
IEEE COMPUTER 1

Developing Applications Using Model-driven
Design Environments

Krishnakumar Balasubramanian, Member, IEEE, Aniruddha Gokhale, Member, IEEE, Gabor Karsai, Senior
Member, IEEE, Janos Sztipanovits, Fellow, IEEE, and Sandeep Neema, Member, IEEE

Abstract— Model-driven development (MDD) is an emerging
paradigm that improves the software development lifecycle,
particularly for large software systems by providing a higher-
level of abstraction for designing and developing the system
than is possible with third-generation programming languages.
The MDD paradigm relies on the use of (1) Domain-Specific
Modeling Languages that incorporate elements of the domain
being modeled and their relationship as first-class objects, and (2)
model transformations that transform the models into platform-
specific artifacts, such as code. This paper illustrates several
key characteristics of the MDD approach that differentiate it
from traditional software development approaches. Additionally,
the paper describes meta-programmable tools used to con-
struct domain-specific tool-suites, and provides two example tool
suites drawn from different domains. These tool-suites are (a)
PICML, which supports the development of standards-compliant
component-based applications, and (b) ECSL, which supports
software development for distributed embedded controllers.

Index Terms— Model-Integrated Computing, GME, CCM,
CoSMIC, Deployment & Configuration

I. INTRODUCTION

H ISTORICALLY, software development methodologies
have focused on improving the individual tools like

programming languages, much more than tools that assist
system composition and system integration. Component-based
middleware like Enterprise Java Beans, Microsoft .NET and
the CORBA Component Model (CCM) have helped improve
the re-usability of software through the abstraction of com-
ponents. However, as systems are being built more frequently
using commercial-off-the-shelf (COTS) technologies, a wide
gap has been created in the availability and level of sophis-
tication of tools that help with software development like
compilers, debuggers, linkers and virtual machines, as opposed
to tools that allow developers to compose, analyze and test a
complete system, or system of systems. As a result, the task
of system integration continues to be accomplished using ad
hoc methods without the support of automated tools.

Model-Driven Development (MDD) is an emerging
paradigm which solves a number of problems associated with
the composition and integration of large-scale systems while
also leveraging the advances in software development, such
as component-based middleware. The focus of MDD is to
elevate software development to a higher level of abstraction
than that provided by third generation programming languages.
The MDD approach relies on the use of models to represent
the system elements of the domain and their relationships. In

Contact Author e-mail: kitty@dre.vanderbilt.edu
The authors are with Vanderbilt University, Nashville, TN, USA.

MDD, models are used in most system development activities,
i.e., models serve as input and output at all stages of system
development until the final system is itself generated.

This paper describes one variant of MDD called Model-
Integrated Computing (MIC) [1], which focuses on using
Domain-Specific Modeling Languages (DSMLs) to represent
system elements and their relationships, and transformations
from these languages to platform-specific artifacts. We have
successfully applied the concept of MIC to develop a num-
ber of DSML tool-suites. In this paper we will focus on
two such tool suites: (1) Platform-Independent Component
Modeling Language (PICML), which assists developers in
the development, configuration and deployment of systems
built using component middleware technology, such as CCM;
(2) Embedded Control Systems Language (ECSL), which
supports development of distributed embedded automotive
applications.

Both of these tool-suites are built using the Generic
Modeling Environment (GME) [2], an open-source meta-
programmable domain-specific design environment, which al-
lows development of both DSMLs and the models that con-
form to these DSMLs, within the same graphical environment.

Another popular variant of MDD is the Object Manage-
ment Group’s Model-Driven Architecture (MDA) [3], which
relies on representing systems using the Unified Modeling
Language (UML), a general purpose modeling language, and
transforming these models into artifacts that run on a variety
of platforms like EJB, CCM and .NET. Unlike MDA, which
focuses on the use of a general-purpose modeling language
like UML (along with specific profiles), MIC focuses on
developing modeling languages that are tailored to a particular
domain of interest.

