
A Model-driven Approach to Automate the
Deployment and Management of Cloud Services

Anirban Bhattacharjee∗, Yogesh Barve∗, Aniruddha Gokhale∗
∗Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, Tennessee, USA
Email: {anirban.bhattacharjee; yogesh.d.barve; a.gokhale}@vanderbilt.edu

Takayuki Kuroda†
†NEC Corporation

Kawasaki, Kanagawa, Japan
Email: t-kuroda@ax.jp.nec.com

Abstract—Although many provisioning tools are available for
deployment and management of composite cloud services to over-
come the manual efforts that are laborious, tedious and error-
prone, users are often required to specify Infrastructure-as-Code
(IAC) solutions via low-level scripting. IAC demands domain
knowledge for provisioning the services across heterogeneous
cloud platforms and incurs a steep learning curve. To address
these challenges, we present a technology- and platform-agnostic
self-service framework called CloudCAMP. CloudCAMP incor-
porates domain-specific modeling so that the specifications and
dependencies imposed by the cloud platform and application ar-
chitecture can be specified at an intuitive, higher level of abstrac-
tion without the need for domain expertise. CloudCAMP trans-
forms the partial specifications into deployable Infrastructure-
as-Code (IAC) using the Transformational-Generative paradigm
and by leveraging an extensible and reusable knowledge base. The
auto-generated IAC can be handled by existing tools to deploy,
manage and provision the services components automatically. We
validate our approach quantitatively by showing a comparative
study of savings in manual and scripting efforts versus using
CloudCAMP.

Keywords—cloud services, deployment and orchestration, au-
tomation, domain-specific modeling, knowledge base

I. INTRODUCTION

Self-service application deployment and management are
desired for enterprises to speed up time-to-market for their
cloud services. This has become necessary since modern cloud
services are often architected as microservices, where each of
the components must be configured and deployed on cloud
platforms in a specific order. Infrastructure and service provi-
sioning for these complex use cases using low-level scripting
environments degrade productivity and adversely impact the
product time-to-market.

A. Motivating the Problem

Consider the case of a LAMP-based service deployment on
a cloud platform. Figure 1 shows the desired cloud application
topology consisting of two connected software stacks, i.e., a
PHP-based web front-end and a MySQL database backend.
The left side stack of the service model holds the business
logic since the frontend will be deployed on Ubuntu 16.04
server. This server will be hosted in a virtual machine (VM),
and the virtual environment is managed using the OpenStack
cloud platform. The right-hand side of the stack shows the
relational database, which is used to store and query the
product data. The backend database is a MySQL DBMS,

which will be deployed on the Amazon Elastic Compute Cloud
(EC2) VM instance with an Ubuntu 14.04 server.

Fig. 1: Desired Level of Abstraction for a WebApp Business Model

The deployer needs to provision the PHP and MySQL-based
e-commerce application stack from two aspects. In the cloud
infrastructure provisioning aspects, the application topology
needs to be woven into the execution environment which can
be virtual machines (VM), containers or third party services.
The deployer needs to select a proper image provided by the
cloud provider, along with the security group, roles, network,
number of instances, the storage unit to spawn new VM(s) in
the target cloud platform.

In the service provisioning aspects, all the dependent soft-
ware needs to be installed, and all the constraints need to be
configured. For example, for the frontend of our motivating
example, Apache Httpd needs to be installed and configured
along with PHP and Java. Similarly, in the backend, MySQL
needs to be installed and configured. Besides, the web appli-
cation requires installing a PHP database connectivity driver
to access the database. The installation process of the software
depends on the operating systems, their versions, and package
managers. Moreover, the database service should start before
the PHP application service so as to run the WebApp properly.
The IAC solution for the application provisioning requires
all the installation and configuration details to execute the
deployment plan.

B. Solution Approach: CloudCAMP

Our motivating example shows that a user must possess ex-
tensive domain knowledge to provision even a simple web ap-
plication stack correctly. Although many provisioning tools are
available for deployment and management of composite cloud



services, users are often required to specify Infrastructure-
as-Code (IAC) solutions via low-level scripting. Instead a
desired capability would require that (1) a deployer specify
only the application components, such as a Web App, (2) the
framework automatically transforms the business model into
deployable artifacts.

