves get overloaded,
thereby worsening the user experience as compared to that of a traditional cloud-
hosted interactive service. On the other hand, efforts that consider performance of
MDCs make very simplistic assumptions regarding their performance models.

1 In the rest of the chapter, we will use the term MDC to represent all emerging mechanisms, such
as Cloudlets, Micro Datacenters (MDCs), Locavore infrastructures, etc.



INDICES 3

In this chapter, we focus on the performance of MDCs, specifically on the key
factors contributing to performance degradation of applications running in MDCs
specifically and data centers in general. One fundamental system property that is
often overlooked in prior works is performance interference, which is caused by
co-located applications in virtualized infrastructures [10, 17, 33, 35]. Performance
interference, being an inherent property of any virtualized system, manifests itself in
MDCs also and therefore must be factored in by any approach that is performance-
aware. Thus, we consider a “just-in-time and performance-aware” service migration
approach for migrating cloud-based interactive services hosted in a centralized cloud
data center to an MDC.

To support such as vision, a number of challenges manifest themselves as de-
scribed below that must be addressed by any just-in-time and performance-aware
cloud-to-fog application migration solution:

• Hardware heterogeneity: Differences in hardware configurations of the servers
in a traditional data center and in an MDC will provide different performance
profiles, and hence should be accounted for in the analyses.

• Performance Interference:Noisy neighbors [11] cause performance issues, which
must be considered in both traditional data centers and MDCs. However, since
an MDC is orders of magnitude smaller than a traditional data center, perfor-
mance interference may be more pronounced and manifests more rapidly than in
traditional data centers.

• Network performance measurements: Accurate latency and bandwidth measure-
ments are required to reliably work over Wide Area Networks (WANs). This is
important, since accurately estimating the value for the transit latency is critical
in our problem formulation and solution.

• System performance measurements:Accurate application and server performance
measurement and logging techniques are required to accurately measure the
service execution (i.e., service execution time on the hardware of the data centers
or MDCs).

The cloud-fog resource spectrum is a highly dynamic system and hence no a
priori, statically-defined solution is going to address these multitude of challenges
all at once. Instead, solutions that rely on dynamic data-driven techniques such
as that envisioned by the Dynamic Data Driven Applications Systems (DDDAS)
paradigm [6, 15] offer the most promise. DDDAS proposes an approach where
data-driven models of a system are learned through dynamic instrumentation of the
system, the models are simulated to conduct what-if analysis, and in turn these in-
sights are used in a feedback loop to steer the system along the desired trajectory. In
this chapter we apply the DDDAS approach to address these aforementioned chal-
lenges and present a just-in-time and performance-aware cloud-to-fog application
migration approach that involves the following contributions:

• We present a data-driven modeling technique to estimate the performance of a
cloud application on different hardware platforms subject to performance inter-
ference stemming from various co-located applications.



4 Shekhar et. al

• We formulate server selection as an optimization problem that finds an apt server
among multiple micro data centers to migrate an application to, so that its per-
formance needs can be met while minimizing the deployment cost of the service
provider.

• We describe INDICES (INtelligent Deployment for ubIquitous Cloud and Edge
Services), which is a framework that implements our DDDAS-based algorithms
for online performance monitoring, performance prediction, network perfor-
mance measurements, server selection and application migration.

• We show experimental results to validate our claims and evaluate the efficacy of
the INDICES framework.

The rest of the chapter is organized as follows: Section 2 presents the system
model and assumptions; Section 3 describes the problem formulation we address
in this research; Section 4 delves into details of our solution including the design
and implementation; Section 5 presents empirical results that validate our claims;
Section 6 compares related work with our work; and finally Section 7 presents
concluding remarks alluding to lessons learned and future work.

2 System Model and Assumptions

In this section, we formally describe the system model used in our study, and also
introduce the assumptions we make for formulating the problem.

2.1 Components of Application Response Times

Typically, the total end-to-end latency ttotal or response time experienced by cloud-
hosted interactive applications consists of several parts as shown in Equation (1)
below and which forms the motivation for our work :

ttotal = tclient + taccess + ttransit + tdatacenter + tserver (1)

where

• tclient is the processing delay at the client endpoint;
• taccess is the sum of inbound and outbound message transmission delays between

the client and its nearest network access point;
• ttransit is the sum of inbound and outbound communication delays between the

network access point and the cloud data center;
• tdatacenter is the communication delay from the data center front end (e.g., a

web server and load balancer) to the target server in the data center that actually
handles the request in both directions;

• tserver is the processing delay at the target server.



INDICES 5

Among these costs, tclient and taccess cannot be controlled and managed by
the cloud service provider. Also, since tdatacenter is usually less than 1 ms [12],
it is practically negligible. On the other hand, a cloud provider can control and
manage ttransit and tserver , both of which are key factors in meeting the response
time requirements of interactive applications. Note that ttransit is governed by the
number of hops incurred by the application messages to traverse the wide area
network to reach the cloud data center and for the responses to traverse back to the
user.

2.2 Architectural Model

The work presented in this chapter is geared towards platform-as-a-service (PaaS)
cloud providers who seek to meet service-level objectives (SLOs) of soft real-
time applications, such as online gaming, augmented reality, or virtual desktop,
by improving application response times via the exploitation of micro data centers
(MDCs). In doing so, cost considerations and energy savings for the PaaS provider
in operating and managing the resources beyond the traditional data centers are also
critical issues while ensuring that such an approach provides an additional source of
revenue to the PaaS provider. Revenue generation issues are, however, beyond the
scope of this chapter.

Figure 1 depicts our architectural model that consists of a Centralized Data Center
(CDC), owned by a PaaS cloud provider. The CDC is connected to a group of Micro
Data Centers (MDCs), denoted by M = {m1,m2, . . . ,mn}. TheseMDCs are deployed
at the edge, and are either owned by the CDC provider or leased from an edge-based
third party MDC provider. A leased MDC is assumed to be exclusively under the
control of the CDCprovider.2Once anMDC is leased, all its resources are considered
to be part of the CDC provider, and hence customers of the CDC can be transparently
diverted to the MDC using their CDC-based security credentials.

The CDC comprises a set of compute servers, Hcdc , that can be used to execute
applications. The CDC also contains a global manager gm, which is responsible
for detecting and mitigating global SLO violations. We assume that, for each MDC
m ∈ M , there exist links to the CDC with a backhaul bandwidth of bm. Each MDC
m also comprises a set of compute servers, Hm, that can be allocated to the CDC for
its operations at a specified cost. One of the hosts from Hm or a specially designated
MDC host acts as the local manager (lmm) for that MDC and is responsible for data
collection, performance estimation, latency measurements and MDC-level decision
making. This decision-making logic is deployed at the MDC by the CDC provider.
For convenience, we let Hmdc =

⋃
m∈M Hm denote the set of all servers in the

MDCs, and let Htotal = Hmdc
⋃

Hcdc denote the set of all servers from both the
CDC and the MDCs. Table 1 lists the key notations in the architecture model.

2 The sharing of MDCs across different CDC providers is not addressed in this work and forms a
dimension of our future work.



6 Shekhar et. al

Global Manager 
(gm)

H
igh Latency

Centralized Data 
Center

Low LatencyMicro Data Center
m1

lm1 lm2

Micro Data Center
m3

lm3

Micro Data Center
mn

lm4

Location 
Manager (lm)

. . .  

Non Compute 
Node

Compute 
Node

Fig. 1 Architectural Model

Table 1 Key notations in the architectural model
Notation Description
CDC Centralized Data Center, located at the cloud for execution of applications
M Set of Micro Data Centers, located at the edge for execution of applications

Hcdc Set of compute servers (hosts) located at the CDC
Hm Set of compute servers (hosts) located at an MDC m ∈ M

Htot al Set of all compute servers (hosts) located at both the CDC and the MDCs
Hmdc Set of all compute servers (hosts) located at the MDCs
bm Backhaul bandwidth to transfer data from the CDC to hosts of Hm

2.3 Application Model

We consider a set of latency-sensitive applications, denoted as Apps, that can be
collaborative or single user and interactive or streaming in nature. Each application
a ∈ Apps is initially deployed in the CDC, with a set Ua of users, and is assumed
to be containerized inside a virtual machine (VM). We assume that for a collab-
orative application a, its users are located in proximity of each other where they
incur similar round trip latencies. These scenarios are common when we consider
collaborative educational applications such as [9] where the users are a group of
students working from a school library or a coffee shop, computer vision-based



INDICES 7

applications in museum and stadium settings [19], or a single user system such as
augmented reality-based assisted industrial troubleshooting [28] where image pro-
cessing operations are performed in the cloud. Table 2 lists the key notations used in
the application model.

