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Abstract. For power distribution networks with connected smart meters,
current advances in machine learning enable the service provider to utilize
data flows from smart meters for load forecasting using deep neural
networks. However, recent research shows that current machine learning
algorithms for power systems can be vulnerable to adversarial attacks,
which are small designed perturbations crafted on normal inputs that
can greatly affect the overall performance of the predictor. Even with
only a partial compromise of the network, an attacker could intercept
and adversarially modify data from some smart meters in a limited range
to make the load predictor deviate from normal prediction results. In
this paper, we leverage the dynamic data-driven applications systems
(DDDAS) paradigm and propose a novel data repair framework to defend
against these kinds of adversarial attacks. This framework complements
the predictor with a self-representative auto-encoder and works in an
iterative manner. The auto-encoder is used to detect and reconstruct
the likely adversarial part in the input data. Different reconstruction
results come up given different sensitivity levels in detection. As new
data flows in each iterative time step, the service provider continuously
checks the error of the previous prediction step and dynamically trades off
between different detection sensitivity levels to seek an overall stable data
reconstruction. Case studies on power network load forecast regression
demonstrate the vulnerability of current machine learning algorithms and
correspondingly the effectiveness of our defense framework.

Keywords: Power systems · adversarial attacks · load forecasting · dy-
namic data repair.

1 Introduction

In modern smart grids, accurate load forecasting is critical for managing the
infrastructure through targeted pricing and predictive maintenance. Advances
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in machine learning enable the service provider to utilize data flows from smart
meters to perform load forecasting [9] using a deep learning model. However,
recent research [6] reveals that current machine learning algorithms proposed for
power system application scenarios can be vulnerable to adversarial attacks [11],
which are inputs with small designed perturbations added to normal ones that
can adversely affect the overall performance of the predictor [10,7]. In partially
compromised hierarchical power networks, an attacker could intercept and mali-
ciously modify data from some smart meters with small perturbations that can
still make the load predictor deviate from normal prediction results.

To address these issues, we adopt the dynamic data-driven applications sys-
tems (DDDAS) paradigm [3] in providing a novel data repair framework to defend
against such kind of adversarial attacks as shown in Figure 1. This framework
extends our prior work [13] of a cloud-supported platform for sensor networks
(e.g, smart grid networks) to formalize general resilience testing procedures under
adversarial settings using the model-driven approach [4]. To the best of our
knowledge, this work is the first to introduce such a kind of dynamic data repair
against adversarial attacks [5], and make the following contributions in this paper.

– We present a framework that can formalize the security and resilience testing
in distributed sensor networks under adversarial settings;

– We design an iterative dynamic data repair scheme of Dropout-Detect-
Reconstruct-Tradeoff to boost the robustness of data using the DDDAS
paradigm for ongoing predictions; and

– We conduct a case study for distributed power network load forecasting to
demonstrate potential risks for machine learning predictors and the efficiency
of our defensive data repair framework.

The rest of the paper is organized as follows. Section II illustrates the the-
oretical background of our adversarial attack setting and dynamic data repair
framework in a step-by-step manner. Section III presents a case study to demon-
strate the capabilities of our framework on a power distribution network. Finally,
Section IV concludes the paper and presents opportunities for future research.

Fig. 1: Overall Workflow for Dynamic Data Repair under Adversarial Attack
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2 Methodology

In this section we provide details of our approach. The techniques will be intro-
duced following the execution order of attack and defense. Our predictor is based
on deep learning. Specifically, the model absorbs data from distributed sensors
and fetches their values from current and some time steps back to predict the
total system load for the next time step.

2.1 Model of Stealthy Adversarial Attacks

To compromise the prediction system, an attacker intercepts and adds designed
perturbations to the normal data flow. Without loss of generality, we assume
that the attacker’s goal is to maximize the load prediction deviation. For this
scenario, larger ranges of input and output numerical value data space as well as
the adoption of anomaly detectors leads to higher complexity in attack settings.
To illustrate the vulnerabilities of the prediction system, we propose an attack
method adapted from the most popular adversarial attack called FGSM (Fast
Gradient Sign Method) [7], which generates adversarial perturbations using only
one single equation: η = ε · sign(∇xJ(θ, x, y)). Here θ represents the parameters
of the model, x represents inputs to the model, y refers to the targets associated
with x (for tasks with targets) and J(θ, x, y) is the goal loss function for deviating
the neural network. The magnitude constraint added to the original sample is
represented by ε.