To address these challenges and realize the desired capa-
bilities, we propose a model-driven and scalable, rapid provi-
sioning framework called CloudCAMP. CloudCAMP complies
with TOSCA (Topology and Orchestration Specification for
Cloud Applications), which enables the creation of portable
and interoperable plans-as-a-service template for cloud ser-
vices. Using TOSCA provides us standardization for decou-
pling software applications and its dependencies from the
cloud platform specifications.

The key contributions in this paper include:
1) We present key elements of CloudCAMP’s domain-

specific modeling language (DSML) that masks low-level
details of the application component specifications and
cloud provider specifications and instead offers intuitive
high-level representations;

2) We present the use of an extensible knowledge base
and algorithms to perform Model-to-Infrastructure-as-
code (IAC) transformations automatically; and

3) We present a concrete realization of CloudCAMP and
validation in the context of real-world use cases.

C. Organization of the paper

The rest of the paper is organized as follows: Section II
presents a brief survey of existing solutions in the literature
and compares to our solution; Section III presents the design
of CloudCAMP; Section IV evaluates our metamodel for a
prototypical case study and presents a user survey; and finally,
Section V concludes the paper alluding to future directions.

II. RELATED WORK

We compare existing deployment and management abstrac-
tion efforts in the literature with our work. A preliminary
version of CloudCAMP appears in [1].

The community today leverages orchestration solutions such
as CloudFoundry (https://www.cloudfoundry.org/), Cloudify
(http://getcloudify.org/), etc among others in association with
automation tools such as Ansible, Puppet, and Chef, among
others. However, the different dimensions of variability (i.e.,
addressing application’s compatibility and cloud providers’
incompatible APIs) complicates the manual scripting effort
using these tools. In this context, Alien4Cloud [2] proposes
a visual way to generate TOSCA topology model, which can
be orchestrated by Apache Brooklyn. However, building the
proper topology even using model-driven approaches needs
domain expertise. Unlike these approaches, CloudCAMP ab-
stracts all the application and cloud-specific details in the
metamodel of its DSML and transforms the business model to
TOSCA-compliant IAC.

Several patterns-based approaches are proposed to reduce
the complexity of service deployment [3]. Likewise, model-
based patterns of proven solutions are used for service de-

ployment in cloud infrastructures [4]. For instance, MODA-
Clouds [5] allows users to develop and deploy application
components to operate and manage in multi-cloud environ-
ments using a Decision Support System. Similar to Cloud-
CAMP, they also support reuse and role-based iterative refine-
ment. However, deployment plan generation lacks verification
and extensibility.

ConfigAssure [6] is a requirement solver to synthe-
size infrastructure configuration in a declarative fashion.
Aeolus Blender [7] comprises the configuration optimizer
Zephyrus [8], the ad-hoc planner Metis, and deployment
engine Arnomic. Zephyrus automatically generates an ab-
stract configuration of the desired system based on a partial
description. In contrast to the use of the knowledge base
in CloudCAMP, these efforts use a Constraint Satisfaction
Problems (CSP) solver to transform the business model. CSP
solvers, however, can take significant time to execute and
defining constraints on the configurations requires domain
expertise, which is not needed in CloudCAMP.

Similar to CloudCAMP, Hirmer et al. [9] focus on producing
complete TOSCA-compliant topology from users’ partial busi-
ness relevant topology using an OpenTOSCA toolchain [10].
CELAR [11] combines MDE and TOSCA specification to
automate deployment cloud applications, where topology com-
pletion is fulfilled by requirement and capability analysis on
node template. Unlike these efforts, the model transformation
in CloudCAMP is based on querying the knowledge base and
idempotent infrastructure code generation.

III. CLOUDCAMP DESIGN AND IMPLEMENTATION

This section delves into the design of CloudCAMP. We first
put forth key requirements that CloudCAMP must satisfy and
then discuss how our design meets those requirements.

A. Requirements for CloudCAMP Self-Service Platform

A self-service cloud platform such as CloudCAMP should
require minimal specifications from the user who does not
need to possess deep domain knowledge and maximally au-
tomate the provisioning process. Below we outline the key
requirements that CloudCAMP must satisfy.