2.3.1 Application Performance

Each application a ∈ Apps can be hosted on any active host in CDC or MDC, i.e.,
η ∈ Htotal that provides virtualization using a hypervisor or virtual machine monitor
(VMM), such as KVM [34] and Xen [2]. Let eeda represent the expected execution
duration for which the application will be used by the end-user clients. An interactive
or streaming application comprises multiple individual interactions between the user
and the application that we call streaming steps.

Each interactive or streaming step of application a consists of both a latency
and an execution time. A step takes an estimated execution time eeta,η on host
η; for collaborative applications, it indicates the time needed for all users to have
completed that step. Section 4.2 discusses in detail a systematic way of estimating
these per-step execution times. In addition, for each user u ∈ Ua of the application,
let ela,η,u represent the estimated round-trip network latency. Hence, if we denote
by essa,η the total expected response time of a streaming step, we have:

essa,η = eeta,η + max
u∈Ua

ela,η,u (2)

For an application a, we define φa to be a bound on the acceptable response
time for each interactive step of the application. Formally, the SLO for application a
hosted on host η should satisfy:

essa,η ≤ φa (3)

2.3.2 Migration Cost

During normal execution, some applications may suffer from performance degra-
dation. We denote by PA the subset of Apps running on the CDC that suffer from
performance degradation. These impacted applications can be identified reactively
by the end-user client, which notices missed deadlines using special instrumentation
features supplied in the client-side “app” installed as part of the PaaS platform and
notifies the CDC service. Alternatively, they can be identified proactively via a pre-
dictive decision based on the existing user profiles, where the system predicts that
the users are likely to experience SLO violations if they had connected from their
profiled location during a certain time period. Our goal is to minimize the number
of SLO violations.



8 Shekhar et. al

Table 2 Key notations in the application model
Notation Description
Apps Set of applications initially deployed on the CDC
PA Subset of applications in Apps that suffer from performance degradation
Ua Set of users executing application a ∈ Apps

eeda Expected execution duration of application a ∈ Apps

eeta ,η Estimated execution time of a streaming step of application a ∈ Apps executed
on host η ∈ Htot al

ela ,η ,u Estimated round-trip latency experienced by user u ∈ Ua from a streaming
step of application a ∈ Apps executed on host η ∈ Htot al

essa ,η Total expected response time of a streaming step of application a ∈ Apps
executed on host η ∈ Htot al

φa Bound on acceptable response time for each streaming step of application
a ∈ Apps

sa Size of the snapshot of application a ∈ PA to be migrated from CDC to MDC
cia ,η Initialization cost of migrating application a ∈ PA to host η

trans f era ,η Transfer time for migrating application a ∈ PA from CDC to host η in MDC
and for initializing it

δa Bound on acceptable transfer time for migrating and initializing application
a ∈ PA

To do this, the system can decide to migrate those applications from the CDC to
the hosts in the MDCs. Migrating (or transferring) an application incurs two costs:
the cost to transfer a snapshot of the application on the new host, and the initialization
cost to start the application on the new host.

For an application a ∈ PA transferred to host η ∈ Hm, we denote by sa the
size of the snapshot of the application (independent of the host). It is transferred to
host η using the corresponding MDC’s backhaul bandwidth bm. Furthermore, let us
denote by cia,η the initialization cost of migrating application a to host η before the
application can start processing requests on the MDC host. Once the user-specific
state has been transferred, there isminimal interaction between theCDC-based server
and the MDC-based server for the remainder of the functioning of application a. In
this chapter, we do not consider further consolidation of resources where applications
migrate back to the CDC. The transfer time trans f era,η incurred while migrating
application a from the CDC to host η of an MDC is therefore defined as follows:

trans f era,η =
sa
bm
+ cia,η (4)

In general, to migrate the application to the new machine, we need the transfer
duration to be small compared to the application’s remaining expected execution
duration eeda. This is a necessary condition to motivate the use of MDC resources
and for our solution to be relevant. To ensure this, we do not require sending entire
images of the VM or the container from the CDC to MDC. Instead, we use a layered
file system architecture at the MDC that is pre-populated with base images used at
the CDC as described in Section 4.4. This assumption is realistic because we surmise
that an MDC is either owned entirely or leased exclusively by the CDC provider.



INDICES 9

We also ensure that the transfer duration is within a threshold δa defined by the
application users before they start to observe improved response time. We concretize
these requirements with the following constraint:

trans f era,η ≤ δa � eeda (5)

Finally, another critical issue we must account for is that any migration of a new
application from the CDC to an MDC should not violate the SLOs of the existing
applications in that MDC. To capture this aspect, let Appsη represent the set of
all applications currently running on an MDC host η. Then, for each application
b ∈ Appsη , we must verify that its response time bound remains satisfied, i.e.,
essb,η ≤ φb , after the migration of the new application.

3 Problem Statement and its Formulation

We now formally present the problem statement. Recall that our objective is to im-
prove response times for cloud-hosted interactive applications that are experiencing
performance degradation by migrating them to MDCs. To that end, we must address
two key problems. First, we must have a systematic approach for understanding the
causes of performance degradation and for determining if an application is impacted.
Second, we must find an effective approach by which an application can be migrated
from the CDC to anMDCwithout impacting existingMDC-based applications while
minimizing the cost incurred by the cloud provider.

3.1 Performance Estimation Challenges

The performance of an application depends on several factors, including the work-
load, the hardware hosting platform, and co-located applications that cause perfor-
mance interference [10, 17, 33]. It is thus important for any solution to account for
all of these factors in order to accurately estimate an application’s performance in
both the CDC and the MDCs. Below, we describe the roles of these factors and the
challenges in performance estimation.

3.1.1 Workload Estimation

For the cloud-hosted interactive applications of interest to us, we assume that the
workload variation is not significant within a single user session of the service.
However, different sessions may have different workloads. For example, in an image
processing application, the quality and hence the size of the captured and relayed
image may vary depending on different clients’ mobile devices. Thus, we consider



10 Shekhar et. al

each workload as a different application setting, which is reflected by the application-
specific response time (as described in Section 2.3.1).

3.1.2 Hardware Heterogeneity

The CDC and MDCs may consist of heterogeneous hardwares and hence each
application’s performance can vary significantly from one hardware platform to
another [17]. Therefore, we need an accurate benchmark of performance for each
hardware platform.

3.1.3 Performance Interference

Server virtualization platforms such as KVM [34] and Xen [2] provide high degree
of security, fault and environment isolations for applications running in virtualized
containers, i.e., virtual machines (VMs). However, the level of isolation is inadequate
when it comes to performance isolation even though the cloud providers have well-
defined resource sharing mechanisms. This happens due to two primary reasons:

• Presence of non-partitionable shared resources:VMs can provide isolation guar-
antees by applying strict CPU reservations and static partitioning of disk and
memory spaces. There are solutions available to limit the network bandwidth too.
Yet, on-chip resources including cache spaces, cache andDRAMbandwidths, and
interconnect networks are difficult to partition [26]. Recently, Intel has introduced
Cache Allocation Technology [8] to partition the last level cache (LLC). However,
it is still not widely used and cannot be applied to older generation servers. In
addition, the presence of shared storage disk is a leading cause of performance
degradation [48]. The load imposed on these shared resources by one application
is detrimental to all the cache-, memory- and I/O-sensitive applications [42].

• Hypervisor overhead: The virtual machine monitor or hypervisor has its own
overhead. In traditional hypervisors such as KVM and Xen, each virtual ma-
chine runs its own operating system which leads to overhead. In addition, the
virtual CPUs (vCPUs) can be de-scheduled and virtual RAM can be swapped out
without notification. This leads to performance anomalies. In recent years, Linux
Container-based virtualization techniques such as Docker and LXC has grained
transaction due to its low overhead. These resource sharking mechanisms share
the kernel space from the host machine, which alleviates some of the performance
concerns but do not provide the same level of performance and security isolations
as the VMs [45]. In addition, to maximize the server utilization in shared clusters,
cloud providers tend to overbook resources such as CPU cores. This precludes
strict CPU reservations and leads to even the lower level caches (L1 and L2)
getting shared. In addition, if the overbooked workload goes beyond the server
capacity, contention takes place and the applications suffer from performance
issues.