The remainder of the paper is organized as follows: Sec-
tion II describes the concept of DSML and the key ele-
ments defined in it; Section III describes PICML and shows
how PICML addresses the challenges involved in developing
component-based applications; Section IV describes ECSL
and shows how ECSL resolves the challenges in developing
embedded automotive applications; Section V compares our
work with other MDD frameworks and tools; and finally
Section VI presents concluding remarks.

II. DOMAIN-SPECIFIC MODELING LANGUAGES

DSMLs are the backbone for realizing the vision of Model-
Integrated Computing (MIC), a variant of MDD. One differ-
ence between other variants of MDD like MDA and MIC is

IEEE COMPUTER 2

the emphasis on the “domain-specific” aspect of the modeling
languages. This section provides an overview of DSMLs and
explains the steps needed to create a DSML.

A. Overview of DSML

The domain of interest of a DSML can range from some-
thing very specific, such as the elements of a radar system,
or can be as broad as the set of all the component-based
middleware applications built using platforms such as EJB, or
CCM. The key idea behind DSMLs is their ability to capture
the elements of the domain as first-class objects.

A DSML can be viewed as a five-tuple [4] consisting of:
1) Concrete Syntax (C), which defines the specific no-

tation (textual or graphical) used to express domain
elements,

2) Abstract Syntax (A), which defines the concepts, re-
lationships and integrity constraints available in the
language,

3) Semantic Domain (S), which defines the formalism
used to map the semantics of the models to a particular
domain,

4) Syntactic Mapping (MC: A→C), which assigns syntac-
tic constructs (e.g., graphical and/or textual) to elements
of the abstract syntax, and

5) Semantic Mapping (MS: A→S), which relates the
syntactic concepts to those of the semantic domain.

Thus the abstract syntax determines all the (syntactically)
correct “sentences”, i.e., models, in the language. A DSML
is also known as a “metamodel”, since a DSML is (itself) a
model that defines all the possible models that can be built
using it. To support the development of DSMLs, we have de-
veloped a “meta-programmable” modeling environment called
the Generic Modeling Environment (GME).

B. Creating a DSML using GME

DSMLs are defined visually in GME. The following are the
typical steps in creating a DSML using GME:
1. Identifying the domain elements and their relationships.
The first step in creating a DSML is to identify the different
elements of the domain that we want to model, and their
relationships. This is usually done with input from a domain
expert. It is unlikely that all the elements are defined in a
single iteration. Just like software development, MDD is also
an iterative process, and any MDD tool infrastructure should
allow modification of the elements (or relationships between
elements) with ease.
2. Mapping the elements of the domain to concepts in
GME. Sidebar 1 provides more information about the GME
concepts. Once we have enumerated the elements of the
domain, we need to map these domain concepts to GME
concepts like Models, Atoms, et al. This process is very
similar to defining the types in a program when coding using
a language like C/C++.
3. Using GME concrete syntax to realize the mapping.
With the mapping of elements of the domain to concepts in
GME complete, the next step is to use the concrete syntax

Sidebar 1: Generic Modeling Environment

Generic Modeling Environment (GME) is an open-
source, visual, configurable design environment for creat-
ing DSMLs and program synthesis environments, available
for download from escher.isis.vanderbilt.edu/
downloads?tool=GME. A unique feature of GME is that it
is a meta-programmable environment. By meta-programmable,
we refer to the fact that GME is not only used to build DSMLs,
but also to build models that conform to a DSML. In fact, the
environment used to build DSMLs in GME is itself built using
another DSML (also known as the meta-metamodel) called
“MetaGME”. GME provides the following elements to define
a DSML:
• Project, which is the top-level container in a DSML,
• Folders, which are used to group collections of similar

elements together,
• Atoms, which are the indivisible elements of a DSML,

and used to represent the leaf-level elements in a DSML,
• Models, which are the compound objects in a DSML,

and are used to contain different types of elements like
References, Sets, Atoms, Connections et al. (the elements
that are contained by a Model are known as parts),

• Aspects, which are primarily used to provide a different
viewpoint of the same Model (every part of a Model is
associated with an Aspect),

• Connections, which are used to represent relationships
between the elements of the domain,