With the presence of an anomaly detector, we reformulate an adversarial
attack [13] as an optimization problem which attempts to find the best synthetic
perturbations that maximize the prediction loss while keeping the modification
magnitude at a small enough level so as to go undetected. Compared to the
FGSM attack, we implement an iterative attack that allows each meter (value
in input data array) to have its unique modification value because the input
range may not be fixed. Our approach performs a number of iterations with
small step ratio and updates the gradient sign method from the output of the
previous iteration. Intermediate results are first checked with the detector to
remove exposed parts and then sent into the next iteration for further exploration.
This procedure eventually generates an adversarial but undetected data sample.

2.2 Resilient Detection and Reconstruction

To detect compromised sensors, we use an auto-encoder as the self-representation
to build an anomaly detector. Auto-encoder models learn internal representations
with the objective AE(x) = x mapping to the input distribution itself. For
the sensor network in our case study, we set individual detection thresholds for
each meter reading. After training the auto-encoder using the training data,
we use the training data to compute the fitting error (l2 Norm) for all sensors
and using maximum fitting deviation of each sensor as the error threshold for
anomaly detection. During the prediction phase, the auto-encoder takes inputs
and compares output residuals with the pre-computed thresholds and generates a
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list of sensors with the potential for adversarial attacks. In this way the detector
judges whether specific sensors in the network are likely to be compromised.

Such a static detection is still vulnerable to stealthy attacks and can be made
resilient when the input test sample first goes through a randomized dropout
step [2]. The detection runs with controllable sensitivity levels. With dctIter
dropout iterations, if no less than dctThres times the sensor has been marked
as anomaly if would be returned as a high likely adversarial sensor. Different
reconstruction results come up given different sensitivity levels in such a detection
phase. In each detection iteration, a portion of the input data is randomly dropped
out and a reconstruction is conducted using the remaining data. The residual
between the original and the reconstructed data can be used to detect the likely
adversarial part of data. Based on the detection results, the likely adversarial
data part can be erased and reconstructed using the auto-encoder.

2.3 Iterative Dynamic Repair

The resilient detection and reconstruction procedure is configurable and sensitive
to measurements. One key property for prediction tasks like load forecasting
is that as new data flows in continuously, the system can utilize new data to
validate the quality of previous predictions for which the DDDAS paradigm [3] is
best suited to provide adaptive data repair against adversarial attacks as shown
in Algorithm 1.

For the resilient detection and reconstruction, given a fixed dropout rate,
the sensitivity can be adjusted with the number of detection iteration (dctIter)
and the detection iteration threshold (dctThres). Given the infinite number
of combination settings for the resilient detection, we consider three settings
with the least computation burden (sensitivity from high to low): (1) x1in2t←
resCor(x, dctIter = 2, dctThres = 1) and (2) x1in1t ← resCor(x, dctIter =
1, dctThres = 1) and (3) x2in2t ← resCor(x, dctIter = 2, dctThres = 2). We
implement adjustments in iterative time steps to seek a balanced trade-off between
sensitivity levels. The overall prediction result with dynamic repair is computed
as a weighted sum of these three resilient reconstructions [12]. For each time step,
the system checks the previous prediction deviations from these three levels and
allocates higher weights for the least deviated reconstruction level.

3 Empirical Validation of the Claims

3.1 Power System Setting

For data collection, we conduct a detailed simulation of an electric distribution
system using GridLAB-D provided by the Pacific Northwest National Laboratory
(PNNL) [8]. We selected the prototypical feeder of a moderately populated area
R1-12.47-3, and included representative residential loads like heating, ventilation
and air conditioning (HVAC) systems to the distribution network model [1]. In
summary, our distribution model has a total of 109 commercial and residential
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Algorithm 1 Dynamic Repair (dynRepair)

Require: x: original observation data flow; f : predictor; NumTime: number of execu-
tion time steps; resCor: resilient correction function; ErrThres: ideal prediction
error threshold; return: return function for each time step; y: ground truth value.