INDICES 11

3.2 Optimization Problem Formulation

The objective of the framework is to assure the SLOs for all the identified applications
in PA bymigrating them to theMDChosts, while minimizing the overall deployment
cost.

3.2.1 Objective Function

To formalize the optimization problem, we define the following binary variables to
indicate the decision for deploying the applications in the set PA onto the hosts in
Hmdc .

xa,η =

{
1 if a ∈ PA is deployed on η ∈ Hmdc

0 otherwise

Thus, the total number of decision variables is |PA| × |Hmdc |.
The total cost of deploying applications consists of two parts as shown in Equa-

tion (6), where the first part indicates a fixed cost incurred due to extending the lease
of a host η (if the host is selected), and the second part indicates the cost of deploying
an application a to host η, which includes both transfer and initialization costs.

Ctotal =
∑

η∈Hmdc

C f ixed
η +

∑
η∈Hmdc

∑
a∈PA

xa,η · C
deploy
a,η (6)

Each MDC host η involves a monetary allocation cost as it is either leased or
could be leased to other providers if owned by the centralized cloud. In addition,
running servers involves operational costs, such as the need for power and cooling.
Thus, the provider wants to use an MDC server for the shortest duration possible
and hence the deployment cost depends on the duration for which the MDC server
is used. This cost can be modeled as the extra duration for which the server has to be
turned on due to the deployment of the applications in PA and it can be represented
by a nonlinear function as shown in Equation (7), where the constant αη denotes the
cost gradient for powering on host η.

C f ixed
η = αη ·max

(
0, max

a∈PA
(xa,η · eeda) − max

b∈Appsη
eedb

)
(7)

The other objective for the cloud provider is to select hosts which bear minimum
transfer and initialization costs. This cost is represented as a linear function of transfer
and initialization time, as shown in Equation (8), where the constant βa,η represents
the cost gradient for transferring application a to host η.

Cdeploy
a,η = βa,η · trans f era,η (8)



12 Shekhar et. al

3.2.2 Optimization and Constraints

Using the decision variables and the objective function, we can now formulate the
optimization problem as an Integer Non-Linear Program (INLP) as follows:

minimize Ctotal

subject to
∑

η∈Hmdc

xa,η = 1,∀a ∈ PA (9)∑
η∈Hmdc

xa,η · essa,η ≤ φa,∀a ∈ PA (10)∑
η∈Hmdc

xa,η · trans f era,η ≤ δa,∀a ∈ PA (11)

essb,η ≤ φb,∀b ∈ Appsη,∀η ∈ Hmdc (12)
xa,η ∈ {0,1},∀a ∈ Appsη,∀η ∈ Hmdc (13)

The following explains the constraints in the above formulation based on the
architectural and application models:

• Constraint (9) restricts each application a ∈ PA to be deployed on only one MDC
host.

• Constraint (10) enforces the response time constraint for each application a ∈ PA
(i.e., Inequality (3)).

• Constraint (11) enforces the deployment constraint for each application a ∈ PA
(i.e., Inequality (5)).

• Constraint (12) ensures the response time constraint for each existing application
b ∈ Appη in each MDC host η ∈ Hmdc .

• Constraint (13) restricts the decision variables to be binary.

Due to the NP-hardness of the above INLP formulation, we rely on a greedy-based
heuristic to solve it. Section 4.5 describes the proposed heuristic for server selection.

4 Design of INDICES

We now present the design of our INDICES framework, which solves the optimiza-
tion problem from Section 3.2. To that end, our solution depends on accurately and
reliably estimating: (a) the execution time of the impacted application and network
latencies suffered by its clients; (b) similar parameters for the already running ap-
plications on different hosts of different MDCs, which are then used in selecting the
appropriate host to migrate an impacted application; and (c) the transfer time for
migrating the state of the impacted application. This section describes the framework
architecture and the detailed techniques for solving the optimization problem.



INDICES 13

4.1 INDICES Architecture and Implementation

Before delving into the detailed techniques used to solve the optimization problem,
we first present a high-level architecture of INDICES. Given the scale of the system,
a centralized approach to performance prediction and cost estimation for every
application hosted in the CDC/MDC and its clients is infeasible. Thus, we take a
hierarchical approach, where individual MDCs with their local managers and the
global manager of the CDC participate in a two-level decision making process as
shown in Figure 1.

Figure 2 shows the local decision making part of INDICES. Each MDC is com-
posed of a management node and several servers on which the applications execute
within virtual machines. Each individual host in the system has a performance mon-
itoring component that logs the data at the local manager lmm. The local manager
consists of a data collector, a latency estimator, a performance predictor and a cost
estimator.

Local Manager

Performance 
Predictor

Data Collector

Cost Estimator

La
te

n
cy

 E
st

im
at

o
r

. . .  

HOST 1

VM1 VM2

HYPERVISOR

Performance Logger

Monitor Monitor

Monitor

HOST 2

VM1 VM2

HYPERVISOR

Performance Logger

Monitor Monitor

Monitor

HOST N

VM1 VMn

HYPERVISOR

Performance Logger

Monitor Monitor

Monitor

To Global Manager

Fig. 2 Local Decision

The performance monitor instruments the host and collects system level metrics
such as CPU,memory and network utilizations, as well asmicro architectural metrics
such as retired instructions per second (IPS) and cache misses. This information is
periodically logged to the local manager for processing. The performancemonitoring
framework is based on the collectd [23] system performance statistics collection tool.
To collect micro architectural performance metrics, we developed a Python plugin



14 Shekhar et. al

for collectd using Linux perf. This plugin detects if the hardware platform is known,
and accordingly executes code that collects hardware specific performance counter
statistics. The information is then forwarded to the lmm using AMQP [51] message
queuing protocol. The lmm runs a server developed in theGo programming language,
which persists the data in the InfluxDB database, designed specifically for time-series
data.

4.2 Execution Time Estimation

The constraints in the optimization problem require an accurate understanding of the
predicted execution time duration of an application if it were to execute at an MDC,
as well as the execution times of the existing applications executing on the hosts of
the MDCs. Hence, we build an application’s expected performance profile and in
turn its interference profile [30] when co-located with other applications on different
hardware platforms given the hardware heterogeneity across the CDC and MDCs.
Although prior efforts [42, 56, 58] have used retired instructions per cycle (IPC) or
last-level cache (LLC) miss rate as the performance indicators, Lo et. al [40] have
shown the limitations of these metrics for latency-sensitive applications. Thus, we
consider execution time as the primary indicator of performance.

The interference profile of an application [38, 42, 55, 59] is a property that iden-
tifies: (a) the degree to which the application will degrade the performance of other
running applications on the host – known as pressure – and (b) howmuch the applica-
tion’s own performance suffers due to interference from other applications – known
as sensitivity. The performance degradation of an application depends, to varying
degrees, on different system components and architectures, and other co-located ap-
plications. Several prior efforts have used pairwise application execution to estimate
their sensitivity and pressure [38,42,55,59]. However, these solutions are not viable
for a data center given the significantly large number of hosted applications. Some
other efforts [56] pause non-critical applications to measure pressure and sensitivity
of live applications, which may not be a realistic solution.

Thus, for a given application a, its performance on a host with hardware con-
figuration w is modeled by Equation (14), where Y is the execution time, X is a
vector of system-level metrics that quantify the state of the host, and the function f 1

a

models the relation between the state of the host machine and the performance of the
application a. Moreover, the system-level information needed is obtained through
Equation (15), which depicts through function f 2

a the change in the state of the host
with hardware configuration w if application a were to be hosted on it. Equation (15)
provides an indirect measure of performance interference, since its output can be
used to calculate the change in execution time of an already running application
by plugging the new state vector Xnew

w into Equation (14) and solving it for each
running application.