• References, which are used to refer to other elements in
different portions of a DSML hierarchy (unlike connec-
tions which can be used to connect elements within a
Model),

• Sets, which are containers whose contained elements
are defined within the same aspect and have the same
container as the owner.

of GME, i.e., UML class diagrams, to capture the elements
of the DSML as shown in Figure 1. It is important to note
that the concrete syntax of the elements of your DSML, i.e.,
visualization of elements of the DSML, is defined when you
are defining the types of your your DSML. GME provides the
ability to customize the concrete syntax, i.e., customize the
visualization of elements in your DSML. Customization of
visualization is done using decorators in GME. A decorator
is a component (written using a traditional programming
language) that implements a set of standard callback interfaces.
Once a decorator is registered with GME, GME invokes the
callbacks whenever GME needs to display the element.
4. Defining static semantics of the DSML. The use of
UML class diagrams as the notation for concrete syntax of
DSMLs in GME allows capturing some semantics of the
association between the different elements. This is because
some semantics like cardinality of associations can be suffi-
ciently represented using the notations offered by UML class
diagrams. For constraining the associations between elements
further, GME provides a built-in constraint manager. GME’s
constraint manager allows the definition of constraints using
OMG’s Object Constraint Language (OCL) [5] as shown in
Figure 2. The semantics of the DSML that are enforceable
using OCL can be viewed as static semantics, since they do
not take the system dynamics into account.

IEEE COMPUTER 3

Fig. 1: Realizing the domain mapping using concrete syntax in GME

Fig. 2: Defining static semantics in GME

5. Generating the DSML environment. Now that we have
defined the elements of the DSML and the associated static
semantics, we instruct GME to generate our customized
DSML environment. This is done using a process called
meta-interpretation. Meta-interpretation takes the definition of
the DSML from the previous step, runs a set of standard
transformations (which ensure consistency of the language)
just like a traditional compiler and creates a paradigm. The
paradigm file, which actually defines the DSML, is then

registered with the GME environment. It is now possible to
create models that conform to the DSML that we have built
using GME.

6. Defining dynamic semantics of the DSML. Though
we have defined the elements, relationships and the static
semantics of the DSML, it is necessary to define dynamic
semantics to make the DSML useful for complex real-world
applications. Dynamic semantics of a DSML can be enforced
using interpreters. An interpreter is a component that is written

IEEE COMPUTER 4

using a traditional programming language like C++, Python
or Java. Interpreters need to be registered with GME. When
an interpreter is invoked, it is given access to the model
hierarchy by GME, and can be used to perform different
kinds of validation and generative operations on the models.
One such operation can include generating platform-specific
artifacts like code directly from the models.

III. APPLYING MIC TO DEVELOP COMPONENT-BASED
APPLICATIONS

This section describes a DSML called Platform-Independent
Component Modeling Language (PICML). First we describe
the challenges in system composition and integration when
using component-middleware technologies without adequate
tool support. Then we describe how we have applied the MDD
approach to develop PICML, and show how the features in
PICML help resolve the challenges with development, config-
uration and deployment of component-based applications.

A. Component-based Application Development Challenges

A common trend in the transition to component middleware
technologies is the use of metadata to capture properties
of applications that were previously tightly coupled with
the implementation. This allows declarative specification of
properties of applications using platform-agnostic technologies
like XML, which are read by tools during deployment, and
allows for automating the deployment and configuration of
applications.

The availability of higher-level abstractions like virtual
machines, execution containers, and extra information about
systems via rich metadata, has an indirect effect in allowing
people to build systems that are more heterogeneous than
previously possible. This results in an increase in the amount
of information that must be managed by the system developer
as well as an increase in the complexity of system integra-
tion. However, the infrastructure for managing such complex
deployment was essentially lacking in previous generation
middleware. Most deployments were done in an ad hoc
basis and there was hardly any reuse of the deployment
infrastructure. Moreover, these ad hoc techniques had no
basis for scientifically verifying and validating the correctness
of the system. The amount of heterogeneity in the systems
being deployed was also less compared to systems built using
component-based middleware. The lack of simplification and
automation in resolving the challenges outlined above can
significantly hinder the effective transition to – and adoption
of – component middleware technology to develop systems,
thereby negating the benefits of component middleware tech-
nologies.