1) Requirement 1: Reduction in specification details:
CloudCAMP must abstract the specification details from the
users by identifying the commonalities of the provisioning
stacks, which become the high-level reusable building blocks
of the deployment and management pipeline that are captured
as domain-specific artifacts. The minimal number of variability
points then become the user inputs.

2) Requirement 2: Auto-completion of Provisioning :
CloudCAMP must define transformation rules that convert
the abstract business models into correct-by-construction com-
plete, deployable TOSCA-compliant [12] Infrastructure-as-
Code (IAC) solution [13].

3) Requirement 3: Support for Continuous Integration, De-
livery and Migration: Since it is possible that an existing
deployment may need to change the infrastructure provisioning
(e.g., change the cloud platform) or change the application
provisioning (e.g., replace the database server technology) or



both, CloudCAMP must decouple the two stages and seam-
lessly support continuous integration, delivery and migration.

B. CloudCAMP Domain-specific Modeling Language (DSML)
The CloudCAMP DSML abstracts the design complexities

by separating the application from deployment and infras-
tructure technologies according to TOSCA specification as
described in Requirement III-A1. The CloudCAMP DSML
is developed using the WebGME MDE framework (www.
webgme.org) and uses JavaScript, NodeJS, and a MySQL
database.

CloudCAMP’s deployment modeling automation meta-
model was developed by harnessing a combination of (1)
reverse engineering, (2) dependency mapping across hetero-
geneous clouds, (3) dependency mapping across different op-
erating systems and their versions, (4) semantic mapping, (5)
business policy, and (6) prototyping. The cloud providers and
applications specifications, software requirements, policies,
and other information concerning the implementation of the
services and all other known constraints are pre-defined as the
high-level building blocks in the metamodel. 1

To that end, CloudCAMP provides different node types as
per TOSCA specifications, which are the application compo-
nents, and various cloud providers. The goal is to concretize
the abstract node type by matching the deployers’ desired
specification with the pre-defined functionalities captured in
the CloudCAMP metamodel and knowledge base. The con-
crete node templates are then woven to specific cloud provider
types, and their VMs to create a dependency graph that has to
be executed to deploy the application components in a specific
order on the desired target machine(s). Using our DSML, the
deployer can configure the node in a defined cloud platform
or particular target system with ease.

1) Metamodel for the Cloud Platforms: In designing the
metamodel for cloud platforms, we observed (i.e., reverse
engineered) the process of hosting applications across different
cloud environments, and captured all the commonalities and
variabilities. The specifications for different cloud platforms
such as OpenStack, Amazon AWS, Microsoft Azure, etc for
provisioning virtual machines (VMs) with different operating
systems (OS) are captured. The deployers can choose their
desired OS images to spawn the VMs/containers.

The deployer can select a pre-defined VM flavor, available
networks, security groups, roles, and the available images, all
of which are defined as variabilities in our metamodel. They
also must specify their environment file, the secret key for the
selected cloud host types, which are the endpoints to bind to
a particular cloud provider as shown in Figure 1. Optionally,
a pre-deployed machine can be specified by providing the IP
address and OS. Available services and VM types for cloud
platforms are pre-defined in the metamodel.

2) Metamodel for Application Components: : For cloud-
hosted services, CloudCAMP provides different node types for
application components such as Web Application, Database
Application, DataAnalytics Application, etc. For instance, the

1Due to space constraints, we do not show detailed screenshots of each
metamodel. The interested reader can find these details in [14].

metamodel enables a deployer to choose the web server
attribute, language for the code, the database server attribute
or the NoSQL database attributes from the provided list. The
deployer has to specify the variable attributes to deploy the
desired application component type.

3) Defining the Relationship among Components: Four
relationship types bind the node types in the metamodel as
follows:

1) ‘hostedOn’ relationship type implies the source node type
is required to be deployed on the destination node type

2) ‘connectsTo’ relationship type is used for deployment
ordering to relate the source node type’s endpoint to the
required target node type endpoint if they are dependent.

3) ‘deleteFrom’ connection type defines the source node
type is required to be removed from the end node type.

4) ‘migrateTo’ connection type defines the source node
type that is to be migrated to the end node type. The
’migrateTo’ relation type cannot be defined without a
’deleteFrom’ connection type.