1: α = [1.0, 0.0, 0.0], αbias = 0.05, x← x[0],t← 1
2: pred, pred1in1, pred1in2, pred2in2← EmptyList
3: x1in1t← resCor(x, dctIter = 1, dctThres = 1), pred1in1.append(f(x1in1t))
4: x1in2t← resCor(x, dctIter = 2, dctThres = 1), pred1in2.append(f(x1in2t))
5: x2in2t← resCor(x, dctIter = 2, dctThres = 2), pred2in2.append(f(x2in2t))
6: pred[0]← pred1in1t ∗ α[0] + pred1in2t ∗ α[1] + pred2in2t ∗ α[2]
7: while t < NumTime do
8: resPre1← abs(pred[t− 1]− y[t− 1], resPre2← abs(pred[t− 2]− y[t− 2]
9: if t > 1 and resPre1 > ErrThres and resPre1 > resPre2 then

10: res1in1← abs(pred1in1[t− 1]− y[t− 1])
11: res1in2← abs(pred1in2[t− 1]− y[t− 1])
12: res2in2← abs(pred2in2[t− 1]− y[t− 1])
13: idx = argmin([res1in1, res1in2, res2in2])
14: α← α− αbias, α[idx]← α[idx] + 3 ∗ αbias

15: end if
16: x← x[t]
17: x1in1t← resCor(x, dctIter = 1, dctThres = 1), pred1in1.append(f(x1in1t))
18: x1in2t← resCor(x, dctIter = 2, dctThres = 1), pred1in2.append(f(x1in2t))
19: x2in2t← resCor(x, dctIter = 2, dctThres = 2), pred2in2.append(f(x2in2t))
20: pred[t]← f(x1in1t) ∗ α[0] + f(x1in2t) ∗ α[1] + f(x2in2t) ∗ α[2],
21: return(pred[t]),t← t+ 1
22: end while

user loads. Smart meters are connected to end users and their usage data reports
are transmitted to the upper-level control center in a hierarchical manner. For
each hourly time step, the prediction model takes load data from distributed
meter readings in the past 24 hours and also takes into account the temperature
data for the same period of time. We build a load forecasting model for this
power distribution network using a relatively large LSTM deep neural network
(with 3 LSTM layers of 150 units and 2 fully-connected layers of 200 units). The
predictor on the clean data generates a mean squared error (MSE) of 0.1255
(Mega Volt Amp) on the test data set for a total of 216 time steps.

The attack scenario is a manipulation of sensor data under reasonable con-
straints with full knowledge of the prediction and detection model. In each time
step, the attacker can manipulate a fixed number of meters in the network
(10%−50% in our experiments). Moreover, for each meter, the attacker is allowed
to deviate the meter reading by a limited level of 20%. Under these constraints,
we generate stealthy adversarial examples using the iterative attack method.

3.2 Evaluating Reconstruction and Repair

We evaluate our dynamic data repair framework on various settings under strong
attacks with a maximum modification ratio of 20% for compromised sensors.
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Figure 2 shows the prediction results when 40% of sensors in the network are
compromised in two ways: (a) shows absolute prediction deviations from normal
prediction results, and (b) shows mean absolute prediction deviations from normal
prediction results of current prediction and all the ones prior to the current time
step. Even with a large portion of 40% sensors compromised, the adversarial
impact can still be mitigated to an overall practical level of 0.3 (Mega Volt Amp).

(a) Absolute Prediction Deviation from Original Prediction

(b) Cumulative Mean Absolute Deviation from Original Prediction

Fig. 2: Predictions under 40% Compromise and 5% Detection Dropout Rate

We present experimental results under more flexible settings in Table 1, which
shows results under four levels of detection dropout rate: 5%, 10%, 20%, 30%
with 20, 40, 60, 80 reconstruction cycles. The error metric we chose is the most
commonly used mean squared error (MSE) over the test dataset. For different
attack rates, the best defense settings are marked in dark black. We can see
that low detection dropout rates with more detection cycles usually show more
stable prediction performances. From the figures we can also see that adversarial
impacts in this load forecast case usually occurs at peak points. Further, the data
repair framework successfully decreases prediction deviations at these vulnerable
points without much impact on other locations.