B. Platform-Independent Component Modeling Language

To address the problems outlined above, we have developed
a DSML called Platform-Independent Component Modeling
Language (PICML). PICML is an open-source DSML avail-
able for download as part of the CoSMIC MDD framework
at www.dre.vanderbilt.edu/CoSMIC. PICML enables

developers of component-based systems to define application
interfaces, QoS parameters, and system software building
rules, as well as generate metadata, XML descriptor files,
that enable automated system deployment. PICML also pro-
vides capabilities to handle complex component engineering
tasks, such as multi-aspect visualization of components and
the interactions of their subsystems, component deployment
planning, and hierarchical modeling of component assemblies.
Currently, PICML is used in conjunction with the Component-
Integrated ACE ORB (CIAO), our CCM implementation, and
Deployment and Configuration Engine (DAnCE) [6], a QoS-
enabled deployment engine. However, PICML’s design has
been driven by the goal to allow integration of systems built
using different component technologies like Microsoft .NET
and EJB.

PICML is defined as a metamodel in GME for describing
components, types of allowed interconnections between com-
ponents, and types of component metadata for deployment.
From this metamodel, ∼20,000 lines of C++ code (which
represents the modeling language elements as equivalent C++
types) is generated. This generated code allows manipulation
of modeling elements, i.e., instances of the language types
using C++, and forms the basis for writing model interpreters,
which traverse the model hierarchy to generate XML-based
deployment plan descriptors (described in Sidebar 2) needed
to support the OMG Deployment and Configuraion (D&C)
specification [7].

Component

Resource
Requirements

Impl Impl Impl

Properties

Component

 Assembler

Component
Assembly

Component Component

Component Component

Component Package

Component
Assembly

Component Component

Component Component

Component
Assembly

Component Component

Component Component

(1
)

In
te

rf
a

c
e

D
e

fi
n

it
io

n

(2) Interaction

Definition

(3)
H

ierarchical

C
om

position (4
)
D

es
cr

ip
to

r

G
en

er
at

io
n

(5) Deployment planning

Component

 Developer

Component

 Packager

Component

Deployer

PICML
co

mposit
ion

a
ss

e
m

b
ly

generation

p
la

n
n
in

g

specification

Assembly

Deployment

Assembly

Assembly

DAnCE

Framework

Fig. 3: Model-driven Application Development Lifecycle

Figure 3 shows the typical steps involved in developing
component-based applications using PICML’s MDD approach.
The following describes the key steps in component-based
application development, while describing the features in
PICML used in this process:
1. Visual component interface definition. A set of com-
ponent, interface and other datatype definitions defined via
CORBA’s Interface Definition Language (IDL) may be created
in PICML using either of the following two approaches: (1)
Adding to existing definitions imported from IDL. In this
approach, existing CORBA software systems can be easily
migrated to PICML using its IDL Importer, which takes any
number of CORBA IDL files as input, maps their contents to