4) Extensibility of the Metamodel: CloudCAMP is an
opinionated framework; however, with lots of freedom. The
metamodel has been designed for extensibility so that in
future we can add more application node types. Adding a
new application component is time-consuming; however, it is
a one-time effort, and it is reusable. The CloudCAMP meta-
models are extensible and reusable, so new component types
and platforms can be added as required in the CloudCAMP
metamodel.

C. CloudCAMP Knowledge Base Design

The Knowledge Base of CloudCAMP comprises a database
and the application type templates.

1) Knowledge Base Database Design: The ER diagram
of the knowledge base database is depicted in Figure 2(a),
which shows the artifact sets stored in the knowledge base. We
have structured it as four tables: os_pkg_mgr, os-dependency,
packages and swdependency to build the knowledge database.
We store (1) all the operating systems, their distributions,
package manager and versions in the os_pkg_manager table,
(2) all available application component types, e.g., PHP based
web application, MySQL based DB applications, etc. in the
swdependency table, and (3) all the software packages needed
for a particular application type are found using reverse
engineering and stored in the packages table. We build the
lookup table manually to handle these variability points. The
sample section of the database table structure is shown in
Figure 2(b).

2) Knowledge Base Template Design: The knowledge base
templates are designed by capturing the commonality in the
application components, and comprises placeholders which
need to be filled up by the CloudCAMP DSML by querying
the knowledge base database.

3) Extensibility of the Knowledge Base: The knowledge
base is extensible by design. Addition of new application com-
ponents requires the design of new templates (at least in part)
by reverse engineering the software stack. The commonalities
and variabilities need to be identified, and according to that,



(a) (b)

Fig. 2: (a) The Entity-Relation(ER) Diagram of CloudCAMP knowledge base and
(b)Sample portion of KnowledgeBase Database tables

the template needs to be designed. The software dependencies
for the application components required to be inserted in the
knowledge base database tables.

D. Generative Capabilities of CloudCAMP DSML

We now present the transformation process of CloudCAMP
that uses the DSML and Knowledge Base.

1) Knowledge Base for Generation of Infrastructure-as-
code Solution for Deployment: CloudCAMP’s generative ca-
pabilities (Requirement III-A2) are enabled via a WebGME
plugin, which is invoked by a user after the modeling process.
It generates and executes IAC as described in Algorithm 1. The
VMs are spawned in the specified cloud platform based on the
destination of ‘HostedOn’ connection [Lines 8-14]. Wherever
possible, CloudCAMP will ensure that scripts specific to
provisioning run in parallel to provide faster deployment.
Once the VMs are spawned, GenerateConfig() queries the
knowledge base [line24-34] to populate the appModel [line17]
based on the user’s specifications. Then, the query result
fills application-specific predefined configuration templates
and generates IAC, e.g., Ansible, for specific application
components [line 29-34] using template-based transformation.
A similar approach is taken to configure the service-specific
containers or to start the cloud-specific services.

2) Determining the Order of Deployment and Execution:
The NodeJS script in CLoudCAMP builds the dependency
tree for the application types defined in the metamodel and
feeds it to the orchestration workflow engine. We generate
scripts for automation tools (e.g., Ansible playbooks) for
different component types, and these tools can in turn dispatch
tasks to multiple hosts in parallel. If there is a ‘connectsTo’
relationship in the model, we let the dependent script complete
first by defining the dependency chain [Line 18-21]. All the
‘HostedOn’ dependent building blocks run in a linear fashion.

3) Generation of Infrastructure-as-code for Migration:
For migration of application components on CloudCAMP, the
‘deleteFrom’ connection type specifies from where the user
wants to move the application components and attaches a
‘migrateTo’ connection type to indicate the destination. The
‘migrateTo’ relation type cannot be defined without ‘delete-
From’ connection type to ensure correctness of the model.
The DSML will spawn a new VM with the new operating
system for the ‘migrateTo’ destination node, and delete the
current node afterward.