Y = f 1
a (Xw) (14)



INDICES 15

Xnew
w = f 2

a (X
old
w ) (15)

Table 3 Server Architectures

Server HardwareModel
Sockets/Cores/
Threads/GHz

L1/L2/L3
Cache (KB)

Mem Type-
/MHz/GB Memory Bandwidth Count

A i7 870 1/4/2/2.93 32/256/8192 DDR3/1333/16
64 *(UNC_IMC_NORMAL_READS.ANY
+ UNC_IMC_WRITES.FULL.ANY) / time
in sec

2

B Xeon
W3530 1/4/2/2.8 32/256/8192 DDR3/1333/6

64 *(UNC_IMC_NORMAL_READS.ANY
+ UNC_IMC_WRITES.FULL.ANY) / time
in sec

1

C Core2Duo
Q9550 1/4/1/2.83 32/6144/- DDR2/800/8

64 * BUS_TRANS_MEM.ALL_AGENTS
*1e9 * CPUFrequency /
CPU_CLK_UNHALTED.CORE

1

D Opteron
4170HE 2/6/1/2.1 64/512/5118 DDR3/1333/32

64 * SamplingPeriod *
DRAM_ACCESSES_PAGE.ALL / time in
sec

9

Another required step is to identify the right system-level metrics to use. Previous
works [16, 17, 30] have identified several sources of interference including caches,
prefetchers, memory, network, disk, translation lookaside buffers (TLBs), and inte-
ger and floating point processing units. Both Intel and AMD architectures provide
hardware counters to monitor the performance of micro-architectural components.
However, not all the sub-components can always be monitored. Moreover, the list of
available counters is significantly smaller for older generation servers. Due to these
constraints and driven by the need to support a broadly applicable solution, we select
the following host metrics for performance monitoring:

• System Metrics: CPU utilization, memory utilization, network I/O, disk I/O,
context switches, page faults.

• Hardware Counters: Retired instructions per second (IPS), cache utilization,
cache misses, last-level cache (LLC) bandwidth and memory bandwidth. The
bandwidth metrics are not directly available and the counters can vary from one
hardware to other. In our analysis, we found that the LLC bandwidth and memory
bandwidth are highly correlated and hence we select the memory bandwidth
and not LLC bandwidth due to its easier availability on different architectures
and versions. Table 3 lists the hardware counter-based equations for calculating
memory bandwidth, which are derived from [1,20].

• Hypervisor Metrics: Scheduler wait time, scheduler I/O wait time, scheduler
VM exits. These metrics are the summation for all the executing virtual machines
for the KVM hypervisor.

By applying standard supervised machine learning techniques on the collected
metrics, we estimate the functions in Equations (14) and (15) using the following
sequence of steps:

1. Feature Selection: Feature selection is the process of finding relevant features
in order to shorten the training times and reduce errors due to over-fitting. We



16 Shekhar et. al

have adopted the Recursive Feature Elimination (RFE) approach using Gradient
Boosted Regression Trees [21]. We perform RFE in a cross-validation loop to
find the optimal number of features that minimizes a loss function (mean squared
error in our case).

2. Correlation Analysis: To remove the linearly dependent features, correlation
analysis is required. This step further reduces the training time by decreasing
the dimensions of the feature vector. We use the Pearson Coefficient to eliminate
highly dependent metrics with a threshold of ±0.8.

3. Regression Analysis: In this step, curve fitting is performed using ensemble
methods. We have used standard off-the-shelf Gradient Tree Boosting method,
which is widely used in the areas of web page ranking and ecology. The primary
advantage of this method lies in its ability to handle heterogeneous features and
its robustness to outliers.

The performance estimation of the applications consists of two phases: (1) Offline
Phase, and (2) Online Phase. The offline phase occurs at the CDC to find estimators,
while the online phase is performed by the local manager (lmm) of the MDCs to esti-
mate the performance of the target application and also to estimate the performance
degradation of the running applications. The two phases are described below.

4.2.1 Offline Phase

Whenever the data center receives a request for migrating an application that has
not been profiled, it is benchmarked on a single host with a given hardware con-
figuration and then co-located with other applications to develop its interference
profile. However, since the number of profiling configurations can be huge, we select
a uniformly distributed subset of possible co-location combinations for profiling.
The estimators can be found either by following the three steps above listed or by
choosing an existing estimator of some application based on similarity between the
projected performance and the actual performance.We use a hybrid approach, which
first predicts the performance of the new application and its interference profile us-
ing estimators of an existing application for the same hardware specifications. If the
difference between the measured performance and the estimated performance are
within a pre-defined threshold, then we consider the new application to be similar
in performance to the existing application. Among all such similar applications, the
estimator of the application with the least error is selected for all MDC hardware
configurations. This saves profiling time and cost. However, if there is no match, the
application profile is developed by performing feature pruning followed by model
fitting on each unique hardware platform maintained by the data center.

4.2.2 Online Phase

The learned models are then exported and forwarded to the MDC local manager
lmm for the available hardware platforms in the MDC to estimate the performance



INDICES 17

of any application to be deployed in the MDC. Since each MDC is small in size and
typically illustrates limited heterogeneity in the supported hardware, the number of
estimation models will be small. On receiving a request from the global manager gm,
the local manager lmm estimates the performance of an application by feeding the
estimator with presently logged data set using estimation function 14. The pressure
on the existing set of applications Appη on host η is calculated by first applying
Equation (15) on the target application and then Equation (14) for the existing
applications.

4.3 Network Latency Estimation

The constraints of the optimization problem also require an accurate understanding
of the network latencies incurred by the clients, specifically the worst among all the
clients of each application. This information is needed for identifying the appropriate
host in the appropriate MDC to which an impacted application can be migrated such
that it satisfies the SLOs for the worst suffering client while not unduly affecting the
existing applications of the MDC hosts.

Thus, estimating the latency to different MDC servers is another key component
for achieving the targeted SLOs. To that end, we must determine the clients who
suffer SLO violations from Equation (3). In each client, the instrumented “app” that
is installed by the user as part of the client application periodically reports to gm
the application response time it is observing. To not overwhelm the gm, such data
logging needs not occur directly on the gm; instead, it can be logged on an ensemble
of servers that then report to the gm, or the application server can itself gather data
and forward the information when SLO violations occur.

Since there could be multiple MDC choices to migrate an impacted application
to, the first step in our algorithm requires reducing the target set of MDCs for latency
estimation to decrease the load and amount of time for server selection. To that end,
we use the logged performance data from the clients to extract its IP address in order
to determine the closest MDCs to that client. The extracted client IP address may
not be accurate since often internet users have private addresses and the reported
external address is that of the network router or one from the pool of network
provider’s addresses in case the connection is via a cellular network. However, this
information is sufficient, as we use the client location to reduce the set of MDCs we
need to query. The client’s geo-location and consequently its region is derived from
the IP address.

The next step is measuring the latencies to the nearby MDCs. To obtain a reliable
latency estimate, we use HTTP-based and TCP socket-based latency measurement
techniques for HTTP-based and plain TCP-based cloud applications, respectively.
We can easily add additional protocols to this list based on the protocol used. Subject
to the collected information, the gm forwards to the client app a list of “nearby”MDC
gateway servers that are also the local managers lmm, each hosting a server for the
purpose of latency measurement. The client then posts n requests to each lmm with



18 Shekhar et. al

a file that it typically posts to the cloud for processing (e.g., an image for image
processing application) and also the average size of the response it receives from
the application. The server responds with a response for the same number of bytes.
For each of the n interactions, the client records the elapsed time and thus measures
tclient+taccess+ttransit . The client app selects the SLO latency (e.g., 95th percentile)
from the n latencies for each lmm and reports it to gm. This approach also accounts
for the delay due to bandwidth size as we transfer the actual request data instead of
a ping. It is similar to the speed test for measuring the download/upload speeds of
an internet provider.

4.4 State Transfer Estimation

The final constraint of the optimization problem requires estimating the cost of the
state transfer. The local managers calculate the state transfer cost using Equation (4)
and use it in local decision making. Once the gm selects a host for migrating an
application, the application’s state has to be transferred before the clients can be
switched to the new server location. In this regard, there exist several solutions
available for WAN-scale virtual machine migration [7, 47, 50, 54]. We leverage the
cloud virtual disk format such as qcow2 features for WAN migration. The VM disk
is composed of a base image and can contain several overlays on top of it for change
sets. The VM overlay when combined with the base image constructs the VM that
needs to run for serving the clients.

This base image can contain just an operating system such as Ubuntu or an entire
software stack such OpenCV for image processing. The base image is assumed to
be present on MDC hosts to save on migration costs and can be shared by multiple
VMs. For the target application, overlays are created using external snapshots. The
VM overlay is the state that gets transferred to the host and is synthesized with the
base image for execution.