IEEE COMPUTER 5

the appropriate PICML model elements, and generates a single
XML file that can be imported as a PICML model; (2) Cre-
ating IDL definitions from scratch. In this approach, PICML’s
graphical modeling environment provides support for design-
ing the interfaces using an intuitive “drag and drop” technique
making this process largely self-explanatory and independent
of platform-specific technical knowledge. CORBA IDL can
be generated from PICML enabling generation of software
artifacts in languages having a CORBA IDL mapping.
2. Valid component interaction definition. By elevating
the level of abstraction via MDD techniques, the well-
formedness rules of DSMLs like PICML actually capture
semantic information, such as constraints on composition of
models, and constraints on allowed interactions. There is a
significant difference in the early detection of errors in the
MDD paradigm compared with traditional object-oriented or
procedural development using a conventional programming
language compiler. In PICML, OCL constraints are used to
define the static semantics of the modeling language, thereby
disallowing invalid systems to be built using PICML, i.e.,
PICML enforces the correct-by-construction approach to sys-
tem development.
3. Hierarchical composition. In a complex system with
thousands of components, visualization becomes an issue
because of the practical limitations of displays, and the lim-
itations of human cognition. Without some form of support
for hierarchical composition, observing and understanding
system representations in a visual medium does not scale.
To increase scalability, PICML defines a hierarchy construct,
which enables the abstraction of certain details of a system
into a hierarchical organization, such that developers can view
their system at multiple levels of detail depending upon their
needs. The support for hierarchical composition in PICML not
only allows system developers to visualize their systems, but
also allows them to compose systems from a set of smaller
subsystems. This feature supports unlimited levels of hierarchy
(constrained only by the physical memory of the system
used to build models) and promotes the reuse of component
assemblies. PICML therefore enables the development of
repositories of predefined components and subsystems. The
hierarchical composition capabilities provided by PICML are
only a logical abstraction, i.e., deployment plans generated
from PICML flatten out the hierarchy to connect the two
destination ports directly (which if not done will introduce
additional overhead in the communication paths between the
two connected ports), thereby ensuring that at runtime there
is no extra overhead that can be attributed to this abstraction.
4. Valid deployment descriptor generation. In addition to
ensuring design-time integrity of systems built using OCL
constraints, PICML also generates the complete set of deploy-
ment descriptors that are needed as input to the component
deployment mechanisms. The descriptors generated by PICML
conform to the descriptors defined by the standard OMG D&C
specification [7]. Sidebar 2 shows an example of the types
of descriptors that are generated by PICML, with a brief
explanation of the purpose of each type of descriptor.
5. Deployment planning. Systems are often deployed in het-
erogeneous execution environments. To support these needs,

PICML can be used to specify the target environment where
the system will be deployed, which includes nodes, inter-
connects among nodes, and bridges among interconnects, all
of which collectively represent the target environment. Once
the target environment is specified via PICML, allocation of
component instances onto nodes of the target target environ-
ment can be performed. PICML currently provides facilities
for specifying static allocation of components.

Sidebar 2: Deployment Metadata

PICML generates the following types of deployment descrip-
tors based on the OMG D&C specification:
• Component Interface Descriptor (.ccd) – Describes the

interfaces – ports, attributes of a single component.
• Implementation Artifact Descriptor (.iad) – Describes

the implementation artifacts (e.g., DLLs and executables)
of a single component.

• Component Implementation Descriptor (.cid) – De-
scribes a specific implementation of a component inter-
face; also contains component interconnection informa-
tion.

• Component Package Descriptor (.cpd) – Describes
multiple alternative implementations (e.g., for different
OSes) of a single component.

• Package Configuration Descriptor (.pcd) – Describes
a component package configured for a particular require-
ment.

• Component Deployment Plan (.cdp) – Plan which
guides the runtime deployment.

• Component Domain Descriptor (.cdd) – Describes the
deployment target i.e., nodes, networks on which the
components are to be deployed.

IV. APPLYING MIC TO DEVELOP EMBEDDED AUTOMOTIVE
APPLICATIONS

Embedded automotive systems are becoming notoriously
difficult to design and develop. Over the past years there
has been an explosion in the scale and complexity of these
systems, owing to a push towards drive-by-wire technologies,
increasing feature levels, and increasing capabilities in the em-
bedded computing platforms. In order to address this level of
complexity, the automotive industry has in general embraced
the model-based approach for embedded systems development.
However, the approach is confined to only the functional
aspects of the system design, and restricted to a limited suite
of tools, most notably the Mathworks family of Matlab®,
Simulink® (SL), Stateflow® (SF) tools. Undeniably, Simulink
and Stateflow are very powerful, graphical system design tools
for modeling and simulating continuous and discrete event-
based behavior of a dynamic system. However, these tools
by no means cover the entire spectrum of embedded systems
development. There are several other complex activities such
as requirements specification, verification, mapping on to a
distributed platform, scheduling, performance analysis, and
synthesis in the embedded systems development process.