The experimental results also clearly show the trade-off caused by the iterative
data repair. With a large number of detection iterations, the chance of being
totally stealthy for an adversarial sensor is reduced to a negligible level. Meanwhile,
low threshold settings lead to obvious negative impacts caused by false alarms.
From our experiments, the upper bound of this repair is determined by the
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performance of this self-representation model (auto-encoder here) and therefore
we can see that dynamic repair does not always show best performance when the
compromised sensor ratio is relatively low. This sensitive repair might lead to an
unstable prediction performance over detection iterations in each time step. As
shown in our experiments, this potential risk is most obvious when the detection
dropout rate is high. As a result, the combination of a relative low detection
dropout rate along with more iterations would usually lead to smoother and
more stable performance.

Table 1: Prediction Mean Squared Error(MSE) Under Different Settings
drop
/%

adv
/%

natErr advErr
resRec/numCycle resRec+dynRepair/numCycle

20 40 60 80 20 40 60 80

5

10 0.126 0.173 0.152 0.144 0.142 0.141 0.146 0.147 0.150 0.149
20 0.126 0.311 0.211 0.163 0.148 0.143 0.170 0.159 0.155 0.149
30 0.126 0.538 0.380 0.300 0.257 0.232 0.281 0.216 0.197 0.188
40 0.126 0.921 0.729 0.626 0.559 0.523 0.566 0.442 0.345 0.301
50 0.126 1.329 1.090 0.979 0.909 0.862 0.876 0.719 0.581 0.500

10

10 0.126 0.171 0.139 0.137 0.138 0.139 0.152 0.148 0.146 0.147
20 0.126 0.311 0.174 0.144 0.139 0.139 0.158 0.150 0.152 0.168
30 0.126 0.538 0.310 0.236 0.211 0.200 0.224 0.183 0.179 0.179
40 0.126 0.921 0.632 0.524 0.481 0.464 0.406 0.293 0.270 0.267
50 0.126 1.329 0.984 0.859 0.808 0.784 0.688 0.526 0.477 0.455

20

10 0.126 0.173 0.139 0.146 0.145 0.145 0.140 0.153 0.150 0.151
20 0.126 0.311 0.142 0.139 0.138 0.171 0.160 0.300 0.308 0.286
30 0.126 0.538 0.229 0.201 0.216 0.218 0.182 0.192 0.229 0.273
40 0.126 0.921 0.541 0.473 0.459 0.457 0.912 0.994 0.803 0.760
50 0.126 1.329 0.850 0.777 0.767 0.759 0.567 0.527 0.559 0.579

30

10 0.126 0.173 0.139 0.140 0.139 0.139 0.147 0.140 0.138 0.142
20 0.126 0.311 0.138 0.138 0.139 0.139 0.150 0.148 0.139 0.139
30 0.126 0.538 0.219 0.201 0.202 0.201 0.197 0.184 0.197 0.213
40 0.126 0.921 0.521 0.491 0.488 0.485 0.378 0.388 0.429 0.462
50 0.126 1.329 0.876 0.842 0.840 0.838 0.598 0.644 0.699 0.786

An important property of our approach is that it takes advantage of existing
pre-trained models in a resilient way, which means it can be combined with other
defense techniques with no constraints. It is a generalized model deployment
strategy to improve robustness that is easily transferable to other learning settings.

4 Conclusion

This paper demonstrated how to analyze and improve the robustness of learning-
based prediction models in power distribution networks using the DDDAS
paradigm. Given the existence of threats from stealthy adversarial attacks, we first
designed a resilient detection and reconstruction strategy using randomization
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elements. We then proposed a practical, iterative dynamic data repair strategy to
seek an optimal trade-off between reconstruction results from different sensitivity
levels. Our work not only shows the importance of introducing randomization
elements to increase robustness in learning-based systems but also the effective-
ness of deviation feedback for predictions on-the-fly. Even though our defense
framework has shown promising results, the computation cost for an optimal
defense efficiency can be very high thereby requiring new approaches to simplify
and accelerate computations for real time applications.
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