Once the application starts running, it informs the gm and all the application
clients are redirected to the new application URL. This happens for custom clients
by forwarding the new location to the clients which can then use the new URL
for processing. However, for browser-based clients, the communication with the gm
occurs via application server due to cross-domain restriction and the existing appli-
cation issues HTTP-redirect to the new location. In the future, we will enhance our
solution to support live migration of VMs using solutions such as Elijah cloudlet [27]
or the recently introduced Docker Linux container’s live migration feature [44].

4.5 Solving the Optimization Problem at Runtime

The final piece of the puzzle is to solve the optimization problem described in
Section 3.2. The problem cannot be solved offline due to the changing dynamics of



INDICES 19

the system. Moreover, due to the non-linearity and NP-hardenss of the problem, we
employ a heuristics-based algorithm as described inAlgorithm 1 to solve it efficiently
in an online setting. The algorithm selects aptly a suited server in an MDC while
minimizing the overall deployment cost for the entire system.

Algorithm 1 Deployment Server Selection
1: Input: set Apps of all applications running on the CDC
2: Output: a server on anMDC for migrating each application a ∈ PA ⊆ Apps that experiences

performance degradation
3: for all a ∈ Apps do
4: essa ,cdc ← EstTotalExecTime(a,CDC)
5: if essa ,cdc > φa then
6: PA.insert(a)

7: if PA = ∅ then return . Do nothing
8: for all a ∈ PA do
9: eeda ← GetExpectedExecutionDuration(a)
10: clientLoc ← GetLocation(Ua)

11: nearbyMDCs ← FindNearbyMDCs(clientLoc)
12: for all m ∈ nearbyMDCs do
13: Hm ← GetServerList(m)
14: for all η ∈ Hm do
15: trans f era ,η ← EstTransDur(η, a)
16: if trans f era ,η > δa then
17: skip η . Constraint violated
18: per fa ,η ← PredictPer f Inter f (η, a)
19: for all b ∈ Appη do
20: essb ,η ← EstTotalExecTime(b, η, per fa ,η )
21: if essb ,η > φb then
22: skip η . Constraint violated
23: essa ,η ← EstTotalExecTime(a, η, per fa ,η )
24: if essa ,η > φa then
25: skip η . Constraint violated
26: C tot al

a ,η ← EstTotalCost(trans f era ,η , eeda)

27: [C tot al
min , ηmin] ← minη {C tot al

a ,η }

28: migrate application a to server ηmin

There are two phases in the algorithm. In the first phase, we identify the set PA
of applications suffering from SLO violations (Lines 3–6). In the second phase, we
select a suitable server for migrating each of these applications (Lines 8–28), unless
the set PA is empty, in which case the algorithm simply returns (Line 7). Otherwise,
for each application a ∈ PA, we find the locations of the clients of the application
(Line 10), which are used to perform a lookup for the nearby MDCs (Line 11). We
then identify the server within the nearby MDCs that provides the best performance.
This step is carried out in parallel across all the nearbyMDCs (for-loop starting from
Line 12).

For each such server η, we first check the deployment constraint as shown by
Constraint (11) (Lines 15–17). We then predict the performance interference of



20 Shekhar et. al

application a were it to execute on the server (Line 18). This interference is used to
check the response times (Constraint (12)) for the existing set Appη of applications
on that server (Lines 19–22), as well as the response time (Constraint (10)) for
application a itself (Lines 23–25). Finally, we calculate the total cost according
to Equation (6) if all of these constraints can be met (Line 26). The server with
the minimum cost is then selected across all identified MDCs (Line 27), and the
application ismigrated to the selected server and clients are redirected to themigrated
application.

5 Experimental Validation

In this section, we present experimental results for validate the INDICES framework
in the context of a latency sensitive application use case.

5.1 Experimental Setup

Table 3 illustrates the hardware platforms and their counts used in our experiments.
The CDC uses Openstack cloudOS version 12.0.2 where the guests receive their own
public IP addresses. The MDC servers are managed directly by libvirt virtualization
APIs and the guests communicate via port forwarding on the host. Each machine
has Ubuntu 14.04.03 64-bit OS, QEMU-KVM hypervisor version 2.3.0 and libvirt
version 1.2.16. Guests are configured with 2 GB memory, 10 GB disk, Ubuntu
14.04.03 64-bit OS and either 1 or 2 vCPUs. Since we are not concerned with VM
migration within a CDC, we do not depict the CDC heterogeneity.

As described in Section 4.2, to preclude profiling every new application on all
the hardware, we need initial training data. We use PARSEC, Splash-2 [5] and
Stream [43] benchmarks to generate the training data. PARSEC and Splash-2 tar-
get chip-multiprocessors that typically comprise the modern day data centers, and
provide a rich set of applications with different instruction mix, cache and memory
utilization, needed for stressing different system subcomponents. We select 20 tests
from these benchmarks for data generation and validation. We also use the Stream
benchmark that specifically targets cache/memory bandwidth, which is one of the
key sources of performance interference.

Due to lack of access to servers in different geographical regions, we use the
network emulation tool, netem, and hierarchy token bucket based traffic control,
tc-htb, for emulating the desired network latencies from the client to the CDC and
different MDCs.



INDICES 21

5.2 Application Use Case

Weuse an image processing application to validate the efficacy of our framework. The
application performs feature detection, which is a critical and expensive part of any of
the computer vision problem such as object detection, facial recognition [24], etc.We
use the well-known Scale Invariant Feature Transform (SIFT) [41] to find the scale
and rotation independent features. We consider an augmented reality application
as the use case, where the client device is capturing video frames at a continuous
rate. The application augments information to the captured frame by processing the
frame. We use a Minnowboard Turbot as the client device connected to a webcam
that continuously captures frames at a rate of 5 frames per second (fps). The frame
resolution is 640x360 pixels and average frame size is 56 KB. The server comprises
a Python-based application that receives frames over a TCP socket, processes it,
and responds with the identified features along with the processing time. The client
expects to receive a response before capturing the next frame, implying that 200 ms
is the deadline for the application. Although our use case considers the performance
for a single client connected to the cloud-hosted application, it can easily be extended
to multiple clients residing in a similar latency region.

When the image processing application is submitted for hosting in our cloud,
we execute it on different hardware platforms in isolation to find its base execution
times. For hardware platforms A,B,C,D shown in Table 3, the base execution times
are measured to be 86, 91, 146, 157 ms, respectively. Table 4 displays the emulated
ping latency from this client to CDC or different MDCs in the same region as the
client. The table also lists their server composition, and the measured 95th percentile
network latency while sending TCP/IP and HTTP post requests of 56 KB size and
receiving a response of size less than 1 KB. The expected duration for which the
client needs to perform the image processing, eeda, is set as 1 hour and the SLO is
set to 95%.

Table 4 CDC and MDC setup for application use case

MDC Distance Ping latency
(±20%)(ms)

TCP la-
tency(ms)

HTTP la-
tency(ms) Servers

H1 1 hop <1 2 6 1C + 1D
H2 2 hops 5 14 28 1A + 2D
H3 Multi hops 20 54 96 1B + 2D
H4 Multi hops 30 76 142 1A + 3D
H5 Central 50 127 220 1D



22 Shekhar et. al

5.3 Evaluating the Performance Estimation Model

We first benchmark our use case application on hardware platform D in order to
develop its performance estimators. The threshold to discern applications with sim-
ilar interference performance profile, as described in Section 4.2.1, is set to 10%
error. However, as illustrated in Figure 3, none of the existing applications meets
the criteria. Thus, we decide not to use any of the existing estimators for the use
case application and benchmark the application on all hardware configurations to
develop their estimators. With this approach, we find that the mean estimation error
for our use case application is less than 4% on all the platforms with low standard
deviations as depicted in Figure 4. We can account for this estimation error in our
response time constraint (Equation (3)) for stricter SLO adherence.

parse
c.s

waptio
ns

parse
c.b

lacksch
oles

parse
c.d

edup

parse
c.f

reqmine

parse
c.b

odytra
ck

parse
c.f

erre
t

parse
c.f

luidanim
ate

Application

0

5

10

15

20

25

30

35

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r Config A

Config B

Config C

Config D

Fig. 3 Estimation of SIFT Profile Similarity with PARSEC Benchmark

A B C D
Hardware Configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
e
a
n
 A

b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

Fig. 4 SIFT Application Performance Estimation Error



INDICES 23

5.4 Evaluating the Server Selection Algorithm

We compare our server selection algorithm against two other approaches based
on minimum number of hops and least loaded server (among reachable MDCs),
respectively. From Table 4, we observe that the minimum hop is 1. There are 2
servers in the minimum hop MDC H1 with hardware configuration types C and D.
We create interference load on both servers but ensure that the total load on the server
does not exceed its capacity in terms of memory and vCPUs to eliminate unrealistic
performance deteriorations. For the least-loaded server algorithm, we consider the
server with least existing allocated resources, i.e., containing only a single VM.
We do not consider servers with no existing load as it results in acquiring a new
server and thus causing additional cost to the service provider. In this case, we find
the server of hardware type D in MDC H4 to be least loaded. Applying SLO from
Equation (3) and our server selection algorithm, INDICES finds 2 servers of type A
and D from MDC H2 and one server of type B from MDC H3.