Although there are tools which individually support one or
more of these other developmental activities, the integration
among these tools and the Mathworks family of tools is

IEEE COMPUTER 6

often lacking, which makes it extremely difficult to maintain
a consistent view of the system as the design progresses
through the development process, and also requires significant
manual effort in creating different representations of the same
system. To address the deficiencies in the development process
for distributed automotive embedded systems, we built the
Embedded Control Systems Language (ECSL) that provides
the ability to import existing SL/SF models into a GME
environment, and supports: (1) The annotation of structural
design, SW-component design, and behavior implementation
to supply information needed by a code generator, (2) Cre-
ation of HW-topology design models, Electronic Control Unit
(ECU)-design models, and firmware implementation design
models, and (3) Creation of deployment models that capture
component and communication mapping.

A. Embedded System Development using ECSL

Figure 4 depicts the conceptual view of activities in an
automotive embedded systems development process, as sup-
ported by the ECSL tools. Each rounded block denotes a
particular activity and arrows indicate the workflow between
different activities. Activities can roughly be grouped in three
blocks: Hardware Design, Software Design, and Mapping.
Requirements Engineering is not within the scope of this tool-
suite, although it is the basis for most of the modeling and
development activities.

ECSL/CG

G
M

E
/E

C
S

L

S
L
/S

F

ECU Integration

HW-Topology Design

ECU-Design SW-Component Design

Behavior

Implementation

Behavior
Code Generation

Firmware
Implementation

Communication
Mapping

System Code
Generation/Integration

Firmware
Code Generation

Requirements Analysis

Component
Mapping

Hardware Design
Software Design
(Refinement)

Mapping

Code Generation

Structural Design

ML2ECSL

Fig. 4: ECSL Process

Software Design deals with: a) Structural design, which refers
to the hierarchical decomposition of the embedded system into
subsystems and sub-subsystems, from a functional viewpoint,
b) Component design, which is another form of decomposition
not independent of the functional decomposition, deals with
more of the classical embedded software concerns such as
real-time requirements, real-time tasks, periodicity, deadline,
and scheduling, and c) Functional/behavioral design, which
refers to the elaboration of the leaf elements of the hierarchical
structural design in terms of a synthesizable realization.
Hardware Design includes the specification of ECUs in
a network and their connections with buses, defining an

architectural topology of the distributed embedded platform.
Refinements of this activity include design of individual ECUs,
selecting the processors, determining the memory and I/O
requirements.
Mapping includes activities involving both software and
hardware objects, like decisions regarding the deployment of
certain complete or partial functions to hardware nodes which
are part of the network, and the assignment of signals to bus
messages.
Code Generation/Implementation involves creation of low-
level coding artifacts, which include RTOS configuration,
firmware configuration code, and behavioral implementation
of the components.

Figure 4 captures an abstraction of the design process,
which is made concrete by a number of supporting tools,
which include: GME/ECSL. This is the Generic Modeling
Environment tailored to support the ECSL modeling lan-
guage. ECSL/CG. A specialized code generator that produces
various production artifacts (e.g., source code, configuration
files) from ECSL models. ML2ECSL. Import translators that
allow importing SL and SF models into the ECSL modeling
environment. SL/SF. These are the Simulink and Stateflow
tools.

B. Embedded Control Systems Language
ECSL is a graphical modeling language built using GME.

It contains modeling concepts for specification of the design
activities listed above. The language has been designed as a
composition of a suite of sub-languages as shown below:
Functional Modeling. The Simulink and Stateflow sub-
languages of ECSL were designed to mirror the capabilities
found in SL and SF, such that all models could be imported
into the GME environment configured to support ECSL.
Simulink follows a dataflow-diagram like visual notation,
while Stateflow supports Statechart-like hierarchical finite state
machines.
Component Modeling. This sub-language allows software
modeling in two stages: (1) integrating models that were
imported from SL/SF, and (2) allowing their componentiza-
tion. A component is defined as a portion of the software
model, which is deployed as a unit. The componentization is
specified using the GME containment and reference capabil-
ities: Components are GME models that contain references
to elements of the functional model (imported from SL).
Components consist of ports which allow the specification
of inter-component communication, as well as interfaces to
physical devices including sensors and actuators. Attributes of
ports capture the required communication properties like data
type, scaling, and bit width. The intra-component dataflow
exists within the functional models and it is imported from
SL/SF. The inter-component dataflow is introduced by the
designer after creating components from the imported SL/SF
models.
Hardware Topology Modeling. The hardware modeling sub-
language of ECSL allows the designer to specify the hardware
topology, including the processors and communication links
between the processors. ECU models represent specific pro-
cessors in the system. An ECU model has two kinds of ports