Algorithm 1: Deployment Script Generation
1 cloudModel← Objects to store cloud specs
2 appModel← Objects to store app specs
3
4 Procedure GenerateIAC()
5 if ConectionType == ‘HostedOn’ then
6 cloudType← the destination node of connection
7 appType← the source node of connection
8 if cloudType == ‘Desired Cloud Platform’ then
9 while !cloudModel.empty() do

10 Traverse the cloudModel
11 Fill ‘cloudType’ specific API Template
12 Generate ’cloudType’ specific script
13 Execute script to spwan VMs
14 end
15 end
16 IPAddress(es)← IP Address of target machine
17 GenerateConfig(IPAddress(es),appType)
18 if ConectionType == ‘connectsTo’ then
19 Find the source and destination application type
20 Prepare workflow to execute destination script(s)

first and source script later
21 end
22 end
23
24 Procedure GenerateConfig()

Input: IPAddress(es) of Application Component Type
25 Create empty Tree Structure
26 Fill ‘hosts’ with IPAddress(es) of App Component Location
27 if appComponent == ‘Desired Application Type’ then
28 while !appModel.empty() do
29 Traverse the appModel
30 Query dataBase for appType = ‘appComponent’
31 Fill ‘appType’ specific API Templates
32 Create complete Tree Structure
33 end
34 end
35 Wait for SSH in target machine(s)
36 Run workflow to execute tasks in parallel

4) Support for Continuous Delivery: CloudCAMP can also
handle continuous delivery and component addition/deletion
(Requirement 3), which is just a matter of updating the model
with addition or removal of a component. For instance, to
add a new database server, a user extends the model with
a DBApplication node type and ‘connectsTo’ relationships
from the webserver to the database server. CloudCAMP will
generate IAC for the newly added component and executes
it to deploy added component without hampering availability
of the existing application. Since Ansible is idempotent, it
always sets the same configuration in the target environment
regardless of their current state.

5) Constraints checking for Correctness Business Models:
We validate the business model by checking for constraint
violations thereby ensuring that the models are well-formed
and “correct-by-construction.” We verify the correctness of
the endpoint configurations for application component types,
the relationship types, cloud-specific types, etc, and the busi-
ness model as a whole before generating any IAC. We also
verify other rule-based constraints to verify the components
compatibility. For example, Amazon Kinesis delivery stream
destination has to be Amazon Services (e.g., Redshift, S3); it
cannot be Azure or OpenStack Services.



IV. EVALUATING THE BENEFITS OF THE CLOUDCAMP
PLATFORM

This section describes results comparing the time and effort
incurred in deploying application use cases using (a) manual
efforts, where the deployer must log into each machine and
type the commands to install packages and deploy the applica-
tions, (b) manually writing scripts to deploy these applications,
and (c) using the CloudCAMP framework.

A. Case Study 1: LAMP-based Service Deployment Study

Use Case: This is a prototypical three-tier Linux, Apache,
MySQL, and PHP (LAMP)-based microservice architecture
deployment similar to the motivating example described in
Section I-A. Figure 1 shows the application topology illustrat-
ing the modeling effort in CloudCAMP.

This case-study and related user-study appear in our prior
work [1]. Here, we describe the details of template-based
transformation that happens behind the scenes within Cloud-
CAMP DSML. As stated in Algorithm 1, the DSML traverses
the business logic tree of Figure 1, which is defined by
the deployer, and collects all the user-defined attributes as
shown in Figure 3. It populates the pre-defined template for
the specific application type with the user-defined attributes.
The ‘mysql_user’ and ‘mysql_root_pass’ will be filled from
specifications related to DBApplication type (Figure 3(b)).

(a) (b)

Fig. 3: (a) specifications related to WebApplication type and (b) specifications
related to DBApplication type

The application components’ software dependencies are
gathered by querying the knowledge base database. For exam-
ple, to install MySQL on a Ubuntu16.04 machine, the mysql-
server and mysql-client software packages are needed. So,
CloudCAMP DSML will query the knowledge base database
and runs the template-based transformation to concretize the
pre-defined partial template. The DSML copies the related
configuration files in specific folders to configure MySQL
correctly. Thus, the DSML will populate the pre-defined tem-
plate file with all the details, and generate deployable Ansible-
specific deployable IAC. After generating all the Ansible-
specific files, the CloudCAMP executes these files in proper
order to deploy the application by provisioning the cloud
infrastructure as described in Algorithm 1.