Figure 5 shows the response time comparison of each of the suitable servers
found by INDICES against the least loaded server for the expected duration eeda
(one hour) of the application. We observe that, in this scenario, the least loaded
server has 100% SLO violation because of the network latency. However, the servers
found by INDICES meet the SLO 100%, 99.38% and 98.94%, respectively, which
are all well over the target SLO of 95%. Figure 6 shows the corresponding response
time for the minimum hop algorithm. The 2 servers found by the algorithm meet the
SLO only 66.64% and 60.64% of times due to performance interference.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

0

100

200

300

400

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Least loaded

CDC

INDICES 2D

INDICES 2A

INDICES 3B

SLO

Fig. 5 INDICES vs Least Loaded Server Selection

Applying Algorithm 1 further, INDICES finds the server of type B fromMDC H3
to be most suitable, since our objective is to select a server with the minimum cost
to the service provider if it can meet the SLO. Thus, it prefers a server which already
has an application that is going to run longer and has better bandwidth from the
CDC server for migration. Figure 7 compares 3 migration scenarios: (a) an overlay



24 Shekhar et. al

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

50

100

150

200

250

300

R
e
sp

o
n
se

 T
im

e
 (

m
s)

Min hop D

Min hop A

INDICES 2A

SLO

Fig. 6 INDICES vs Minimum Hop Server Selection

0 50 100 150 200 250 300 350
Time (sec)

0

100

200

300

400

500

R
e
sp

o
n
se

 T
im

e
 (

m
s)

SL
O V

io
la
tio

n 
Det

ec
tio

n

Dec
isi

on

Sw
itc

h 
Ove

r a

Sw
itc

h 
Ove

r b

Sw
itc

h 
Ove

r c
a) Response Time - Overlay

b) Response Time - Overlay Lower B/W

c) Response Time - Base

SLO

Fig. 7 Application Switch-Over Performed by INDICES under 3 Different Scenarios

with the software stack already present on the target server and the bandwidth is 10
Mbps; (b) same as the previous scenario but with a bandwidth of 1 Mbps; (c) overlay
is not present on the target server and the compressed file of size 938 MB has to
transferred over 10 Mbps bandwidth. In all the scenarios, the application overlay and
configuration files have to be transferred and the application has to be initialized. We
observe that the server selection takes≈ 1 second, but themigration and initialization
take 32 seconds, 56 seconds and 190 seconds, respectively, for scenarios (a), (b) and
(c). Thus, the overlay-based image transfer should be the preferred methodology
whenever applicable.

6 Related Work

In this section, we compare and contrast our work with related work along three
dimensions: network latency-based server selection, performance interference-based
server selection and performance-aware edge computing.Unlike ourwork, our survey
has found that existing works seldom consider all dimensions holistically.



INDICES 25

6.1 Network Latency-based Server Selection

DONAR [53] addresses the global replica selection problem using a decentralized,
selection algorithm where the underlying protocol solves an optimization problem
that takes into account client performance and server load. CloudGPS [18] is a server
selection scheme that considers network performance, inter-domain transit traffic and
server workload for decision making. This work also reduces the network distance
measurement costs. Dealer [29] targets geo-distributed, multi-tier and interactive
applications to meet their stringent deadline constraints by monitoring individual
component replicas and their communication latencies, and selects the combination
that provides the best performance. Kwon et al. [39] applied network latency profiling
and redundancy for cloud server selection while suggesting using cloudlets. We
contend that these efforts consider simplistic models of server workload and their
impact on performance, and do not cater to edge resource management.

6.2 Performance Interference-aware Server Selection

Paragon [17] identified the sources of interference that impact application perfor-
mance and developed micro benchmarks for heterogeneous hardware. The system
benchmarks applications and classifies them to find collocation patterns for schedul-
ing. Sherlock [32] developed approach to estimate the performance interference
effect due to last level cache contention in containerized environment. The system
profiles application and defines a metric IScore, that measures the degree of perfor-
mance degradation of the application. It does not rely on the hardware counter of the
system, and does not take into account the heterogeneity in the hardware platform.

MEDEA [25] allows the users to define anti-affinity application constraints, which
captures resource interference characteristics of the applications. These constraints
utilized by the server scheduler for optimizing placement decisions of the services
to be deployed in the cluster. SMiTe [59] designed rulers for estimating sensitivity
and degree of contention between applications when they are collocated. Bubble-
Flux [56] assures QoS for latency-sensitive applications by dynamic interference
profiling of shared hardware resources and collocating latency-sensitive applications
with batch applications. These works, however, do not apply to virtualized data
centers where the hypervisor places its own overhead on the resources and impacts
performance. Moreover, our framework requires virtualized environments to support
migration of applications on heterogeneous platforms. DeepDive [46] first identifies
an abnormal behavior using a warning system and employs an interference analyzer
by cloning the target VM and running synthetic benchmarks. Such an approach can
be a costly runtime operation.

Our prior work [10] designed a performance interference-aware resource man-
agement framework that benchmarks applications residing in virtual machines and
applies a neural network-based regression mechanism that estimates a server’s per-
formance interference level. However, hardware heterogeneity and per application



26 Shekhar et. al

performance were not considered. Heracles [40] mitigates performance interference
issues for latency-sensitive applications by partitioning different shared resources.
However, partitioning for resources, such as memory bandwidth is still not available,
and moreover, cache partitioning is only available on newer hardware which cannot
be applied to existing hardware.

6.3 Performance-aware Edge Computing

Zhou et al. [60] described amulti attribute decision analysis algorithm to offload tasks
amongst mobile ad-hoc network, cloudlet and public cloud. Their work performs cost
estimation considering execution time, power consumption, bandwidth and channel
conjunction level which is utilized by the decision making algorithm. The approach
utilizes ThinkAir [37] for offloading the tasks. However, they target only Java-based
tasks and the solution is not catered to latency-sensitive applications such as those
targeted by us.

Fesehaye et al. [22] described a design to select between cloudlets and central
cloud server for interactive mobile cloud applications based on the number of hops,
mobility and latency. SEGUE [57] is an edge cloud migration decision system that
applies state-based Markov Decision Process (MDP) model incorporating network
and server states. Both the approaches have not been evaluated on real systems and
the results are only simulation-based.

SmartRank. [49] is a tool for offloading facial recognition from mobiles to
cloudlets, and the scheduling is performed based on the round trip time and CPU
utilization. In our approach, we optimize the cost to the cloud provider while main-
taining the end user SLOs.

7 Conclusions

This chapter presents INDICES, a framework for dynamic cloud resource manage-
ment that exploits the available edge/fog resources in the form of micro data centers,
which are used to migrate cloud-hosted applications closer to the clients so that their
response times can be improved. In doing so, the INDICES framework ensures that
existing edge-deployed services are not unduly impacted in terms of their perfor-
mance nor are the operational and management costs for the cloud provider overly
affected. These objectives are met using an online optimization problem, which
is solved using a two-level cooperative and online process between system-level
artifacts we have developed and deployed at both the micro data centers and central-
ized cloud data center. Our experimental results support the claims by showing the
efficacy of the INDICES framework using a realistic application use case.

This work has opened up many new challenges and directions, which form our
future work. These challenges are presented below:



INDICES 27

• Lack of benchmarks: There is a general lack of open source and effective
benchmarking suites that researchers can use to conduct edge/fog computing
studies.

• Collecting metrics under hardware heterogeneity: The plethora of deployed
hardware configurations with different architectures and versions makes it hard to
collect various performance metrics. Modern architectures are making it easier to
collect more fine-grained performance metrics, but muchmore research is needed
in identifying effective approaches to control the hardware and to derive the best
performance out of them.