IEEE COMPUTER 7

for representing the I/O channels and the bus connections. I/O
channel ports come in two variants: sensor ports and actuator
ports. The specifics of the ECU firmware, characterization with
respect to memory sizes and CPU speed, are captured with
attributes. Bus models represent communication pathways
used to connect ECUs. Buses are expressed as GME atoms
and their attributes specify various properties of the physical
communication system (e.g. bit rates).
Deployment (Mapping) Modeling. This modeling sub-
language captures how software components are deployed on
the hardware. The ECU model has a “deployment aspect”
that allows the designer to capture SW component to ECU
mapping using GME’s reference concept. Note that deploy-
ment models are separate from software models, thus allowing
the reuse of software models in different HW architectures.
Furthermore, component ports are connected to ECU ports
(sensor, actuators, and bus connections) to indicate how the
component software interfaces map to actual sensors, actuators
and buses.

C. Generating code and other artifacts

The ECSL/CG tool is a code generator that produces code
artifacts necessary for system implementation as shown on
Figure 5.

CANoe

NodeLayer-DLL
for CANoe

Extended
SL/SF-Model

OSEK OS Libs
CANoe Emulation

CAN Driver
CANoe Emulation

Application
Behaviour-Code

OSEK OS
Oil File

Vector Tools or Standard Code-Modules

OSEK OS
specific .h Files

Generate

Code Configure

OSEK Application
Tasks and Code

CAN Driver
Configuration

Compile+

Link

For each HW node

Generated by Vanderbilt Code-Generator

Glue Code
.c, .h Files

Fig. 5: ECSL Code Generation

The following types of files are generated: (1) OSEK
Implementation Language (OIL) File - For each ECU-node
in the network an OIL file is generated, that includes a listing
of all used OSEK [8] objects and their relations, (2) OSEK
Tasks and Code - All tasks are implemented in one or more
C files, (3) Application Behavior Code - A separate function
is generated for each application component that implements
the behavior of the component. This function is called out
from within a task frame, (4) Glue Code - The glue code
comprises one or more C code/header files that resolve the
calls to the Controller Area Network (CAN) driver or the
firmware in order to provide access to CAN signals or HW
I/O signals.

V. RELATED WORK

This section summarizes related efforts associated with de-
veloping design environments supporting the MDD approach
and compares these efforts with our work.

A. Cadena
Cadena [9] is an integrated environment developed at

Kansas State University (KSU) for building and modeling
component-based systems, with the goal of applying static
analysis, model-checking, and lightweight formal methods to
enhance these systems. Cadena also provides a component
assembly framework for visualizing and developing compo-
nents and their connections. Unlike PICML, however, Cadena
does not support activities such as component packaging and
generating deployment descriptors, component deployment
planning, and hierarchical modeling of component assemblies.
To develop a complete MDD environment that seamlessly
integrates component development and model checking ca-
pabilities, we are working with KSU to integrate PICML
with Cadena’s model checking tools, so we can accelerate the
development and verification of DRE systems.

B. Kennedy Carter Modeling Tool-suite
Kennedy Carter [10] provides a solution called iUML,

which uses the MDA approach to develop systems using
executable UML. iUML provides a full fledged modeling
framework as well as a model testing, debugging and execution
environment. iUML also provides a ready to use code gener-
ation framework so that developers can translate the models
using a proprietary code generation framework. Like UML,
iUML is also a generic framework and the developers will have
to customize the tool to create domain-specific artifacts. It is
possible that Kennedy Carter will target DSMLs for vertical
domains which use this generic framework.