1) Measure of Manual Effort:: We conducted a small user
study in a Cloud Computing course for case study 1 involving
sixteen teams of three students each. We requested users to
manually configure the files, create the handlers to specify the
deployment order in the desired host, log into each host where
the application components are deployed and manually install
the packages, configure the software packages and finally start
the different components in the correct order. We have also
requested them to write the ansible script to provision the
same application stack and infrastructure. We measured the
time taken, and efforts for (a) a fully manual effort, (b) for
writing scripts in Ansible and executing these manually, and
(c) using the CloudCAMP framework to deploy the scenario.

Quantitative Evaluation based on a User Study: The
questionnaire as shown in Table I was created to conduct the
study. For each question, the evaluation scale was 1–10 where
one is the easiest and ten is the hardest.

TABLE I: Survey Questionnaire: For Q1–Q3, rate on a scale of (1-10)

Num Question
Q1 How easy is it to deploy PHPMySQL application manually?
Q2 How easy is it to deploy PHPMySQL using DevOps tool like

Ansible?
Q3 How easy is it to deploy PHPMySQL using CloudCAMP?
Q4 How much time and effort did you require to deploy the

application manually (in minutes)?
Q5 How much time and effort is required in deploying the

application using DevOps tool like Ansible (in minutes)?
Q6 How much time and effort is required deploying the application

using CloudCAMP (in minutes)?
Q7 How likely are you to use the CloudCAMP platform to deploy

applications in future?

Responses to Q1, Q2, and Q3: Ease of use: As seen
from Figure 4a, the “ease of use” rating for the CloudCAMP
platform is much higher compared to manual and scripting
efforts. The median difficulty in the manual effort is rated
as 72.2%, and median difficulty in scripting effort is rated as
71.6%, while the median difficulty rating for CloudCAMP use
is 30.9%.

(a) (b)

Fig. 4: (a) Comparing difficulty percentages to deploy services in different ap-
proaches, (b) Likeliness of using CloudCAMP for future cloud services deployment

Responses to Q4, Q5, and Q6: Time to complete the entire
deployment:

The effort incurred by the user to deploy the LAMP model
in the Cloud is shown in Table II [1], whereas using the Cloud-
CAMP the same topology deployment time is approximately
15-20 minutes for the first time users.



TABLE II: For Q5–Q6, median and mean±std.dev for deployment time, Lines of
code written for deployment, migration time and Lines of code written for migration.

Deployment
Time(mins)

Lines to
Deploy

Migration
Time(mins)

Lines to
Migrate

median 510 300 720 550
mean ±
std.dev

516±244 315±47 653±231 553±142

Response to Q7:As shown in Figure 4b, 65% of the
respondents agreed to use CloudCAMP tool to deploy cloud
applications in the future, whereas 30% are still unsure.

Discussion: Results from our user study strengthen our
belief that the CloudCAMP platform will be a very resourceful
and productive tool for business application deployers. We
have also conducted a user study specifying to create Docker
Containers (https://www.docker.com/) and deploy the LAMP
architecture inside it using scripting tools and found very
similar results. The visual drag and drop environment helps
users to quickly deploy various scenarios of business applica-
tion topology in distributed systems. Therefore, the benefits of
automated provisioning accrued using CloudCAMP can easily
be understood.

B. Case Study 2: Application Component Migration for
LAMP-based Web Service

CloudCAMP platform also supports application compo-
nent migration with ease for which we have two connection
types ‘deleteFrom’ and ‘migrateTo’. As described in Sce-
nario III-A2, suppose the user wants to migrate the database
application component from one machine to another machine,
which resides on a different OpenStack cloud platform. This
assignment was to migrate the ‘stateful’ MySQL database
service from one node to another node, and the students
are asked to add load balancer node to make the service
available all the time. CloudCAMP generates a new workflow
structure based on the changed user specifications as described
in section III-D3.

Responses to Q4, Q5, and Q6: Time to complete the whole
migration: The average time the students took to write the
scripts to complete the entire migration process is 653 minutes,
with a median of 720 minutes as shown in Table II. Whereas
our rough estimates for students using the CloudCAMP-based
topology migration will be only 10-15 minutes for the first
time users. The average lines of code written using manual
effort for the migration process are 553 lines as per the survey
is shown in Table II.