• Workload consolidation and migration across MDCs: In this work, once an
application ismigrated to anMDC, it will complete its operation until termination.
Our future work will consider dynamic server consolidation across MDCs and
CDCs.

• Reconciling application state: We have assumed that once the application state
is transferred to the MDC, there is no additional state that accumulates at the
CDC. However, for a broader set of applications, not all application states may
be transferrable to the MDC and may have to be reconciled periodically with the
CDC, which gives rise to interesting consistency versus availability tradeoffs.

• Distributed user base: We have assumed that all distributed users of an inter-
active applications are located in close proximity to each other. However, for
applications such as online gaming, this assumption may not hold for which
additional research will be necessary.

• Energy savings and revenue generation: In thiswork,we did not discuss revenue
generation issues stemming from the use of edge resources. Moreover, energy
savings is only indirectly referred to through our experimental results. Addressing
these limitations forms dimensions of our future work.

• Shared micro data centers: We have assumed that an MDC is exclusively
controlled by a CDC provider. In the future, it is likely that MDC providers may
lease their resources to multiple different CDCs. Additional research is needed to
address situations where MDCs are shared including those that address security
and isolation guarantees.

All scripts, source code, and experimental results for INDICES are available for
download from an extended framework we recently developed called FECBench [4],
which is available from https://github.com/doc-vu/fecbench.

Acknowledgments

This work is supported in part by the AFOSR DDDAS FA9550-13-1-0227 and
FA9550-18-1-0126, and NSF US Ignite CNS 1531079. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of AFOSR and NSF.

https://github.com/doc-vu/fecbench


28 Shekhar et. al

References

1. Detecting memory bandwidth saturation in threaded applica-
tions. URL https://software.intel.com/en-us/articles/
detecting-memory-bandwidth-saturation-in-threaded-applications

2. Abels, T., Dhawan, P., Chandrasekaran, B.: An overview of xen virtualization. Dell Power
Solutions 8, 109–111 (2005)

3. Bahl, V.: Cloud 2020: Emergence of micro data centers (cloudlets) for latency sensitive com-
puting (keynote). Middleware 2015 (2015)

4. Barve,Y., Shekhar, S., Khare, S., Bhattacharjee, A., Kang, Z., Sun,H., Gokhale, A.: FECBench:
A Lightweight Interference-aware Approach for Application Performance Modeling. In: IEEE
International Conference on Cloud Engineering (IC2E), pp. 211–221. Prague, Czech Republic
(2019)

5. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: characterization and
architectural implications. In: 17th international conference on Parallel architectures and
compilation techniques, pp. 72–81. ACM (2008)

6. Blasch, E., Ravela, S., Aved, A.: Handbook of Dynamic Data Driven Applications Systems.
Springer (2018)

7. Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of virtual
machines including local persistent state. In: 3rd international conference on Virtual execution
environments, pp. 169–179. ACM (2007)

8. Cache allocation technology improves real-time performance. http://www.
intel.com/content/dam/www/public/us/en/documents/white-papers/
cache-allocation-technology-white-paper.pdf

9. Caglar, F., Shekhar, S., Gokhale, A., Basu, S., Rafi, T., Kinnebrew, J., Biswas, G.: Cloud-hosted
Simulation-as-a-Service for High School STEM Education. Elsevier Simulation Modelling
Practice and Theory: Special Issue on Cloud Simulation 58(2), 255–273 (2015). URL http:
//dx.doi.org/10.1016/j.simpat.2015.06.006

10. Caglar, F., Shekhar, S., Gokhale, A., Koutsoukos, X.: An Intelligent, Performance Interference-
aware Resource Management Scheme for IoT Cloud Backends. In: 1st IEEE International
Conference on Internet-of-Things: Design and Implementation, pp. 95–105. IEEE, Berlin,
Germany (2016)

11. Caglar, F., Shekhar, S., Gokhale, A., Koutsoukos, X.: Intelligent, performance interference-
aware resource management for iot cloud backends. In: 2016 IEEE First International Confer-
ence on Internet-of-Things Design and Implementation (IoTDI), pp. 95–105. IEEE (2016)

12. Choy, S., Wong, B., Simon, G., Rosenberg, C.: The brewing storm in cloud gaming: A mea-
surement study on cloud to end-user latency. In: Proceedings of the 11th annual workshop on
network and systems support for games, p. 2. IEEE Press (2012)

13. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between
mobile device and cloud. In: Proceedings of the sixth conference on Computer systems, pp.
301–314. ACM (2011)

14. Cuervo, E., Balasubramanian, A., Cho, D.k., Wolman, A., Saroiu, S., Chandra, R., Bahl,
P.: Maui: making smartphones last longer with code offload. In: Proceedings of the 8th
international conference on Mobile systems, applications, and services, pp. 49–62. ACM
(2010)

15. Darema, F.: Dynamic data driven applications systems: A new paradigm for application simula-
tions andmeasurements. In: International Conference on Computational Science, pp. 662–669.
Springer (2004)

16. Delimitrou, C., Kozyrakis, C.: ibench: Quantifying interference for datacenter applications.
In: Workload Characterization (IISWC), 2013 IEEE International Symposium on, pp. 23–33.
IEEE (2013)

17. Delimitrou, C., Kozyrakis, C.: Paragon:QoS-aware Scheduling forHeterogeneousDatacenters.
In: ACM SIGPLAN Notices, vol. 48, pp. 77–88. ACM (2013)

https://software.intel.com/en-us/articles/detecting-memory-bandwidth-saturation-in-threaded-applications
https://software.intel.com/en-us/articles/detecting-memory-bandwidth-saturation-in-threaded-applications
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
http://dx.doi.org/10.1016/j.simpat.2015.06.006
http://dx.doi.org/10.1016/j.simpat.2015.06.006


INDICES 29

18. Ding, C., Chen, Y., Xu, T., Fu, X.: Cloudgps: a scalable and isp-friendly server selection
scheme in cloud computing environments. In: IEEE 20th International Workshop on Quality
of Service, p. 5. IEEE Press (2012)

19. Drolia, U., Guo, K., Gandhi, R., Narasimhan, P.: Edge-caches for vision applications. In: Edge
Computing (SEC), IEEE/ACM Symposium on, pp. 91–92. IEEE (2016)

20. Drongowski, P.J., Center, B.D.: Basic performance measurements for amd athlon™ 64, amd
opteron™ and amd phenom™ processors. AMD whitepaper 25 (2008)

21. Elith, J., Leathwick, J.R., Hastie, T.: A working guide to boosted regression trees. Journal of
Animal Ecology 77(4), 802–813 (2008)

22. Fesehaye, D., Gao, Y., Nahrstedt, K.,Wang, G.: Impact of cloudlets on interactive mobile cloud
applications. In: Enterprise Distributed Object Computing Conference (EDOC), 2012 IEEE
16th International, pp. 123–132. IEEE (2012)

23. Forster, F.: Collectd - The System Statistics Collection Daemon. http://collectd.org
(2017)

24. Forsyth, D.A., Ponce, J.: Computer vision: a modern approach. Prentice Hall Professional
Technical Reference (2002)

25. Garefalakis, P., Karanasos, K., Pietzuch, P., Suresh, A., Rao, S.: Medea: Scheduling of long
running applications in shared production clusters. In: Proceedings of the Thirteenth EuroSys
Conference, EuroSys, vol. 18, p. 4 (2018)

26. Govindan, S., Liu, J., Kansal, A., Sivasubramaniam, A.: Cuanta: quantifying effects of shared
on-chip resource interference for consolidated virtual machines. In: Proceedings of the 2nd
ACM Symposium on Cloud Computing, p. 22. ACM (2011)

27. Ha, K., Abe, Y., Chen, Z., Hu, W., Amos, B., Pillai, P., Satyanarayanan, M.: Adaptive vm
handoff across cloudlets. Tech. rep., Technical Report CMU-CS-15-113, CMU School of
Computer Science (2015)

28. Ha, K., Pillai, P., Lewis, G., Simanta, S., Clinch, S., Davies, N., Satyanarayanan, M.: The
impact of mobile multimedia applications on data center consolidation. In: Cloud Engineering
(IC2E), 2013 IEEE International Conference on, pp. 166–176. IEEE (2013)