C. Eclipse Modeling Framework
Eclipse Modeling Framework(EMF) [11] is a modeling

framework targeting the MDA approach to MDD. EMF uses
MOF [12] as the underlying meta-metamodel. EMF supports
specification of the models using XML Metadata Interchange
(XMI), annotated Java, and XML Schema. EMF generates
Java code that allows a user to manipulate the elements in a
model. There are efforts like Graphical Modeling Framework
(GMF) which are currently underway with the goal of adding
capabilities for visual specification of DSMLs just like GME.

D. Microsoft DSL Tools
Microsoft has recently released a set of tools with the

goal of realizing the vision of Software Factories [13]. Like
PICML, the release includes a DSML for building .NET
based Web Services applications called Visual Studio for
Team Architects (VSTA), which provides tight integration with
code, and generates descriptors necessary for deploying these
applications. Microsoft is also developing another set of tools
called the domain-specific language (DSL) tools. The DSL
tools are like GME and EMF and allow development of DSLs
using a proprietary meta-metamodel.

IEEE COMPUTER 8

VI. CONCLUDING REMARKS

Model-driven development (MDD) is a promising paradigm
to tackle the system composition and integration challenges.
MDD elevates the level of abstraction of software develop-
ment and bridges the gap between technology domains by
allowing domain experts (who may not be experts in software
development) to be able to design and build systems. The
higher level of abstraction provided by MDD also allows
transformation between models in different domains without
the need to resort to low-level integration solutions like using
standard network protocols. MDD guarantees the semantic
consistency of the systems that are built by enforcing the
philosophy of “correct-by-construction”. MDD also solves a
lot of the accidental complexities, due to the heterogeneity of
the underlying component middleware technologies, that arise
during system integration. For example, applying MDD to
develop component-based applications using PICML relieves
the users from having to capture the metadata in the form of
XML descriptors, which are tedious and error-prone to write
manually.

With improvements in generative techniques, MDD has the
potential to automate the generation of code just like compilers
replaced assembly language/machine-code programming. This
allows people to augment their existing software methodolo-
gies with MDD, and helps in easing the transition from a pure
coding based approach to a pure MDD approach.

REFERENCES

[1] J. Sztipanovits and G. Karsai, “Model-Integrated Computing,” IEEE
Computer, vol. 30, no. 4, pp. 110–112, Apr. 1997.

[2] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle,
and G. Karsai, “Composing Domain-Specific Design Environments,”
IEEE Computer, pp. 44–51, November 2001.

[3] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing. Indianapolis, IN: John Wiley and Sons, 2003.

[4] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-Integrated
Development of Embedded Software,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 145–164, Jan. 2003.

[5] Unified Modeling Language: OCL version 2.0 Final Adopted Specifi-
cation, OMG Document ptc/03-10-14 ed., Object Management Group,
Oct. 2003.

[6] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and A. Gokhale,
“DAnCE: A QoS-enabled Component Deployment and Configuration
Engine,” in Proceedings of the 3rd Working Conference on Component
Deployment, Grenoble, France, Nov. 2005.

[7] Deployment and Configuration Adopted Submission, OMG Document
mars/03-05-08 ed., Object Management Group, July 2003.

[8] OSEK, “Open systems and the corresponding interfaces for automotive
electronics,” www.osek-vdx.org/.

[9] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena:
An Integrated Development, Analysis, and Verification Environment for
Component-based Systems,” in Proceedings of the 25th International
Conference on Software Engineering, Portland, OR, May 2003.

[10] K. Carter, “Kennedy Carter iUML 2.2,” www.kc.com, 2004.
[11] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose,

Eclipse Modeling Framework. Reading, MA: Addison-Wesley, 2003.
[12] MetaObject Facility (MOF) 2.0 Core Specification, OMG Document

ptc/03-10-04 ed., Object Management Group, Oct. 2003.
[13] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:

Assembling Applications with Patterns, Models, Frameworks, and Tools.
New York: John Wiley & Sons, 2004.