V. CONCLUSIONS

This paper presented a model-driven approach for an au-
tomated deployment and management platform for cloud
applications. It aids the application deployer in modeling
service provisioning at a higher level of abstraction, and
deploy its code without requiring significant domain expertise
while requiring only minimal modeling effort and no low-
level scripting. All the application components are the building
blocks in our modeling environments and can be connected us-
ing exposed endpoints as a pipeline. The DSML will generate

“correct-by-construction” IAC solution from the pipeline and
execute the IAC to provision the application stack on the target
cloud environment. Using WebGME to define the Cloud-
CAMP framework enables us to decouple its metamodel(s)
and knowledge base from the generative aspects while per-
mitting extensibility. CloudCAMP significantly increases the
productivity and efficiency of the application deployment and
management team. CloudCAMP is available in open source
from https://doc-vu.github.io/DeploymentAutomation.

ACKNOWLEDGMENT

This work was supported in part by NEC Corporation, Kanagawa,
Japan and NSF US Ignite CNS 1531079. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect views of NEC or NSF.

REFERENCES

[1] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, “Cloudcamp:
Automating the deployment and management of cloud services,” in
International Conference on Services Computing (WIP). IEEE, 2018.

[2] J. Carrasco, J. Cubo, F. Durán, and E. Pimentel, “Bidimensional cross-
cloud management with tosca and brooklyn,” in Cloud Computing
(CLOUD), 2016 IEEE 9th International Conference on. IEEE, 2016.

[3] H. Lu, M. Shtern, B. Simmons, M. Smit, and M. Litoiu, “Pattern-based
deployment service for next generation clouds,” in Services (SERVICES),
2013 IEEE Ninth World Congress on. IEEE, 2013, pp. 464–471.

[4] K. Képes, U. Breitenbücher, and F. Leymann, “The sepade system:
Packaging entire xaas layers for automatically deploying and managing
applications,” month, 2017.

[5] D. Ardagna, E. Di Nitto, G. Casale, D. Petcu, P. Mohagheghi, S. Mosser,
P. Matthews, A. Gericke, C. Ballagny, F. D’Andria et al., “Modaclouds:
A model-driven approach for the design and execution of applications
on multiple clouds,” in Proceedings of the 4th International Workshop
on Modeling in Software Engineering. IEEE Press, 2012, pp. 50–56.

[6] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure
configuration synthesis and debugging,” Journal of Network and Systems
Management, vol. 16, no. 3, pp. 235–258, 2008.

[7] R. Di Cosmo, A. Eiche, J. Mauro, S. Zacchiroli, G. Zavattaro, and
J. Zwolakowski, “Automatic deployment of services in the cloud with
aeolus blender,” in Service-Oriented Computing. Springer, 2015, pp.
397–411.

[8] R. Di Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli, J. Zwolakowski,
A. Eiche, and A. Agahi, “Automated synthesis and deployment of
cloud applications,” in Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. ACM, 2014, pp. 211–
222.

[9] P. Hirmer, U. Breitenbücher, T. Binz, F. Leymann et al., “Auto-
matic topology completion of tosca-based cloud applications.” in GI-
Jahrestagung, 2014, pp. 247–258.

[10] U. Breitenbucher, T. Binz, K. Képes, O. Kopp, F. Leymann, and
J. Wettinger, “Combining declarative and imperative cloud application
provisioning based on tosca,” in Cloud Engineering (IC2E), 2014 IEEE
International Conference on. IEEE, 2014, pp. 87–96.

[11] I. Giannakopoulos, N. Papailiou, C. Mantas, I. Konstantinou,
D. Tsoumakos, and N. Koziris, “Celar: automated application elasticity
platform,” in Big Data (Big Data), 2014 IEEE International Conference
on. IEEE, 2014, pp. 23–25.

[12] OASIS, “Topology and orchestration specification for cloud ap-
plications,” http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.
pdf, 2013, oASIS Standard.

[13] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger, “In-
tegrated cloud application provisioning: interconnecting service-centric
and script-centric management technologies,” in OTM Confederated In-
ternational Conferences" On the Move to Meaningful Internet Systems".
Springer, 2013, pp. 130–148.

[14] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, “Cloudcamp:
A model-driven generative approach for automating cloud application
deployment and management,” Technical Report, no. ISIS-17-105, sep
2017.