29. Hajjat, M., Maltz, D., Rao, S., Sripanidkulchai, K., et al.: Dealer: application-aware request
splitting for interactive cloud applications. In: 8th international conference on Emerging
networking experiments and technologies, pp. 157–168. ACM (2012)

30. Islam, M.S., Gibson, M., Muzahid, A.: Fast and qos-aware heterogeneous data center schedul-
ing using locality sensitive hashing. In: 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 74–81. IEEE (2015)

31. Jarschel, M., Schlosser, D., Scheuring, S., Hoßfeld, T.: Gaming in the clouds: Qoe and the
users’ perspective. Mathematical and Computer Modelling 57(11), 2883–2894 (2013)

32. Joshi, K., Raj, A., Janakiram, D.: Sherlock: Lightweight detection of performance interference
in containerized cloud services. In: 2017 IEEE 19th International Conference on High Perfor-
mance Computing and Communications; IEEE 15th International Conference on Smart City;
IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp.
522–530 (2017). DOI 10.1109/HPCC-SmartCity-DSS.2017.68

33. Kambadur, M., Moseley, T., Hank, R., Kim, M.A.: Measuring interference between live dat-
acenter applications. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, p. 51. IEEE Computer Society Press (2012)

34. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual machine
monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230 (2007)

35. Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., Pu, C.: An analysis of performance
interference effects in virtual environments. In: Performance Analysis of Systems & Software,
2007. ISPASS 2007. IEEE International Symposium on, pp. 200–209. IEEE (2007)

36. Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experiments on the
web: listen to your customers not to the hippo. In: 13th ACMSIGKDD international conference
on Knowledge discovery and data mining, pp. 959–967. ACM (2007)

37. Kosta, S., Aucinas, A., Hui, P.,Mortier, R., Zhang, X.: ThinkAir: Dynamic ResourceAllocation
and Parallel Execution in the Cloud for Mobile Code Offloading. In: INFOCOM, 2012
Proceedings IEEE, pp. 945–953 (2012). DOI 10.1109/INFCOM.2012.6195845

http://collectd.org


30 Shekhar et. al

38. Kuang, W., Brown, L.E., Wang, Z.: Modeling Cross-Architecture Co-Tenancy Performance
Interference. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid), pp. 231–240. IEEE (2015)

39. Kwon,M., Dou, Z., Heinzelman,W., Soyata, T., Ba, H., Shi, J.: Use of network latency profiling
and redundancy for cloud server selection. In: 2014 IEEE 7th International Conference on
Cloud Computing, pp. 826–832. IEEE (2014)

40. Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., Kozyrakis, C.: Improving resource
efficiency at scale with heracles. ACM Transactions on Computer Systems (TOCS) 34(2), 6
(2016)

41. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal
of computer vision 60(2), 91–110 (2004)

42. Mars, J., Tang, L., Hundt, R., Skadron, K., Soffa, M.L.: Bubble-up: Increasing utilization in
modern warehouse scale computers via sensible co-locations. In: 44th annual IEEE/ACM
International Symposium on Microarchitecture, pp. 248–259. ACM (2011)

43. McCalpin, J.D.: A survey of memory bandwidth and machine balance in current high perfor-
mance computers. IEEE TCCA Newsletter 19, 25 (1995)

44. Merkel, D.: Docker: lightweight linux containers for consistent development and deployment.
Linux Journal 2014(239), 2 (2014)

45. Morabito, R., Kjällman, J., Komu, M.: Hypervisors vs. lightweight virtualization: a perfor-
mance comparison. In: Cloud Engineering (IC2E), 2015 IEEE International Conference on,
pp. 386–393. IEEE (2015)

46. Novaković, D., Vasić, N., Novaković, S., Kostić, D., Bianchini, R.: DeepDive: Transparently
Identifying andManaging Performance Interference inVirtualized Environments. In: USENIX
Conference on Annual Technical Conference, USENIX ATC’13, pp. 219–230. USENIX
Association, Berkeley, CA, USA (2013). URL http://dl.acm.org/citation.cfm?id=
2535461.2535489

47. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The Case for VM-Based Cloudlets in
Mobile Computing. Pervasive Computing, IEEE 8(4), 14–23 (2009). DOI 10.1109/MPRV.
2009.82

48. Shafer, J.: I/o virtualization bottlenecks in cloud computing today. In: Proceedings of the 2nd
conference on I/O virtualization, pp. 5–5. USENIX Association (2010)

49. Silva, F.A., Maciel, P., Matos, R.: Smartrank: a smart scheduling tool for mobile cloud com-
puting. The Journal of Supercomputing pp. 1–24 (2015)

50. Travostino, F., Daspit, P., Gommans, L., Jog, C., De Laat, C., Mambretti, J., Monga, I.,
Van Oudenaarde, B., Raghunath, S., Wang, P.Y.: Seamless live migration of virtual machines
over the man/wan. Future Generation Computer Systems 22(8), 901–907 (2006)

51. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Computing 10(6), 87–89
(2006). DOI doi.ieeecomputersociety.org/10.1109/MIC.2006.116

52. Wang, Y.A., Huang, C., Li, J., Ross, K.W.: Estimating the performance of hypothetical cloud
service deployments: A measurement-based approach. In: INFOCOM, 2011 Proceedings
IEEE, pp. 2372–2380. IEEE (2011)

53. Wendell, P., Jiang, J.W., Freedman, M.J., Rexford, J.: Donar: decentralized server selection for
cloud services. ACM SIGCOMM Computer Communication Review 40(4), 231–242 (2010)

54. Wood, T., Ramakrishnan, K., Shenoy, P., Van der Merwe, J.: Cloudnet: dynamic pooling of
cloud resources by live wan migration of virtual machines. In: ACM Sigplan Notices, vol. 46,
pp. 121–132. ACM (2011)

55. Xu, C., Chen, X., Dick, R.P., Mao, Z.M.: Cache contention and application performance
prediction for multi-core systems. In: Performance Analysis of Systems & Software (ISPASS),
2010 IEEE International Symposium on, pp. 76–86. IEEE (2010)

56. Yang, H., Breslow, A., Mars, J., Tang, L.: Bubble-Flux: Precise Online QoS Management
for Increased Utilization in Warehouse Scale Computers. In: ACM SIGARCH Computer
Architecture News, vol. 41, pp. 607–618. ACM (2013)

57. Zhang, W., Hu, Y., Zhang, Y., Raychaudhuri, D.: Segue: Quality of service aware edge cloud
service migration. In: 8th IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). IEEE (2016)

http://dl.acm.org/citation.cfm?id=2535461.2535489
http://dl.acm.org/citation.cfm?id=2535461.2535489


INDICES 31

58. Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes, J.: Cpi2: Cpu performance
isolation for shared compute clusters. In: Proceedings of the 8th ACM European Conference
on Computer Systems, EuroSys ’13, pp. 379–391. ACM, New York, NY, USA (2013)

59. Zhang, Y., Laurenzano, M.A., Mars, J., Tang, L.: Smite: Precise qos prediction on real-
system smt processors to improve utilization in warehouse scale computers. In: 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 406–418. IEEE Computer
Society (2014)

60. Zhou, B., Dastjerdi, A.V., Calheiros, R.N., Srirama, S.N., Buyya, R.: A context sensitive
offloading scheme for mobile cloud computing service. In: Cloud Computing (CLOUD), 2015
IEEE 8th International Conference on, pp. 869–876. IEEE (2015)


	INDICES: Applying DDDAS Principles for Performance Interference-aware Cloud-to-Fog Application Migration
	Shashank Shekhar and Ajay Dev Chhokra and Anirban Bhattacharjee and Yogesh Barve and Shweta Khare and Guillaume Pallez and Hongyang Sun and Aniruddha Gokhale and Gabor Karsai
	Introduction
	System Model and Assumptions
	Components of Application Response Times
	Architectural Model
	Application Model

	Problem Statement and its Formulation
	Performance Estimation Challenges
	Optimization Problem Formulation

	Design of INDICES
	INDICES Architecture and Implementation
	Execution Time Estimation
	Network Latency Estimation
	State Transfer Estimation
	Solving the Optimization Problem at Runtime

	Experimental Validation
	Experimental Setup
	Application Use Case
	Evaluating the Performance Estimation Model
	Evaluating the Server Selection Algorithm

	Related Work
	Network Latency-based Server Selection
	Performance Interference-aware Server Selection
	Performance-aware Edge Computing

	Conclusions
	Acknowledgments
	References
	References



